Key Laboratory of Quantum Engineering and Quantum Materials of Guangdong Province, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract:Electron transport mechanism of a two-dimensional infinite slab subjected to Rashba spin-orbital coupling is studied in this paper. We calculate the Hall conductance and the longitudinal resistance of the integer quantum Hall effect (IQHE). In a strong magnetic field, the Landau levels of electrons increase rapidly at large wave vectors due to the constraint of the two edges of the sample while they remain flat at small wave vectors. Although the Zeeman effect can split the energy levels of spin degeneracy under a strong magnetic field, the spacing between the Landau levels is exactly equal to the spin splitting, thus the spin degeneracies have not been fully resolved. The spin-orbital coupling fully resolves the spin degeneracies of the energy levels. This is the key to reproducing the IQHE. Electrons with rapid increasing energies are localized at the two edges of the sample and transport along the edges to form separated currents with opposite directions. In this case, back scattering of electrons is prohibited due to the localization of these two branches. Since the electrons on the upper and lower edges originate respectively from the left and right electrode, they also have the chemical potentials of the electrons in those electrodes, respectively. The computation result shows that the Hall conductance appears as plateaus at integer times of e2/h. Temperature influences the accuracy of the Hall plateaus. As an international resistance standard, exceeding a critical temperature can produce significant errors to the Hall plateaus. Below the critical temperature, the accuracy can reach 10–9. Finally the mechanism of the longitudinal resistance of the IQHE is discussed and computed numerically. It is shown that only the wave-functions with opposite and small wave vectors have a significant overlap in the bulk of the sample and thus contribute to the longitudinal resistance. Due to the separation of currents in different directions in space, the longitudinal resistance does vanish at the Hall plateaus but it appears when the Hall conductance jumps from one plateau to another one. Keywords:spin-orbital coupling/ integer quantum Hall effect/ electron transport
全文HTML
--> --> -->
2.电子输运考虑一个二维无限长条形样品. 在与样品平面垂直方向施加均匀磁场$ {{B}} = B\hat{ e}_{z} $. 设样品的$ x $方向是无限长的, $ y $方向具有宽度$ W $. 矢势选择为朗道规范$ A = \left({-By, 0}\right) $. 系统哈密顿量写为
其中能量单位为$ \dfrac{\hbar^{2}}{m^{\ast}a^{2}} $, $ \alpha = \dfrac{eBa^{2}}{h} $决定磁感应强度B; $ \lambda_{\rm h} $是无量纲自旋轨道耦合常数; $ F_{\rm h}y $是无量纲化的霍尔势. 利用差分$ {\partial _y}f\left(y\right) = \dfrac1{2\varDelta} [f\left({y_{j + 1}}\right)-$$f\left({y_{j-1}}\right)],$$ \partial _y^2f\left( {y }\right) \!=\! \dfrac1{\varDelta ^2} \big[f\left( {{y_{j + 1}}} \right)\!-\!2f\left( {{y_j}} \right) \!+\! f\left( {{y_{j-1}}} \right) \big]$数值求解上面的本征方程, 可以得到本征能量和相应的波函数. 首先不考虑自旋轨道耦合$ \left( {\lambda_{\rm h} = 0 } \right)$. 得到的能谱如图1(a)所示. 容易看出, 由于样品两边缘的限制, 朗道能级在大波矢区间快速上升, 在中间部分由于霍尔势的作用略微倾斜, 形成了能带. 后面将看到, 正是这些上升部分的能级提供了传导电流. 朗道能级在磁场作用下发生自旋分裂. 最低的朗道能级只含有下自旋态, 但从第二个朗道能级开始, 能级仍然是上下自旋简并的. 这是因为朗道能级的间距恰好等于自旋的塞曼分裂, 即$ 2{\text{π}}\alpha\cdot \dfrac{\hbar^{2}}{m^{\ast}a^{2}} = \hbar\omega_{\rm c} $, 其中$ \omega_{\rm c} = eB/m^{\ast} $是电子回旋频率. 图 1 (a)自旋简并的3个朗道能级在磁场中分裂, 但仍有能级简并; (b)第一朗道能级波函数的模, 参数$\alpha=0.06$, $\lambda_{\rm h}=0$, $W=50$, $\mu_{1}=0.49$, $\mu_{2}=0.46$ Figure1. (a) The lowest three spin degenerate Landau levels are split apart in the strong magnetic field, but the degeneracy is not fully resolved; (b) the modulus of the wave functions of the first Landau level for $\alpha=0.06$, $\lambda_{\rm h}=0$, $W=50$, $\mu_{1}=0.49$, $\mu_{2}=0.46$.
图1(b)是最低朗道能级波函数的模的分布图. 每个波矢$ k $对应的波函数在y方向几乎都是局域的. 尤其大波矢区间波函数都局域在样品的两个边缘上. 所以, 传导电流主要发生在样品的边缘上. 具有相反大波矢的电子在空间上是完全分离的. 它们产生相反方向的电流. 正是这个原因, 大波矢电子不能在晶格边沿上发生背散射从而不能产生电阻. 而朗道能级的中间略微倾斜的部分对应的波函数局域在样品内部. 这部分的波函数重叠非常小. 其他朗道能级的波函数也是同样的情况. 处于能带右边的斜率为正的上升大波矢部分的电子局域在样品上边缘且向$ x $轴正向(右)移动, 而处于左边斜率为负的大波矢部分的电子局域在下边缘且向左移动, 如图2(a)所示. 在电子输运过程中, 电子可看做准经典波包, 波包的群速度由能带的斜率确定: 图 2 (a)在均匀磁场中通电的长条形, 箭头表示电子的输运方向; (b)自旋简并下霍尔电导的奇数霍尔平台. 参数$k_{\rm B}T=0.002$, $\mu_{1}=0.49$, $\mu_{2}=0.46$ Figure2. (a) An long slab with current flows in a strong magnetic field, arrows indicate the direction of electron transport; (b) odd plateaus of Hall conductance due to the spin degeneracy. $k_{\rm B}T=0.002$, $\mu_{1}=0.49$, $\mu_{2}=0.46$.