Fund Project:Project supported by National Natural Science Foundation of China (Grant No. 11764006).
Received Date:06 September 2018
Accepted Date:27 December 2018
Available Online:01 March 2019
Published Online:20 March 2019
Abstract:Control of surface plasmon polaritons’ (SPPs’) propagation is of great importance. The groove structure in metal surface, designed by the surface electromagnetic wave holography (SWH) method, can control the SPPs’ propagation effectively. In the SWH method, all designed groove structures are etched in metal surface. The fabrication method is confined to the etching method, such as the focused ion beam lithography and electron beam lithography. And the designed structures cannot implement the real-time control of SPP propagation. We propose a new method to control SPPs’ propagation through metal-photorefractive material composite holographical (MPRCH) structures. A photorefractive material film is coated on the metal surface, and the reference SPP wave interferes with the object SPP wave in the photorefractive material film. The interference intensity is recorded by the photorefractive material film, forming the MPRCH structure. The MPRCH structure is used to control the propagation of relatively weak SPP waves. The finite difference time domain method is used to verify the method. We simulate that a reconstructed SPP wave is incident into the structure region and interacts with the structure. The incident wave is reflected and scattered by the designed MPRCH structure. These reflected and scattered wave are propagated and superposed, forming the desired SPP wave on the metal surface. Simulation results show that the MPRCH structure can control SPPs’ propagation effectively and realize the functions such as SPP wave aside single-point focusing, two-point focusing, generating zero-order and first-order Gaussian SPP beams. It is found that the optimal thickness of the MPRCH film is $3.3\;{\text{μ}}{\rm{m}}$ and modulation amplitude of refractive index is 0.06. This method extends the SPP device fabrication methods, and gets rid of the etching method. Based on the investigation, the real-time controlling of SPP wave may be realized through the MPRCH structure. The study provides a new idea for realizing the all-optical control of SPP propagation, thus making it possible to implement the all-optical control of SPP and further switch. Keywords:surface plasmon polaritons/ surface electromagnetic wave holography method/ array structure design
这里${{r}}$为结构区域内点的位置矢量, ${{{r}}_0}$为物点的位置矢量. 物波与参考波干涉, 在$ - 11\;{\text{μ}}{\rm{m}} < x < 0\;{\text{μ}}{\rm{m}}$和$-10.5\;{\text{μ}}{\rm{m}} < y < 10.5\;{\text{μ}}{\rm{m}}$区域内设计全息图, 得到在此区域的干涉光强(图2(a)). 利用光折变材料将此光强分布转化为对应的折射率分布, 即图2(a)是所设计的将SPP平面波束汇聚于1点的光折变材料全息图. 图 2 全息图设计 (a)汇聚SPP波于1个点$O{\rm{(}}8\;{\text{μ}}{\rm{m}},0{\rm{)}}$; (b)汇聚SPP波于2个点${O_1}{\rm{(}}8\;{\text{μ}}{\rm{m}}, - 2\;{\text{μ}}{\rm{m}})$和${O_2}{\rm{(}}8\;{\text{μ}}{\rm{m}},$$2\;{\text{μ}}{\rm{m}})$ Figure2. Designing the photorefractive holograms: (a) Focusing SPP at one point $O{\rm{(}}8\;{\text{μ}}{\rm{m}},0{\rm{)}}$; (b) focusing SPP at two points ${O_1}{\rm{(8\;{\text{μ}}{\rm{m}}, -2\;{\text{μ}}{\rm{m}})}}$ and ${O_2}{\rm{(8\;{\text{μ}}{\rm{m}},2\;{\text{μ}}{\rm{m}})}}$
本文利用时域有限差分(finite difference time domain, FDTD)法模拟全息图的再现过程. 在模拟中, 将模拟区域划分为${\text{Δ}}x = {\text{Δ}}y = 10\;{\rm{ nm}}$的单元格子. 波长为${\lambda _0} = 1.06{\rm{4\;{\text{μ}}{\rm{m}}}}$束腰半径为${\rm{4\;{\text{μ}}{\rm{m}}}}$的高斯光束从自由空间中入射到金属表面的光栅上, 激发SPP高斯波束沿着–y方向传播. 此SPP高斯光束波前是直的, 几乎等同于SPP平面光束, 因此能够扮演重建波束的角色读取全息图. 此SPP波入射到全息结构区域, 通过全息图的散射和反射, 生成所需的物波. 通过FDTD法模拟SPP波入射到图2(a)所示的折射率分布全息图中. 光折变材料折射率调制度设置${\text{Δ}}n = 0.06$, 厚度为${\rm{3}}{\rm{.3\;{\text{μ}}{\rm{m}}}}$时, 模拟得到在金属表面(xy平面)和焦面(yz平面)的光强分布, 分别如图3(a)和图3(c)所示. 从图3(a)可以看到, 在金属表面$O{\rm{(8\;{\text{μ}}{\rm{m}},0)}}$点处出现明显的焦点, 这说明所设计的光折变材料全息结构能将平面的SPP波侧向汇聚于目标点. 考虑材料的厚度和折射率调制度对耦合效率的影响. 耦合效率定义为流过焦面上${\rm{2\;{\text{μ}}{\rm{m}}}} \times {\rm{2\;{\text{μ}}{\rm{m}}}}$区域内的能流与入射进入结构区域内的能流之比. 固定折射率调制度为${\text{Δ}}n = 0.06$, 当厚度从${\rm{2}}{\rm{.6\;{\text{μ}}{\rm{m}}}}$增加到${\rm{3}}{\rm{.5\;{\text{μ}}{\rm{m}}}}$时, 耦合效率的变化如图3(e)所示. 可以看到当厚度为${\rm{3}}{\rm{.3\;{\text{μ}}{\rm{m}}}}$时, 耦合效率达到最高, 为21%. 固定厚度为$h = {\rm{3}}{\rm{.3\;{\text{μ}}{\rm{m}}}}$, 当折射率调制度${\text{Δ}}n$从0.02增加到0.08时, 耦合效率的变化如图3(g)所示. 可以看到折射率调制度${\text{Δ}}n = 0.06$时, 耦合效率达到最高, 为21%. 图 3 光折变材料汇聚平面SPP波到1个点和2个点的模拟结果 (a)汇聚到1个点时xy平面的光强分布; (b)汇聚到2个点时xy平面的光强分布; (c)汇聚到1个点时焦面yz平面的光强分布; (d)汇聚到2个点时焦面yz平面的光强分布; (e)材料厚度对1个点汇聚耦合效率的影响; (f)材料厚度对2个点汇聚耦合效率的影响; (g)折射率调制度对1个点汇聚耦合效率的影响; (h)折射率调制度对2个点汇聚耦合效率的影响; (i)全息图尺度对2个点汇聚耦合效率的影响 Figure3. Simulation results of coupling SPP wave to a point and two points by metal-photorefractive material complex holography structures: (a) Intensity distribution in the xy plane for focusing SPP to a point; (b) intensity distribution in the xy plane for focusing SPP to two points; (c) intensity distribution in the yz plane for focusing SPP to a point; (d) intensity distribution in the yz plane for focusing SPP to two points; (e) influence of material thickness on coupling efficiency for focusing SPP to a point; (f) influences of material thickness on coupling efficiency for focusing SPP to two points; (g) influence of refractive modulation on coupling efficiency for focusing SPP to a point; (h) influence of refractive modulation on coupling efficiency for focusing SPP to two points; (i) influence of hologram dimension on coupling efficiency for focusing SPP to two points
其中束腰半径为${\rm{1\;{\text{μ}}{\rm{m}}}}$. 在区域${\rm{ - 11\;{\text{μ}}{\rm{m}} < }}\;x\;{\rm{ < 0\;{\text{μ}}{\rm{m}}}}$和${\rm{ - 10}}{\rm{.5\;{\text{μ}}{\rm{m}} < }}\;y\;{\rm{ < 10}}{\rm{.5\;{\text{μ}}{\rm{m}}}}$内, SPP波束波阵面分布如图5(a)所示. 参考波为平面波束, 表达式为${E_2} = $${\rm{exp(}} - {\rm{i}} \cdot {{{k}}_{{\rm{sp}}}} \cdot {{y}}{\rm{)}}$. 1阶SPP高斯物波与平面参考物波在光折变材料内干涉, 得到干涉光强, 即得到光折变材料内相应的折射率分布, 如图5(b)所示. 图 5 1阶高斯SPP波束的生成, 其中图(a)和(b)为物波波面分布、物波和参考光波干涉产生光强分布; 读出过程的模拟结果, 包括xy平面内(c)光强分布和(d)波阵面分布, (e) x = 0处yz截面内光强分布, (f)理论和模拟的1阶SPP高斯波束束腰处光强分布 Figure5. Generation of Gaussian first-order SPP beam in writing process: (a) Object SPP wavefront; (b) interference intensity distribution between object wave and reference wave. Simulation results of reading process: (c) intensity and (d) wavefront distribution in xy plane; (e) intensity distribution on yz plane with x = 0; (f) intensity distribution on waist for theory and simulation