Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61574071) and the Special Construction Project Fund for Taishan Scholars of Shandong Province, China.
Received Date:11 October 2018
Accepted Date:15 January 2019
Available Online:01 March 2019
Published Online:20 March 2019
Abstract:With the advent of the information age, big data put forward higher requirements for capacity of storage devices. Compared with the method of reducing the size of the device to enhance the integration level, the high density storage of increasing the memory state of the single device will be very beneficial to solving the problem. In this work, we propose an idea of two-parameter and multi-state memory device involved in both resistance and capacitance operation levels. At first, a new donor-acceptor (D-A)-type copolymer is designed and synthesized. Then, the memory device of Al/copolymer/ITO structure is fabricated, and the current-voltage (I-V) and capacitance-voltage (C-V) curves are measured by a KEITHLEY 4200 semiconductor characterization system. The device not only displays the obvious memory resistance characteristics, but also has the memory capacitance behavior in single resistance state, which results in two resistance states and four capacitance states, so that the device has the capability of two-parameter and multi-state memory. In addition, the device shows more capacitance states after the switching behavior has been modulated by the voltage amplitude, which provides an effective method to control the memory states. In order to study the conductive mechanism of the device, we test the relationship between resistance and temperature. It is found that the resistance decreases with the increase of temperature, indicating that the device has the obvious semiconductor properties. Furthermore, the fitting results of I-V data show that the mechanism of resistance switching is in good consistence with the classical trap-controlled space charge limited current theory. The capacitance switching in single resistance state is closely related to the polarization characteristic of D-A structure in the copolymer film. The polarization force microscopy phase image shows that the copolymer film has obvious polarization and depolarization characteristics under the external electric field. Based on the polarization characteristics of copolymer, the correlation between memory resistance and memory capacitance is established by introducing a polarization operator of molecules, and the matrix model describing the two-parameter and multi-state memory characteristics is given. The above results show that the multi-state memory characteristics will store more information than 2-bits mode in a single cell, which will provide a reference for improving the storage density of information. Keywords:memory resistance/ memory capacitance/ multi-state characteristic
全文HTML
--> --> --> -->
2.1.器件的制备
器件的功能层为共聚物分子材料, 共聚物是利用具有强吸电子能力的苯并噻二唑单体作为电子受体、苯并二噻吩和咔唑作为供体合成的供体-受体类型的有机半导体材料. 首先, 将共聚物溶解在三氯甲烷溶剂中, 溶液的浓度为0.1 mg/mL. 溶液在室温下搅拌30 min后旋涂在清洗过的底电极ITO玻璃衬底上. 最后利用热蒸镀方法把直径为1.5 mm的点状铝电极沉积在共聚物薄膜上, 蒸镀真空度为5 × 10–4 Pa. 器件结构如图1(a)所示. 图 1 (a)器件Al/共聚物/ITO的结构示意图; (b)薄膜表面的AFM图像, 扫描面积为5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$ Figure1. (a) Schematic of device with the Al/copolymer/ITO configuration; (b) AFM image of the copolymer film, with a scanning area of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$
图2(a)为器件Al/共聚物/ITO的I-V曲线, 电压的扫描范围是0 → 1 → –1 → 0 V, 从图中可以看出器件具有明显的忆阻行为. 最初, 器件处在高电阻状态(HRS), 并且在0 → 0.45 V内保持在HRS. 当电压超过0.45 V后, 随着电压的增大电流急剧增加, 0.45 V称为电阻的关闭电压($V_{\rm{OFF}}^R$). 器件在1 V处到达低电阻状态(LRS), 并且在1 → 0 → –0.5 V内保持在LRS. 当电压沿负方向继续增大时, 电流减小, 出现负微分电阻行为, –0.5 V称为电阻的开启电压($V_{\rm{ON}}^R$). 可以看出器件具有较小的开关电压, 有利于降低功耗. 当电压扫描到–1 V时, 器件回到最初的HRS. 在–0.1 V处读取的高、低电阻分别是550 和40 $\Omega $, 高-低电阻比约为14. 作为对比, 实验也对无共聚物层的Al/ITO器件进行了I-V曲线(图2(a)插图所示)测量, 没有发现电阻的开关现象, 说明电阻开关是由于嵌入到两电极中的有机层引起的. 图 2 (a)器件Al/共聚物/ITO与Al/ITO(内插图)的I-V特性曲线, 红色和蓝色分别代表器件处在HRS和LRS; (b)器件Al/共聚物/ITO的C-V曲线, 红色和蓝色分别对应HRS和LRS下的C-V曲线; 扫描方向如图中箭头所示; 器件电阻(c)和电容(d)的时间保持特性 Figure2. (a) The I-V curves of Al/copolymer/ITO device. Inset is the Al/ ITO device. Red and blue curves represent HRS and LRS, respectively. (b) C-V curves of Al/copolymer/ITO device. Red and blue curves correspond to the C-V characteristics in HRS and LRS, respectively. The arrows show direction of voltage sweep. The retention time characteristics of resistance (c) and capacitance (d)
图3给出了器件处于HRS时, 不同幅值的直流扫描电压对器件电容特性调制的结果, 电压幅值分别为0.05, 0.10, 0.15, 0.20, 0.25和0.30 V. 测量发现, 随着电压幅值的增大, 电容的开关电压随之增大, 高、低电容之间的窗口面积也越来越大(LRS下的规律类似). 这种现象归因于器件内部的极化强度随外电场的改变, 随着扫描电压的增大, 器件的极化与退极化程度也增强, 使薄膜内部发生分离和复位的正负电荷增加, 从而出现更明显的电容开关行为. 在调制过程中, 不同幅值的直流扫描电压使器件出现多种不同的电容开关行为, 从而增加了同种电阻状态下的电容状态, 意味着器件具有更多可利用的信息存储状态, 对于实现信息的高密度存储具有重要意义. 图 3 高阻态中不同扫描电压幅值下的C-V曲线(交流读取电压为30 mV, 100 kHz) Figure3. The C-V curves of HRS under the different sweep voltage (AC read voltage 30 mV, 100 kHz)
23.3.器件的开关机理 -->
3.3.器件的开关机理
33.3.1.忆阻特性的开关机理 -->
3.3.1.忆阻特性的开关机理
器件高、低电阻随温度的变化规律可以反映出器件的导电属性和开关机理, 因此对高、低电阻随温度的变化规律进行了研究, 结果如图4(a)和图4(b)所示. 可以看出, 电阻与温度有很强的关联性, 两种阻态下的电阻均随温度的升高而明显减小, 显示出半导体属性[17]. 因此也排除了以下两种导电丝通道的可能: 若电阻的开关源于完全导电丝通道的形成和断裂, 那么低阻态下的电阻会存在典型的金属行为, 即电阻随着温度的升高而线性增加[18]; 若源于非完全导电通道, 那么低阻态的电阻会存在典型的电子隧穿行为, 电阻随温度的升高而微弱减小[19]. 图 4 在高(a)、低(b)阻态下器件的电阻随温度的变化; (c)正电压区域和(d)负电压区域器件的双对数I-V曲线, 图中已标出了每段的斜率 Figure4. Resistance versus temperature plots for the device in HRS (a) and LRS (b). Double-logarithmic I-V curves of the device: exerted (c) positive voltage or (d) negative voltage, and the value of the slope is marked in the figure
为了研究忆容的开关机理, 利用PFM对共聚物薄膜进行了极化测量, 结果如图5所示. 相位图显示出三个明显的区域, 区域Ⅰ是负偏压下的极化结果, 区域Ⅱ是正偏压下的退极化结果, 对比发现薄膜在正负电场作用下发生了明显的极化与退极化. 区域Ⅲ是负偏压下再次极化的结果, 说明这种极化过程是可逆的. 正是因为共聚物薄膜具有可逆的极化与退极化特性, 使Al/共聚物/ITO器件表现出忆容开关行为. 图 5 共聚物薄膜的PFM相位图, 其中首先对5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$区域的薄膜施加–10 V的偏压, 然后对内部的3.5 ${\text{μ}} {\rm{m}}$ × 3.5 ${\text{μ}} {\rm{m}}$区域施加+10 V的偏压, 再对中心的1.5 ${\text{μ}} {\rm{m}}$ × 1.5 ${\text{μ}} {\rm{m}}$区域施加–10 V的偏压, 最后通过15 mV的交变信号对5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$薄膜的极化程度进行测量 Figure5. The PFM phase image of the copolymer film. First, an external voltage of –10 V was applied to a square of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$. Secondly, +10 V was applied to a square of 3.5 ${\text{μ}} {\rm{m}}$ × 3.5 ${\text{μ}} {\rm{m}}$, and then –10 V was applied to a square of 1.5 ${\text{μ}} {\rm{m}}$ × 1.5 ${\text{μ}} {\rm{m}}$. Finally, the polarization degree of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$ film was measured by 15 mV alternating signal.
器件单电阻态下的电容开关及其多态行为可以通过图6的模型示意图进行说明. 通过施加一个电阻的开/关电压($V_{\rm{ON}}^R/V_{\rm{OFF}}^R$), 器件会出现对应的高/低电阻状态(${\rm{HRS}}/{\rm{LRS}}$); 在确定的高(或低)电阻状态下, 再施加一个电容的开/关电压($V_{\rm{ON}}^C/V_{\rm{OFF}}^C$), 有机薄膜会发生极化/退极化行为, 使器件呈现出高/低电容状态(${\rm{HC}}{{\rm{S}}_{\rm{H}}}/{\rm{LC}}{{\rm{S}}_{\rm{H}}}$) (或${\rm{HC}}{{\rm{S}}_{\rm{L}}}/{\rm{LC}}{{\rm{S}}_{\rm{L}}}$). 图 6 器件中电阻开关及单电阻态下的电容开关模型示意图 Figure6. Model schematic of resistance switching and capacitance switching at single resistance state in the device