1.College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 2.The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 3.College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China
Fund Project:Project supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61720106003), the National Natural Science Foundation of China (Grant Nos. 61701254, 61801234), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20170901, BK20160911), and the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant Nos. JZNY201701, JZNY201706).
Received Date:22 January 2019
Accepted Date:10 March 2019
Available Online:01 June 2019
Published Online:20 June 2019
Abstract:As an indispensable method of constructing ubiquitous communication network, satellite communication technology has received significant attention in both industrial and academic areas recently. In this paper we investigate the performance of an integrated satellite-terrestrial cooperative network in the presence of co-channel interference, which consists of a satellite source having a single antenna, a terrestrial relay equipped with multiple antennas to assist satellite signal transmission, and a single-antenna user corrupted by multiple co-channel interference. On the assumption that the user receives the signals from direct link and relaying link with decode-and-forward protocol, the output signal-to-interference-plus-noise ratio of the user with the maximal ratio combining scheme is firstly obtained. Then, according to the Meijer-G function, we derive the moment generating function of the destination and the relay, where the satellite links are assumed to experience Shadowing-Rician fading while the terrestrial links undergo Rayleigh fading, and the analytical average symbol error rate expression for the considered system is obtained. Finally, the simulation results demonstrate the effectiveness of the theoretical analysis and reveal theinfluences of antenna number, interference number, and modulation schemes on the system performance. Therefore, our work provides useful guidelines for the engineers in designing the integrated satellite-terrestrial cooperative networks for future satellite mobile communication. Keywords:satellite communication/ cooperative transmission/ decode-and-forward/ average symbol error rate
全文HTML
--> --> -->
2.系统模型如图1所示, 本文考虑的星地融合协作传输网络由通信卫星(S), 配置${N_{\rm{r}}}$根天线的中继(R), 以及配置单根天线的地面用户(D)组成. 在该系统中, 地面用户既接收到卫星的信号, 又接收到中继的信号, 同时还接收到K个同信道干扰${s_i}\left( t \right) $$\left( {i = 1,2, \cdots ,K} \right)$. 整个信息传输过程分为两个时隙. 在第一个时隙, S以广播的形式发射信号${x_{\rm{s}}}\left( t \right)$, 满足$E\left[ {{{\left| {{x_{\rm{s}}}\left( t \right)} \right|}^2}} \right] = 1$. 那么地面用户D接收到的信号可以表示为 图 1 系统模型 Figure1. System model.
${y_{{\rm{sd}}}}\left( t \right) = \sqrt {{P_{\rm{s}}}} {h_{{\rm{sd}}}}{x_{\rm{s}}}\left( t \right) + \sum\limits_{i = 1}^K {\sqrt {{P_{{\rm{I}}i}}} {g_i}{s_i}\left( t \right)} + {n_0}\left( t \right),$
其中${P_{\rm{s}}}$和${P_{{\rm{I}}i}}$分别表示卫星的发射功率和地面第i个同频干扰的功率; ${n_0}\left( t \right)$是均值为0, 方差为${\sigma ^2}$的高斯加性白噪声(additive white Gaussian noise, AWGN); $\left\{ {{s_i}\left( t \right)} \right\}_{i = 1}^K$表示地面用户接收到的干扰信号, 且满足$E\left[ {{{\left| {{s_i}\left( t \right)} \right|}^2}} \right] = 1$; ${h_{{\rm{sd}}}}$为S-D链路信道增益; ${g_i}\left( {i = 1, 2, \cdots, K} \right)$为干扰源和地面用户间的信道增益. S-D链路的SINR可表示为
${y_{{\rm{sr}}}}\left( t \right) = \sqrt {{P_{\rm{s}}}} {{w}}_1^H{{{h}}_{{\rm{sr}}}}{x_{\rm{s}}}\left( t \right) + {{w}}_1^H{{{n}}_1}\left( t \right), $
图2为不同调制方式下系统的ASER随$\bar \gamma $的变化, 其中中继天线数${N_{\rm{r}}} = 3$和干扰数目$K = 3$, 卫星-中继链路服从中度阴影衰落信道参数. 从图2可看出, 推导的闭合表达式得到的结果与Monte Carlo仿真高度一致, 从而证明了所推导的理论表达式的正确性. 此外, 可明显看出二进制相移键控(BPSK)调制方式下的系统性能要优于四进制相移键控(QPSK)和八进制相移键控(8PSK)调制方式. 这是因为在相同的ASER条件下, BPSK需要的SNR更低, 但同时传输速率也更低. 图 2 不同调制方式下ASER随的SNR变化 Figure2. Influences of different modulation modes on the ASER of the considered system.
图3给出了不同卫星信道参数下的星地融合协作网络ASER随$\bar \gamma $的变化, 其中中继天线数${N_{\rm{r}}} = 3$和干扰数目$K = 3$, 且调制方式为QPSK. 从图3可以看出, 轻度阴影衰落参数组的ASER性能优于中度阴影衰落和重度阴影衰落参数组. 随着卫星链路中的阴影增加$\left( {{\rm{ILS}} \to {\rm{AS}} \to {\rm{FHS}}} \right)$ 会导致ASER出现明显下降, 这是由于阴影衰落的增加导致信道质量下降, 从而造成输出SINR降低. 图 3 不同卫星信道参数下的ASER随的SNR变化 Figure3. Influences of different satellite channel parameters on the ASER of the considered system.
图4给出了在信道参数采用中度阴影衰落, 且中继天线数目${N_{\rm{r}}}$和干扰数目$K$不同时, 采用QPSK调制方式的系统的ASER随$\bar \gamma $的变化. 可以看出, 在中继天线数相同的情况下, 干扰数目越多, 系统ASER性能越差; 在干扰数目相同的情况下, 天线数目越多, 系统ASER性能越好, 表明配置多天线能够提高系统传输的可靠性. 这是因为多天线技术可以提供阵列增益, 提高地面用户的接收信号强度, 而同信道干扰会降低地面用户的接收SINR. 因此, 可通过增加地面中继的天线数和抑制同信道干扰来提高星地融合协作网络的性能. 图 4 不同天线数和干扰数下的ASER随的SNR变化 Figure4. Influences of different antenna numbers and interference numbers on the ASER of the considered system.