Center for Soft Condensed Matter Physics and Interdisciplinary Research, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Fund Project:Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181430), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the Specially Appointed Professor Plan in Jiangsu Province, China (Grant Nos. SR 10800312, SR 10800215).
Received Date:27 December 2018
Accepted Date:11 March 2019
Available Online:01 May 2019
Published Online:20 May 2019
Abstract:As a new energy storage device, supercapacitor (or electrochemical capacitor) has an ultra-long cycle life, extremely high power density and enhanced energy density. It fills the gap in the energy-power spectrum between traditional capacitor and battery. In general, the traditional energy storage and conversion device cannot have a perfect trade-off between high energy density and high power density. With the rapid development of modern society, developing light, portable, safe and environmentally friendly high-performance energy storage devices has become increasingly vital. Therefore, there are numerous researches of flexible solid supercapacitors emerging at this historic moment. The selection of flexible electrode materials and that of electrolytes are crucial factors in designing the flexible solid state supercapacitors, which have been the research hotspots in recent years. Carbon nanotube array has been widely used in electrode material of super capacitors due to its excellent electrical conductivity, large specific surface area and super high chemical stability. But in assembly process, carbon nanotube array easily collapses and breaks its neat orientation because of its poor mechanical strength. In consideration of environmental contamination and practical demands, in this paper the neutral gel electrolyte is adopted to embed carbon nanotube array to form flexible composite film electrode. Besides the fact that we use hydrophilic flexible carbon cloth as current collector and neutral gel electrolyte as separator to prepare flexible devices, we compare the electrochemical properties among different devices by changing the electrolyte salt added in gel electrolyte. Meanwhile, after continuous bending and folding, the properties of flexible devices have not been significantly damaged, indicating good flexibility and mechanical stability. The specific capacity of the whole device with PVA-NaCl used as gel electrolyte increases up to 104.5 mF·cm–3, which is much higher than the specific capacity of the composite device formed by organic ionic gels with carbon nanotube array and that of the composite device formed by commercial short carbon nanotubes with hydrogels. A maximum energy density of 0.034 mW·h·cm–3 is obtained at the same time. In addition, it has good rate performance, cycling stability, suppressing self-discharge property, and good chemical stability at a high voltage of 1.6 V. Neutral gel/carbon nanotube array composite devices not only meet the needs of the era of green safety, flexible and portable folding, but also open up the future application prospects of medical implants. Keywords:neutral hydrogel/ carbon nanotube array/ solid state/ supercapacitor
$E_{\rm{v}} = \frac{1}{2} \times C \times \Delta {U^2},$
$P_{\rm{v}} = \frac{E}{{\Delta t}}.$
上述公式中V(cm3)为器件总体积; $ \Delta U$(V)为测试过程中的电压窗口; S为CV曲线的积分面积; v(mV/s)为CV曲线的扫速; $ \Delta t$(s)为放电时间. 3.结果与讨论控制CVD实验条件, 本实验均选择400—500 μm高度的阵列作为研究对象. 图1(a)为取向碳纳米管阵列的扫描电镜(SEM)图, 图1(b)为凝胶包埋后碳管阵列微观形态图. 从图中可以看出, 包埋后凝胶均匀地包覆在碳管外壁, 并且阵列整体依然保持较好的取向性. 图 1 (a)垂直取向碳纳米管阵列SEM图; (b)水凝胶包埋后碳管阵列图 Figure1. (a) Scanning electron microscope (SEM) image of CNTA; (b) SEM image of CNTA after hydrogel embedding.
柔性固态超级电容器的组装过程如图2所示. 实验采用两电极体系测试, 工作电极与器件正极相连, 参比电极和辅助电极与负极相连. 图3为采用PVA-CH3COONa中性水凝胶作为电解质组装得到的柔性固态超级电容器的电化学性能测试. 图3(a)为柔性器件在不同扫速下的循环伏安扫描图, 由于电活性物质为碳材料, 测试电位窗口选择0—0.8 V, 曲线整体上为较规整的类矩形, 并且在200 mV/s高扫速下, 矩形规整度依旧很高, 表明器件良好的双电层储能特性. 同时根据(1)式计算得出在10 mV/s扫速下整个器件比电容为94.4 mF·cm–3, 随着扫速增加, 器件比电容量下降, 当扫速增大20倍后, 比电容为77.0 mF·cm–3, 相比初始的电容量仅下降18.4%, 表明柔性器件具有较好的倍率性能. 图3(b)则是对图3(a)的纵坐标电流值通过公式$ C_{\rm{s}} = I_{\rm{s}}/v$(Is(A)为瞬时电流, v(V/s)为扫速, $ C_{\rm{s}}\left({\rm{F}} \right)$为瞬时电容)进行归一化处理后的示意图, 表明不同扫速下器件的瞬时电容Cs随电压U的循环扫描图, 从此图可以更直观地观察到电容值随着扫速增大并未发生明显地衰减. 图3(c)则是不同恒定电流密度下器件的充放电曲线图, 曲线均为对称的三角形形状, 表明器件良好的双电层电化学储能行为. 由于器件存在内阻, 故在各不同电流密度放电瞬间均可观测到不同程度的IR降, 并且可以看出其随着电流密度增大而增大. 与循环伏安曲线同理, 随着电流密度的增加, 器件比容量下降, 通过(2)式可以计算得出图3(d)比电容随电流密度的变化图, 在0.51 mA·cm–3最小测试电流密度下, 整个器件比电容为94.9 mF·cm–3(25.6 mF·cm–2), 当电流密度增大20倍至10.2 mA·cm–3时, 容量依然可以维持在初始电容值的90%, 表明了优异的倍率性能. 通过交流阻抗谱测试, 我们对器件的内阻进行了深入的研究, 图3(e)为0.01—100k Hz频率范围内器件的EIS谱图, 曲线由一个高频区的半圆和一条低频区的直线组合得到. 高频区半圆与实轴的截距为溶液电阻Rs, 半圆的直径为电荷转移电阻Rct, 低频区直线斜率表示离子扩散电阻Zw, 直线愈趋于平行虚轴, 表明器件愈接近理想的电容性能[24]. 从图中可以读出Rs约为6.7 Ω, Rct约为7.5 Ω, 这些数据远低于采用离子凝胶(约350 Ω和30.5 Ω)作为电解质的器件内阻[25,26]. 低频区直线靠近虚轴, 表明离子扩散传质较快, 凝胶电解质可以充分浸润碳管阵列, 进入碳管间隙, 电解质与碳管阵列可以充分接触, 缩短离子扩散路径. 在实际应用中, 通常都需要考虑器件使用寿命, 因此循环稳定性同样也是超级电容器性能的一个重要衡量参数. 图3(f)为在7.7 mA·cm–3的大电流密度下器件充放电循环稳定性的测试结果, 由于双电层电容是基于高比表面积碳材料和电解液界面电荷分离所产生的电容, 不涉及氧化还原反应, 因此器件在经过5000次循环后, 比容量依然保持在96%左右, 相较于采用中性溶液作为电解液, 循环稳定性得到明显的提高. 图中插图为不同循环圈数后器件CV曲线图, 经过5000次充放电后曲线依然具有良好的重现性. 同时我们对图4(a)柔性器件进行图4(b)所示的弯曲折叠实验, 在经过80次弯曲折叠后, 器件仍可回复至初始的形态, 如图4(c)所示. 弯曲折叠前后分别进行了循环伏安扫描测试, CV曲线对比结果如图4(d), 反复的弯曲折叠并没有影响器件性能, 曲线几乎完全重合, 即器件内部结构没有发生明显损坏, 以上弯曲折叠实验证实器件整体具有良好的柔性及机械稳定性. 图 3 PVA-CH3COONa/CNTA复合器件的电化学性能测试 (a) 10?200 mV/s扫速下循环伏安曲线(CV); (b)不同扫速下的瞬时电容图; (c) 0.51?10.2 mA·cm–3不同电流密度下的恒流充放电曲线(GCD); (d)比电容随电流密度变化图; (e) 0.01?100k Hz频率下器件EIS; (f)5000次循环充放电下器件稳定图 Figure3. Electrochemical performance test of PVA-CH3COONa/CNTA composite device: (a) CV curves at different scan rates ranging from 10 to 200 mV/s; (b) instantaneous capacitance diagram at different scan rates; (c) galvanostatic charge-discharge (GCD) curves at different current densities (0.51–10.2 mA·cm–3); (d) evolution of specific capacitance versus current density; (e) Nyquist plot of the device at a frequency range from 0.01 to 100k Hz; (f) cyclic stability of the device during 5000 charging-discharging cycles.
图 4 (a)柔性器件图; (b)和(c)为弯曲前后器件图; (d)弯曲80次前后器件CV曲线对比图 Figure4. (a)?(c) The original flexible device, bend and recovery processes, respectively; (d) CV curves comparison of the flexible device before and after being bent over 80 times at 50 mV/s scan rate.
图 2 中性水凝胶复合碳纳米管阵列柔性固态超级电容器的制备流程图 Figure2. Schematic of the fabrication of neutral hydrogel/CNTA composite flexible solid state supercapacitor.
通过改变PVA中所加的电解质盐, 我们制备出了不同的中性水凝胶, 并分别制备柔性器件, 依次对其电化学性能进行测试. 图5为选用不同凝胶电解质后器件的电化学性能对比图. 图5(a)为在50 mV/s扫速下CV曲线对比图, 测试电位窗口均为0—0.8 V, 曲线整体均呈规整的类矩形形状, 然而, 采用PVA-NaCl作为电解质的柔性器件的CV曲线相较其他两种凝胶电解质兼具更好的曲线规整度和更大的闭合曲线积分面积, 其比电容最大达到104.5 mF·cm-3, 整体上电化学双电层性能更加优异. 图5(b)是在5.1 mA·cm–3的电流密度下, 各器件进行充放电的测试结果对比图, 曲线均为对称的三角形, 表明器件均具有较好的双电容特性. 因为器件本身的内阻, 三条曲线在放电瞬间都有IR降发生, 但是相较之下PVA-NaCl作为电解质的器件IR降最小, 并且在相同的电流密度下放电时间最长, 这表明此器件可以存储更多的电荷, 具有较高的比电容和较小的内阻. 并且在电流密度从1.28 mA·cm–3增大8倍至10.2 mA·cm–3, 器件的电容保持在89%以上, 体现出优异的倍率性能. 此外, 通过图5(c)的交流阻抗谱对比图可以看出, 在不同的凝胶电解质下, 曲线形状并未发生明显变化. 采用PVA-LiCl中性水凝胶作为电解质时, 器件溶液电阻增大, 这可能是因为Li+吸水性和非手套箱测试条件, 导致碳纳米管阵列复合膜与集流体碳布接触不好; 同样地, PVA-CH3COONa作为电解质时, 由于CH3COO–体积较大, 不能较快地在多孔碳材料体相中插入和脱出, 导致电荷转移电阻明显增大, 同时高频区半圆并不明显, 且低频区直线部分相较其他两组与虚轴趋近度并不好. 综合比较之下, PVA-NaCl电解质使器件的各电阻均较小(Rs = 8.0 Ω, Rct = 2.9 Ω). 此外, 通过(3)和(4)式计算出各器件的能量密度和功率密度并绘制得到图5(d)的Ragone曲线图, 同样地, 基于PVA-NaCl电解质的柔性器件性能最佳, 在平均功率密度0.51 mW·cm–3可实现0.0093 mW·h·cm–3的最大能量密度, 使用PVA-CH3COONa作为电解质的器件性能最差, 可达到的最大能量密度为0.0084 mW·h·cm–3(2.27 μW·h·cm–2), 对应的平均功率密度为0.41 mW·cm–3, 但相比于文献中离子凝胶复合碳管阵列得到的器件(0.5 μW·h·cm–2)[25]和基于PVA-H2SO4凝胶多壁碳纳米管的柔性器件(0.008 mW·h·cm–3)[26], 性能方面依然具有明显的优越性. 图5(e)为三个器件的循环稳定示意图, 使用PVA-NaCl作为电解质的器件稳定性最佳, 经过5000次循环后电容仍保持在100%左右, 使用PVA-CH3COONa作为电解质的稳定性次之, PVA-LiCl的稳定性最差. 综上几方面电化学性能比较后, PVA-NaCl凝胶包埋的柔性器件性能最佳. 图 5 (a) 50 mV/s扫速下CV对比图; (b) 5.1 mA·cm–3电流密度下GCD对比图; (c) EIS对比图; (d)能量-功率密度对比图; (e) 5000次循环稳定性对比图 Figure5. Comparison of electrochemical properties of different neutral gel/CNTA composite devices: (a) CV comparison diagram at 50 mV/s scan rate; (b) GCD comparison diagram at 5.1 mA·cm–3 current density; (c) EIS Nyquist plots obtained from the electrochemical impedance test for different samples; (d) Ragone plots of the different samples; (e) the cyclic performances of the different samples for 5000 cycles.
图6为分别采用碳纳米管阵列(CNTA)和无规商业碳管粉末(CCNT)作为电极材料的柔性器件性能对比图, 复合器件表面积长 × 宽均为0.85 cm × 0.85 cm. 由图6(a)中在50 mV/s扫速下CV对比图可以看出基于碳管阵列的器件的曲线面积远大于采用无规商业碳管粉末作为电极材料的器件, 表明PVA-NaCl/CNTA复合器件可以存储更多电量. 这一结论进一步也由图6(b)GCD曲线对比图得到验证, 在0.69 mA·cm–2同一电流下, PVA-NaCl/CNTA复合器件放电时间大约是PVA-NaCl/CCNT复合器件的16倍, 且基于无规商业碳管粉末的复合器件充放电曲线发生弯曲而不再是规整三角形. 图6(c)可以清楚地表明PVA-NaCl/CNTA复合器件在电流密度0.34 mA·cm–2、面积比容量为28.2 mF·cm–2、电流密度增大8倍至2.76 mA·cm–2时, 比容量保持率高达90%, 相较于PVA-NaCl/CCNT复合器件在比容量(2.4 mF·cm–2)和倍率性能(容量保持率约为55%)具有明显优越性. 图6(d)EIS谱图也进一步证明基于碳管阵列的器件在内阻上的优势, 其接触电阻小于PVA-NaCl/CCNT复合器件(10 Ω), 高频区半圆明显且低频区直线与虚轴趋近度更好. 以上对比表明CNTA相较于CCNT具有更高的比容量、倍率性能和更小的内阻, 更适合作为柔性器件的电极材料. 由于水的电解和电极材料的氧化, 水凝胶复合柔性固态超级电容器的工作窗口(< 1 V)和能量密度受到限制[27,28], 于是我们对PVA-NaCl/CNTA柔性器件进行了高电压下的循环扫描得到图7(a), 与之前在酸性凝胶中碳管阵列在1 V左右即被氧化不同[29,30], 即使在1.6 V高电压下, 曲线依然未出现明显的氧化还原峰, 表明中性条件下碳管阵列在高电压下结构依然稳定, 即器件在高电压下具有良好的实用性. 因此, 我们进一步在0—1.6 V电压区间进行CV扫描, 如图7(b)所示, 曲线在200 mV/s扫速下依然呈现良好的类矩形, 器件保持稳定的双电层特性. 由于电压窗口的增大, 故此高电压下器件在平均功率密度为8.8 mW·cm–3时能量密度可达到0.034 mW·h·cm–3(9.18 μW·h·cm–2). 以往的双电层研究较少关注于器件的自放电现象, 但实际上由于内阻消耗及电解质离子的内部“穿梭”, 满电状态下的电容器所带电量会逐渐减少, 评估自放电最常用的方法是让充满电的器件处于开路状态, 测量电压随时间的衰减[31]. 图7(c)为电极材料分别为取向碳管阵列和无规碳管粉末的自放电对比图, 可以看出PVA-NaCl/CNTA复合器件自放电速率较慢, 开路电压降低一半所用时间为7.5 h, 远长于采用CCNT作为电极材料的器件(0.5 h). 由此推测碳纳米管阵列的独特取向结构及碳管之间纳米受限空间可以有效地抑制器件的自放电现象, 表明此类器件在实际生活中良好的实用性. 图 6 PVA-NaCl/CNTA和PVA-NaCl/CCNT复合器件的电化学性能测试对比 (a) 50 mV/s扫速下CV对比图; (b) 0.69 mA·cm–2电流密度下GCD对比图; (c)比电容随电流密度变化图; (d)高频下EIS对比图 Figure6. Comparison of electrochemical properties of PVA-NaCl/CNTA and PVA-NaCl/CCNT composite devices: (a) CV comparison diagram at 50 mV/s scan rate; (b) GCD comparison diagram at 0.69 mA·cm–2 current density; (c) diagram of specific capacitance changing with current density; (d) EIS comparison diagram at high frequency.
图 7 PVA-NaCl/CNTA复合器件的电化学性能测试 (a) 50 mV/s扫速下0.8?1.6 V不同电压范围内CV曲线图; (b) 10?200 mV/s扫速下高电位CV曲线图; (c) 分别基于取向阵列和碳管粉末的器件自放电对比图 Figure7. Electrochemical performance test of PVA-NaCl/CNTA composite device: (a) CV curves in different voltages ranging from 0.8 to 1.6 V at 50 mV/s scan rate; (b) high-potential CV curves over the scan rates ranging from 10 to 200 mV/s; (c) self-discharge comparison diagram based on CNTA and CCNT respectively.