1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11674200, 11804204), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
Received Date:01 November 2018
Accepted Date:04 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:In this work we show that the superradiance of the cavity photons can give rise to a magnetic transformation for the atomic system when the quasi one-dimensional Fermi gases are coupled to an optical cavity. This magnetic transformation has a close relationship with the atomic detuning and the filling number. When the interaction between the atoms is neglected, the mean-field approximation may be used in the superradiant phase. In this approximation, we analyze the static spin structure factors of the system with different filling numbers and atomic detuning. Then we characterize the cavity photons-assisted magnetic transformation and obtain the phase diagrams which are dependent on the cavity parameters. Finally, the feasible experimental parameters of our results are also discussed. Keywords:effective optical lattice/ superradiance/ spin structure factor/ magnetic correlation
全文HTML
--> --> -->
2.模型和腔场的自洽平均场计算我们考虑的系统是装载在准一维背景光晶格中的两组分费米气与高精度光学微腔的耦合. 如图1(a)所示, 准一维背景光晶格沿着腔轴$\hat x$排列, 原子只沿腔轴方向运动, 不仅与线偏振驱动的腔模耦合, 且与沿$\hat z$方向入射的两束圆偏振的抽运光耦合. 如图1(b)所示, 我们考虑的原子包含四个内态, 即两个简并的基态 ($\left| \uparrow \right\rangle $和$\left| \downarrow \right\rangle $)与两个激发态($\left| 1 \right\rangle $和$\left| 2 \right\rangle $). $\left| \downarrow \right\rangle \leftrightarrow \left| 1 \right\rangle $和$\left| \uparrow \right\rangle \leftrightarrow \left| 2 \right\rangle $(蓝色的实线)的跃迁由量子化的腔场引起且对应的单光子的拉比频率为$g$, $\left| \uparrow \right\rangle \leftrightarrow \left| 1 \right\rangle $和$\left| \downarrow \right\rangle \leftrightarrow \left| 2 \right\rangle $(红色的虚线)的跃迁由两束横向的抽运光产生且对应的拉比频率为$\Omega $, 抽运光和腔模形成两个拉曼过程使$\left| \uparrow \right\rangle $和$\left| \downarrow \right\rangle $耦合起来. $\Delta ={\omega _p} - {\omega _a}$是驱动光与原子的激发态的失谐(${\omega _a}$为原子激发态的频率), 且满足$\left| \Delta \right| \gg g, \Omega $, 量子化轴沿$\hat z$方向. 图 1 (a)超冷费米气沿着腔轴$\hat x$方向被俘获在准一维背景光学晶格中, 费米气被两束圆偏振的横向(沿着$\hat z$方向)抽运激光驱动, 腔模由一束线偏振的纵向(沿着$\hat x$方向)驱动光驱动; (b)费米子的能级跃迁图, 图中相关的跃迁过程和符号的定义见正文 Figure1. (a) The ultracold fermions are trapped in a quasi-one-dimensional background optical lattice along the cavity axis $\hat x$. These fermions are pumped by two circular-polarized transverse (along $\hat z$) lasers and the cavity mode is driven by a linear-polarized longitudinal (along $\hat x$) laser. (b) the atomic energy levels and their transition. See main text for the corresponding transition processes and the definition of the labels.
从哈密顿量我们可以看出, 在背景晶格参数固定的条件下, ${t_{\rm{s}}}$和${t_{{\rm{cd}}}}$依然要通过${\eta _{\rm{A}}}$($\Omega $和$g$)来进行大范围的调节. 在基于$\left| \alpha \right|$自洽求解的前提下, 通过哈密顿量(8), 我们得到静态的自旋结构因子${S_z}\left( k \right)$, 它可以反映红失谐下长程相互作用对系统的磁性关联的影响 (图4). 我们依然首先考虑在半满填充下的情况(图4(b)), 当${\eta _A}$取值较小(黑色实线), 即$\left| \alpha \right|=0$时, 系统处于无能隙的金属态, 与在蓝失谐时相同, ${S_z}\left( k \right)$只在$k = \pm {\rm{\pi }}$处有峰值且具有反铁磁关联的特性. 当${\eta _{\rm{A}}}$逐渐增大, 对应$\left| \alpha \right| \ne 0$时, 自旋翻转的有效相互作用会使得${S_z}\left( k \right)$在$k = 0$处铁磁关联逐渐增强(红色点划线和蓝色虚线), 而在$k = \pm {\text{π }}$处峰值依然存在, 使得系统呈现反铁磁关联的的特性. 当${\eta _{\rm{A}}}$很大时, ${S_z}\left( k \right)$依然在$k = \pm {\rm{\pi }}$时取峰值且呈现反铁磁关联和在$k = 0$处的铁磁关联逐渐增强(粉色点线), 这与蓝失谐情况完全不同. 在非半满填充时(图4(a)和4(c)), 通过调节${\eta _{\rm{A}}}$, 磁性关联在$k = 0$和$k = \pm {\text{π }}$处与半满填充时会有相同的磁性规律. 图 4 静态自旋结构因子${S_z}\left( k \right)$ (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$(图中对应的其他参数的选择与图2(b)中一致) Figure4. The spin structure factors ${S_z}\left( k \right)$ for systems in different fillings: (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$ (The plotted parameters are the same as those in Fig. 2(b)).
23.3.稳态相图 -->
3.3.稳态相图
基于对上述磁性关联在两种不同失谐下的分析, 我们现在可以得到在${k_{\rm{F}}} - {\eta _{\rm{A}}}$平面上的相图. 我们可以通过${S_z}\left( k \right)$在$k = 0$和$k = \pm {\text{π }}$处的峰值来判断不同的磁性, 通过在$k = 0$处的峰值与其他处相等时给出磁性的相边界(图5). 图5(a)为蓝失谐情况下的相图, M表示金属相, AF-SR表示的是反铁磁关联的超辐射相, FM-SR表示的是铁磁关联的超辐射相, 可以看出在不同填充情况下, 调节${\eta _{\rm{A}}}$系统可以实现从M相到AF-SR相和从AF-SR相到FM-SR相的越变. 图5(b)为红失谐情况下的相图, 可以看出在不同填充情况下, 调节${\eta _{\rm{A}}}$系统可以实现从M相到AF-SR相的越变. 图 5 (a)蓝失谐时${k_{\rm{F}}} - {\eta _{\rm{A}}}$平面上的相图(M, AF-SR和FM-SR分别代表金属相、反铁磁关联的超辐射相和铁磁关联的超辐射相, 其它参数的选择与图2(a)相同); (b)红失谐时${k_{\rm{F}}} - {\eta _A}$平面上的相图(AF-SR代表反铁磁关联的超辐射相, 对应的其他参数的选择与图2(b)中一致) Figure5. (a) The phase diagram in the ${k_{\rm{F}}} - {\eta _A}$ plane for the system with blue-detuned atomic detuning (M, AF-SR, and FM-SR correspond to metallic phase, antiferromagnetic superradiant phase, and ferromagnetic superradiant phase, respectively. The plotted parameters are the same as those in Fig. 2(a)); (b) the phase diagram in the ${k_{\rm{F}}} - {\eta _{\rm{A}}}$ plane for the system with red-detuned atomic detuning (AF-SR corresponds to the antiferromagnetic superradiant phase. The plotted parameters are the same as those in Fig. 2(b)).