1.Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China 2.Hebei Sailhero Environmental Protection Hi-tech Co., Ltd., Shijiazhuang 050000, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61201112, 61475133), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2016203188, F2016203245), the China Postdoctoral Science Foundation (Grant No. 2018M630279), and the Scientific Research Foundation of the Higher Education Institutions of Hebei Province, China (Grant No. ZD2018243).
Received Date:07 November 2018
Accepted Date:27 February 2019
Available Online:01 May 2019
Published Online:20 May 2019
Abstract:A metal-dielectric-metal (MDM) waveguide coupling two square cavities with double baffles is designed in this paper based on the transmission characteristics of surface plasmon polaritons in subwavelength structure. The independent tuning of the dual Fano resonance is implemented by the interference between the wide-spectrum mode generated by the F-P (Fabry Perot) cavity and the two narrow-spectrum modes generated by the two square cavities. Moreover, the independent tuning of the dual Fano resonance can be achieved by changing the sizes of the two square cavities and filling medium. The coupled-mode theory (CMT) is adopted to analyze the transmission characteristics of the dual Fano resonance. The structure is simulated by the finite element method to quantitatively analyze the influence of structural parameters on the independent tuning of the dual Fano resonance and the refractive index sensing characteristics. The proposed sensor yields respectively sensitivity higher than 1020 nm/RIU and 1120 nm/RIU and a figure of merit of 3.29 × 105 and 1.17 × 106 by optimizing the geometry parameters. This structure provides an effective theoretical reference in the optical integration of ultra-fast optical switches, multi-function high-sensitivity sensors and slow-light devices. Keywords:surface plasmon polaritons/ Fano resonance/ square cavity/ double baffle
由(8)式可以得到仅含F-P腔的MDM波导结构透射率T的表达式为$T = {\left| {\dfrac{{{S_{2 - }}}}{{{S_{1 + }}}}} \right|^2} =$$ {\left| {\dfrac{{{k_{{\rm{e1}}}}{k_{{\rm{e2}}}}}}{{\left[ {{\rm{j}}\left( {\omega - {\omega _A}} \right) + k_{{\rm{o1}}}^{\rm{2}} + k_{{\rm{e1}}}^{\rm{2}} + k_{{\rm{e2}}}^{\rm{2}}} \right]}}} \right|^2}$, 因此当$\omega ={\omega _A}$时, 光波在F-P腔内发生谐振, 连续态的透射谱线上产生一个波峰. 对于含F-P腔的MDM波导耦合两个方形腔结构, 由(8)式可以得到, 当$\omega ={\omega _A}=$${\omega _B}$时, 光波在方形腔1和F-P腔内发生谐振, 产生FR1;当$\omega ={\omega _A}={\omega _C}$时, 光波在方形腔2和F-P腔内发生谐振, 产生FR2;当$\omega ={\omega _A}={\omega _B}={\omega _C}$时, 光波在两个方形腔和F-P腔内发生谐振, FR1和FR2叠加, 产生具有更高透射率的非对称Fano共振线型. 其中耦合系数${k_{{\rm{e3}}}}$随方形腔1与F-P腔的耦合间距$g_1$的减小而增大, 耦合系数${k_{{\rm{e4}}}}$随方形腔2与F-P腔的耦合间距$g_2$的减小增大, 由(9)式可得, 耦合间距$g$越小, 透射率越高. 当F-P腔的共振频率${\omega _A}$、方形腔1的共振频率${\omega _B}$和方形腔2的共振频率${\omega _C}$与入射光的频率$\omega $相互接近时, Fano共振峰出现在$\omega ={\omega _B}$和$\omega ={\omega _C}$处, 磁场Hz分布如图2(a)和图2 (c)所示, 透射率$T$的表达式为: 图 2Hz场分布 (a) FR1波峰处的Hz场分布;(b) FR1波谷处的Hz场分布;(c) FR2波峰处的Hz场分布;(d) FR2波谷处的Hz场分布 Figure2. The Hz field distribution: (a) The Hz field distribution at the peak of FR1; (b) the Hz field distribution at the dip of FR1; (c) the Hz field distribution at the peak of FR2; (d) the Hz field distribution at the dip of FR2.