1.College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China 2.Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
Fund Project:Project supported by the Higher Education Foundation of Anhui Province, China (Grant No. KZ00216022), the Research start-up Fund of Anhui University of Engineering, China (Grant No. 2018YQQ007), and the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, 61271377).
Received Date:08 November 2018
Accepted Date:29 March 2019
Available Online:01 June 2019
Published Online:05 June 2019
Abstract:In order to improve the resistance properties of HfO2 and increase the consistency and uniformity of conductive filaments formed by oxygen vacancies (VO), the first-principles calculation method based on density functional theory is used to study the micro-properties of Al-doped HfO2 resistive materials. The results show that the interval Al (Int-Al) is more suitable for being incorporated into HfO2, and the closer to the relative position of VO the Int-Al, the faster the convergence rate of the resistive material tends to be stable, and the smaller the formation energy. The effects of different Int-Al concentrations on the formation of HfO2 supercells with VO defects show that when the concentration of doped Int-Al is 4.04%, the fractional charge state density map can form relatively good charge channels. The maximum and critical equipotential surface values are highest, which is conducive to improving the consistency and uniformity of the formation of conductive filaments in HfO2 resistive materials. The calculation of energy formation shows that the change is slow when the concentration of Int-Al is lower than 4.04%. When the concentration of Int-Al is higher than 4.04%, the abnormal increase occurs, which indicates that the defect system becomes more and more difficult to form with the increase of the concentration of Int-Al. The introduction of the impurity and the VO defect destroy the original complete crystal structure, which causes the position of the atoms around the impurity to shift, and the valence electron orbit and the energy level of the crystal are changed, and the distribution of the internal charges of the HfO2 defect system is affected. In order to study the effect of the change of the lattice structure on the formation of the VO conductive filament, the VASP software package is used to calculate the relative ratio of the atoms in the lattice structure of the HfO2 defect system as the reference and the relative ratio of the HfO2 defect system after the optimizing the lattice structure. Further study of the change of lattice structure, when the concentration of doped Int-Al is 4.04%, shows that the defect formation energy decreases significantly, which is conducive to the formation of perfect conductive channel. The conductive channel has a certain reference significance for improving the performance of HfO2 based resistive variable memory materials. Keywords:HfO2/ first principles/ interval Al/ lattice structure
图 1 HfO2缺陷超胞模型 (a) Sub-Al掺杂到含有VO的HfO2; (b)—(f) Int-Al掺杂含有VO的HfO2, 掺杂Int-Al的个数分别为1—5 Figure1. HfO2 defect supercell model: (a) Sub-Al doping into HfO2 containing VO; (b)?(f) Int-Al doping into HfO2 containing VO, the number of Int-Al is 1 to 5.
杂质Al在HfO2晶体中可能以间隙和替位的方式存在, 如图2中的插图所示, 不同存在方式的Al引起HfO2晶格结构的变化不同, 因而对材料阻变特性的影响不同. 为此, 本文通过理论计算, 对HfO2中杂质Al的存在方式进行了分析和研究. 如图2所示, 当Al分别以Int-Al和Sub-Al的方式掺杂到HfO2中时, 通过VASP计算得到的形成能分别为4.88 eV和7.53 eV, 与文献[12]的结果大致相同. 可见Int-Al掺杂到HfO2中形成的缺陷体系更为稳定. 在HfO2超胞中含有VO缺陷的前提下, 分别以Int-Al和Sub-Al的方式掺杂, 计算得到的形成能分别为3.37 eV和4.23 eV, 进一步验证了Int-Al掺杂到HfO2中形成的缺陷体系更稳定. 图 2 杂质Al的形成能 (插图中显示了杂质Al的存在方式, 虚线圆表示失去一个O原子后形成的VO) Figure2. Formation energy of impurity Al, The illustration shows the existence of impurity Al. The dotted circle indicates the formation after losing an O atom.
考虑到Int-Al原子和VO同时存在时, 两种缺陷的相对位置对相互之间的作用以及HfO2阻变特性的影响, 因此对Int-Al与VO之间不同间距的缺陷HfO2超胞体系的形成能和分波电荷态密度进行了计算, 结果如图3所示. 可见VO在Int-Al原子周围时的形成能为5.38 eV, 相对间距较远时的形成能则为6.57 eV, 这与VO容易在杂质周围形成的观点一致[23]. 图3插图显示的近距离分波电荷态密度主要聚集在VO周围, 而距离较远时的分波电荷态密度分布则相对较离散. 图 3 VO缺陷HfO2体系中Int-Al形成能 (插图显示了Int-Al与VO不同间距的分波电荷态密度) Figure3. Int-Al formation energy in VO deficient HfO2 system, the illustration shows the partial wave charge density of Int-Al and VO at different pitches.
23.2.变组分Int-Al对VO导电细丝形成的影响 -->
3.2.变组分Int-Al对VO导电细丝形成的影响
Int-Al浓度变化一方面会引起晶格结构的改变, 另一方面会引起与VO之间相互作用的改变, 造成对HfO2中导电细丝的形成及阻变特性的影响. 为了明确Al浓度变化的具体影响及在浓度多大时VO导电细丝形成最佳, 计算了变组分Int-Al和VO共同存在时的超胞体系. 图4显示的是变组分Int-Al掺杂含有VO缺陷的HfO2超胞的分波电荷态密度, 图中黄色表示的是电荷态密度高的区域. 在Int-Al掺杂浓度分别为3.06%, 4.04%和5%时, 缺陷超胞中均出现相对较完美的电荷通道, 而低浓度的缺陷超胞中没有形成电荷通道, 说明这三种掺杂浓度的缺陷超胞最有可能形成导电细丝. 图 4 不同浓度Int-Al体系的分波电荷态密度图 (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5% Figure4. The partial wave charge density of Int-Al systems with different concentrations: (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5%.
分波电荷态密度不仅表明了电荷分布的情况, 而且根据电荷密度最大等势面值可以获得电荷聚集相对较高的区域. 此外, 运用形成电荷通道的临界状态对应的临界等势面值作为衡量电荷聚集的难易程度, 若所设定的等势面值高于临界值, 则电荷聚集的部分团簇会淡化, 使得导电细丝不能完整地出现. 本文中的缺陷体系临界等势面值越高, 电荷聚集程度越高, 导电通道也就越容易形成. 如图5所示, 当Int-Al浓度为4.04%时, 分波电荷态密度的最大等势面和临界等势面值都相对最高, 说明此时的HfO2缺陷体系的电荷通道形成效果相对最好. 图5插图中的形成能计算结果显示, 当Int-Al浓度增加时, 缺陷的形成能逐渐增加; 当掺杂浓度大于4.04%时, 形成能明显增加, 说明缺陷体系的材料制备更加困难. 图 5 变组分Int-Al掺杂VO缺陷HfO2体系的分波电荷密度等势面值, 插图为Int-Al与VO共掺时的形成能 Figure5. The partial wave charge density equipotential surface value of variable component Int-Al doped VO defect HfO2 system. The illustration shows the formation energy of Int-Al and VO co-doping.