1.School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China 2.National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Fund Project:Project supporetd by the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M31041) and the National Natural Science Foundation of China (Grant No. 11847002).
Received Date:09 September 2018
Accepted Date:03 November 2018
Available Online:01 March 2019
Published Online:05 March 2019
Abstract:Phase is an important characteristic of electromagnetic waves. It is well known that a beam with a helical wave front characterized by a phase of $\exp({\rm{i}}l\theta )$ (which depends on azimuthal angle $\theta$ and topological charge l), has a momentum component along the azimuthal direction, resulting in an orbital angular momentum of per photon along the beam axis. Owing to its fascinating properties, the beam has received a great deal of attention and has provided novel applications in manipulation of particles or atoms, optical communication, optical data storage. In order to meet the needs of various applications, techniques for efficiently generating optical beams carrying orbital angular momentum are always required. Current schemes for generating the beams carrying orbital angular momentum include computer-generated holograms, spiral phase plates, spatial light modulators, and silicon integrated optical vortex emitters. Among the usual methods to produce helical beams, the traditional spiral phase plate is an optical device that utilizes the progressive increasing of height of a dielectric material along an azimuthal direction to produce a vortex beam for beam phase modulation with a high conversion efficiency. However, it is difficult to regulate the topological charge l of the outgoing beam through the superposition of the phase plates due to the special geometric feature. In this paper, the flat spiral phase plate is designed by compressing the height of traditional spiral phase plate, and inducing the refractive index to increase in the azimuthal direction based on coordinate transformation. By means of theoretical analysis and numerical simulation, it is found that the flat spiral phase plate can produce high quality vortex beams just as the traditional spiral phase plate can do. Particularly, the height of the flat spiral phase plate and the topological charge l carried by the vortex beams can be arbitrarily adjusted according to the refractive index selection of the dielectric material. In order to meet the needs of practical applications, the vortex beams with different topological charges can be obtained by stacking multiple layers of flat spiral phase plates. The flat spiral phase plate has broad potential applications in the fields of optical transmission and optical communication. Keywords:orbital angular momentum/ spiral phase plate/ vortex beam/ coordinate transformation
全文HTML
--> --> -->
2.平板式螺旋相位板设计与分析传统的螺旋相位板是一块沿方位角方向折射率恒定、高度递增的介质材料板, 如图1(a)所示. 螺旋相位板的厚度h从最低厚度h0沿方位角方向增加到h0 + hs, 介质材料厚度满足关系式: h = ${h_0} + {h_{\rm{s}}}\theta /(2{\text{π}} )$. 图1(a)中, r是螺旋相位板的半径, $\theta $是方位角. 为了能实现通过增加或者减少螺旋相位板的叠加数量, 基于z轴坐标变换将沿方位角材料相同、高度递增的传统螺旋相位板变换为沿方位角高度相同、折射率递增的平板式螺旋相位板, 如图1(b)所示, 其中颜色的深浅表示材料折射率的分布不同. 平板式螺旋相位板中, $r' $表示结构的半径, $\theta '$是方位角. 图 1 传统螺旋相位板和平板式螺旋相位板的结构示意图 (a)传统螺旋相位板; (b)平板式螺旋相位板(颜色深浅表示折射率的大小) Figure1. Schematic diagram of a conventional spiral phase plate and a flat-plate spiral phase plate: (a) A conventional spiral phase plate; (b) a flat-plate spiral phase plate (the color depth indicates the size of the refractive index).
式中n'为平板式螺旋相位板方位角方向的折射率, $\Delta \varPhi$的大小取决于平板式螺旋相位板的折射率$n' $. 与传统螺旋相位板相比, 只需要不断地改变平板式螺旋相位板的折射率$n' $, 就能达到与传统螺旋相位板相同的效果. 在图2中, 为了产生出射涡旋光束携带角量子数为1, 本文设置了折射率参数中${h_{\rm{s}}} = \lambda $, 波长$\lambda = 1$ mm的微波. 图2(a)给出了高斯波入射平板式螺旋相位板之后, 出射光束的横截面场分布, 从场分布中可以看到有两个沿着逆时针旋转的机翼. 由于设置了角量子数为l = 1, 因此空间相位分布也出现了旋转一周相位变换为$2{\text{π}}$, 如图2(b)所示. 在图中的原点处出现了相位奇点现象. 在这一点处相位具有不确定性, 并且此点的光场强度为零. 图2(c)是平板式螺旋相位板的空间材料折射率分布, 沿着逆时针方向, 螺旋相位板的材料折射率从$ n'$= 1增加到$ n'$= 2. 图2(d)为光场分布图, 所呈现的是高斯光束沿着z方向入射平板式螺旋相位板并且产生具有轨道角动量的涡旋光束的整个过程. 图中白色虚线区域为设计的平板式螺旋相位板位置. 由图中可以看出入射的高斯光束具有平面波式的相位分布, 然而当经过平板式螺旋相位板之后, 光束被折射出两束出射光. 由光场分布图可以对两束出射光的相位进行比较, 发现两束光束的相位相差$2{\text{π}}$. 由图2(d)也可以看出, 出射光束的中心线上相位具有不确定性, 而且光束的强度为零, 所以出射光束横截面上的强度分布呈现出面包圈式的分布. 图 2 数值模拟结果 (a)平板式螺旋相位板产生的光束横截面场分布图; (b)平板式螺旋相位板横截面相位分布图; (c)设计的平板式螺旋相位板空间材料分布图; (d)高斯光束入射平板式螺旋相位板产生涡旋光束的xz截面图 Figure2. The simulation results: (a) Cross-sectional field distribution of the beam produced by the flat-plate spiral phase plate; (b) phase distribution of cross section of flat-plates piral phase plate; (c) designed flat-plate spiral phase plate space material distribution; (d) the Gaussian beam incident on the flat-plate spiral phase plate produces a xz cross-sectional view of the vortex beam.
除了能够设计这种沿着逆时针增加光束相位以赋予光束l的光学轨道角动量以外, 还可以沿着y轴将平板式螺旋相位板翻转, 使材料折射率沿着顺时针增加, 以便实现出射光束的附加相位沿着顺时针增加, 进而获得光学轨道角动量为负值的涡旋光束. 图3(a)所示为高斯光束入射经翻转后的平板式螺旋相位板得到的出射光束在横截面上的场分布图. 从图中可以看到, 场分布呈现出两个螺旋翼状的分布并且沿顺时针旋转. 在顺时针旋转一周时, 相位发生$2{\text{π}}$的改变, 如图3(b)所示. 图3(c)是平板式螺旋相位板的光强分布图, 由图可以看出光强分布为面包圈式的分布. 图3(d)为翻转后的平板式螺旋相位板折射率分布图. 可以看到, 平板式螺旋相位板的折射率沿着方位角方向顺时针从$n' $ = 1增加到$n' $= 2. 为了比较这种通过翻转操作得到的平板式螺旋相位板与传统的螺旋相位板产生涡旋光束的性能, 我们计算了传统螺旋相位板的出射光束横截面场分布, 如图3(e)所示. 由图可以发现, 平板式螺旋相位板能够产生与传统螺旋相位板几乎相同的涡旋光束. 传统螺旋相位板虽然具有高光束转化效率和承载高功率激光的能力, 但是由于其特殊结构特征(阶梯型结构), 使其不能简单、便捷地直接使用多个螺旋相位板叠加调节出射涡旋光束的角量子数, 从而导致每一个传统的螺旋相位板只能直接产生一束携带固定光学角动量的涡旋光束. 平板式螺旋相位板可以通过增加或者减少相位板的数量直接调控出射涡旋光束的角量子数, 进而克服传统螺旋相位板的缺点. 图 3 数值模拟结果 (a)平板式螺旋相位板产生的光束横截面场分布图; (b)平板式螺旋相位板横截面相位分布图; (c)平板式螺旋相位板光强分布图; (d)设计的平板式螺旋相位板空间材料分布图; (e)传统的螺旋相位板产生的光束横截面场分布图 Figure3. The simulation results: (a) Cross-sectional field distribution of the beam produced by the flat-plate spiral phase plate; (b) phase distribution of cross section of flat-plates piral phase plate; (c) light intensity distribution of flat-plates piral phase plate; (d) designed flat-plate spiral phase plate space material distribution; (e) a cross-sectional field distribution diagram of a beam produced by a conventional spiral phase plate.
图4(a)为高斯光束通过二层l = –1的平板式螺旋相位板(如图3(a)所示)后产生的光束横截面场分布图. 在图中可以发现光束的横截面上有四个螺旋翼顺时针旋转. 也就是说, 不具有纵向光学轨道角动量的高斯光束通过二层平板式螺旋相位板之后, 产生了轨道角动量为l = –2的涡旋光束. 同理, 如果用高斯光束入射两层l = 1的平板式螺旋相位板, 那么产生的出射光束横截面上也将出现四个螺旋翼, 但是四翼的旋转方向将是逆时针旋转. 同样地, 如果继续增加平板式螺旋相位板的数量到三层时, 用同样的高斯光束入射三层l = –1的平板式螺旋相位板, 出射光束的横截面上场分布呈现了6个顺时针旋转的螺旋翼. 此时, 出射光束携带的纵向角量子数为l = –3. 以此类推, 可以通过插入不同数量的轨道角动量为l = –1的螺旋相位板以获得不同角量子数的涡旋光束. 原则上, 也可以通过设置${h_{\rm{s}}} = \lambda /m$, $m=1,\;2,\;3\cdots $, 对应于不同的m, 设计出不同的分数阶轨道角动量的螺旋相位板(这里没有给出分数阶螺旋相位板产生光束的横截面场分布), 但是在螺旋相位板的叠加过程中必须保证折射率高的部分与折射率高的部分对齐, 折射率低的部分与折射率低的部分对齐, 这样才能产生以上所述结果. 图 4 (a) 双层l = –1的平板式螺旋相位板叠加产生的光束横截面场分布图; (b)由三层l = –1的平板式螺旋相位板叠加产生的光束横截面场分布图 Figure4. (a) Cross-sectional field distribution of the beam produced by the superposition of a flat-plate spiral phase plate with a double layer l = –1; (b) the cross-sectional field distribution of the beam produced by the superposition of three layers of flat spiral phase plates with l = –1.