Fund Project:Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS078).
Received Date:27 September 2018
Accepted Date:24 November 2018
Available Online:01 March 2019
Published Online:05 March 2019
Abstract:Graphene and other materials have a typical two-dimensional (2D) honeycomb structure. The random fuse model is a statistical physics model that is very effective in studying the fracture dynamics of heterogeneous materials. In order to study the current fusing process and the properties of the fractured surface of 2D honeycomb structure materials such as graphene, in this paper we attempt to numerically simulate and analyze the fusing process and melting profile properties of the 2D honeycomb structure random fuse network. The results indicate that the surface width exhibits a good scaling behavior and has a linear relationship with the system size, and that the out-of-plane roughness exponent displays a global value of $\alpha = 0.911 \pm 0.005$ and a local value of ${\alpha _{{\rm{loc}}}} = 0.808 \pm 0.003$, approximate to those of the materials studied. The global and local roughness and their difference indicate that the fusing process and the fracture profile exhibit significant scale properties and have a strange scale. On the other hand, by analyzing the extreme values of the fused surface with different system sizes, the extreme heights can be collapsed very well, after a lot of trials and analysis, it is found that the extreme statistical distribution of the height of the fused surface can well satisfy the Asym2sig type distribution. The extreme height distributions of fracture surfaces can be fitted by Asym2Sig distribution, rather than the three kinds of usual extreme statistical distributions, i.e. Weibull, Gumbel, and Frechet distributions. The relative maximal and minimum height distribution of the fused surface at the same substrate size have a good symmetry. In the simulation calculation process of this paper, the coefficient matrix is constructed by using the node analysis method, and the Cholesky decomposition is performed on the coefficient matrix, and then the Sherman-Morrison-Woodbury algorithm is used to quickly invert the coefficient matrix, which greatly optimizes the calculation process and calculation. The efficiency makes the numerical simulation calculation and analysis performed smoothly. The research in this paper indicates that the random fuse model is a very effective theoretical model in the numerical analysis of the scaling properties of rough fracture surfaces, and it is also applicable to the current fusing process of the inhomogeneous material and the scaling surface analysis of the fusing surface. In this paper, it is found that materials with anisotropic structure can also find their fracture mode by energization, and the properties of fracture surface can provide reference for the study of mechanical properties of honeycomb structural materials. It is a very effective statistical physical model, and this will expand the field of applications of random fuse models. Keywords:graphene honeycomb structure/ random fuse model/ roughness/ extreme statistics
其中标度函数$f\left( v \right)$具有渐近行为: 当$v < < 1$时, $f\left( v \right) \propto {v^\beta }$; 当$v \gg 1$时, $f\left( v \right)$趋于常数. (5)式中$\alpha $和$z$分别为粗糙度指数和动力学指数, 用来确定粗糙断裂表面所属的普适类[20]. 当空间关联长度趋向$L$时, 网络完全断开, 粗糙度指数表现出$W\left( L \right) \propto $${L^\alpha }$的标度关系. 图3给出了石墨烯蜂巢结构的随机电阻丝模型熔断面整体粗糙度$W$随系统尺寸$L$变化的双对数关系, 得到的粗糙度指数满足幂律关系$W\left( L \right) \propto {L^\alpha }$, 其粗糙度指数为$\alpha = 0.911 \pm 0.005$. 图 3 整体表面宽度$W$随系统尺寸$L$的对数-对数曲线 Figure3. The log-logarithmic curve of the global surface width W with the system size L.
方法同(4)式, ${\bar h_l} = \left( {{1 / l}} \right)\sum\nolimits_x {h\left( {x,t} \right)} $表示在$t$时刻尺寸为$l$的局域窗口范围内的平均高度, 如图4. 结果发现${\alpha _{{\rm{loc}}}} = 0.808 \pm 0.003$, 与整体粗糙度相比存在一定的差异. 从计算所得到的整体粗糙度和局域粗糙度指数的不同可以看出, 石墨烯蜂巢结构电阻丝网络熔断面存在奇异标度行为, 这与二维菱形结构及三角形结构[13]的结果是不同的. 表1比较了三种结构电阻丝网络熔断面的整体及局域的标度行为. 图 4 局域表面宽度$w$随局域尺寸$l$的对数-对数曲线 Figure4. The Log-logarithmic curve of local surface width w with local size l.
模型
$\alpha $
${\alpha _{{\rm{loc}}}}$
菱形
0.752 ± 0.008
0.758 ± 0.012
三角形
0.772 ± 0.013
0.776 ± 0.003
石墨烯蜂巢结构
0.911 ± 0.005
0.808 ± 0.003
表1二维菱形、三角形及石墨烯蜂巢结构电阻丝网络熔断面整体与局域的粗糙度指数 Table1.Roughness index of the global and local of the burnout surface of two-dimensional diamond, triangle and graphene honeycomb structures.
其中${y_0}$为偏移量; $A$为振幅; ${x_{\rm{c}}}$为水平方向的中心点; ${\omega _1}, \; {\omega _2}, \; {\omega _3}$为宽度参量, 并且${\omega _2}, \; {\omega _3}$决定峰值位置. 其如图5和图6所示, 并且符合(7)式和(8)式所表示的标度关系. 图 5 不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极大高度分布 Figure5. Relative maximum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.
图 6 不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极小高度分布 Figure6. Relative minimum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.
表2系统尺寸为L = 384, 512, 768时Asym2sig函数拟合的参数 Table2.Parameters of Asym2sig function fitting when the system size is L = 384, 512, 768.
为了进一步说明熔断面相对极值满足的标度规律, 本文对纵坐标做半对数处理后发现: 在不同系统尺寸下石墨烯蜂巢结构的随机电阻丝网络熔断面的相对极大(小)高度分布依然呈现出较好的标度规律, 如图7和图8所示. 图 7 不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极大高度的半对数分布 Figure7. Semi-logarithmic distribution of the relative maximum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.
图 8 不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极小高度的半对数分布 Figure8. Semi-logarithmic distribution of the relative minimum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.
很显然, 图7和图8表明在不同系统尺寸下石墨烯蜂巢结构的随机电阻丝网络熔断面的相对极大(小)高度分布满足一定的标度规律, 很好地服从Asym2sig峰值分布函数. 本文还对同一尺寸下熔断面极值高度的极大值和极小值进行了比较, 如图9和图10所示. 结果显示, 同一系统尺寸下熔断面的相对极大(小)高度分布能够很好地重合在一起, 表明熔断表面极大(小)高度分布具有对称性. 图 9 系统尺寸L = 384的熔断面的相对极大(小)高度分布 Figure9. Relatively maximum (minimum) height distribution of fracture surface with system size L = 384.
图 10 系统尺寸L = 512的熔断面的相对极大(小)高度分布 Figure10. Relatively maximum (minimum) height distribution of fracture surface with system size L = 512.