1.Department of Material Science and Engineer, Xiangtan University, Xiangtan 411105, China 2.Northwest Institute of Nuclear Technology, Xi’an 710024, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No.11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No.ZHD201803).
Received Date:30 October 2018
Accepted Date:02 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:The silicon-on-insulator (SOI) device has been found to possess low leakage current and high operation speed due to reduced internal capacitances. The sensitive volume for charge collection in SOI device is smaller than that in bulk-silicon device, which improves the ability of SOI devices to resist single-event effect (SEE). In spite of these benefits, the SOI device has certain undesirable effects such as the kink effect. To mitigate the kink effect, selective-buried-oxide (SELBOX) SOI structure has been introduced. Space-borne electronic circuits based on SOI technology recently have been used in high radiation and extreme temperature environments. However, temperature affects internal carrier transport process and impact ionization process, which makes single-event transient (SET) pulse widths increased. Most of previous researches regarding temperature dependence of SEE were for SOI floating-body devices. But the influence of operating temperature on SEE of SELBOX SOI devices are yet unclear. In this paper, an SOI floating-body device and a SELBOX SOI device under 90 nm process are established by three-dimensional device simulation, and then temperature dependence of SET response in partially depleted SOI inverter chains is studied by a mixed-mode approach over a temperature range from 200 K to 450 K. Simulation results show that the N-type SELBOX SOI device has a better ability to resist SEE than the floating-body device, while the P-type SELBOX SOI device has the same ability to resist SEE at high linear energy transfer value as the floating-body device. And temperature dependence analysis of charge collection indicates that there is only drift-diffusion process in the N-type SELBOX SOI device. The amount of charge collection in the N-type SELBOX SOI device almost does not change with the increase of temperature. In addition, both the P-type SELBOX SOI device and the P-type floating-body device have a bipolar amplification process. With the increase of temperature, the bipolar amplification process in the substrate turns more serious. However, it suppresses the bipolar amplification process of the source because of SELBOX structure, so that the amount of charge collection is reduced in the drain significantly. According to our simulation results, compared with the floating-body device, the SELBOX SOI device can very well suppress the influence of temperature on SET pulse. Keywords:selective buried oxide/ single event transient/ charge collection/ temperature dependence
表1SOI器件工艺参数 Table1.Technologic parameters of SOI devices.
图 1 器件物理模型 (a) 器件整体模型; (b) SELBOX SOI器件有源区截面; (c) 浮体器件有源区截面 Figure1. Device physical models: (a) The whole structure of devices; (b) the cross section of SELBOX SOI device; (c) the cross section of floating-body device.
其中, LET_f(l)为辐射产生的线性能量转移值(linear energy transfer, LET), l为入射深度, wt(l)为高能粒子入射半径, t0为初始入射时间, shi为Gaussian时序分布特征延迟时间.
-->
3.1.SELBOX SOI器件与浮体器件的瞬态脉冲对比
图3所示为室温下用不同LET值的高能粒子分别入射N型浮体器件和SELBOX SOI器件后的瞬态电流以及输出节点3的瞬态电压. 从图中可以观察到, 尽管SELBOX SOI器件产生的瞬态电流脉冲高度要高于浮体器件, 但它的电流脉冲持续时间要比浮体器件短, 并且在同一LET值下其输出节点3的电压脉冲变化宽度也要小于浮体器件, 可见N型SELBOX SOI器件比N型浮体器件有更为优异的抗单粒子能力. 图 3 室温下SOI NMOS及输出节点3的单粒子瞬态脉冲 (a) 瞬态电流脉冲; (b) 瞬态电压脉冲 Figure3. Single-event-transient pulse of SOI NMOS and output 3 at room temperature: (a) Current pulse; (b) voltage pulse.
图4所示为室温下不同LET值的高能粒子分别入射P型浮体器件和SELBOX SOI器件后的瞬态电流以及输出节点3的瞬态电压. 与高能粒子入射N型SOI器件结果不同, SELBOX SOI器件在低LET值下的瞬态电流脉冲宽度和瞬态电压脉冲宽度都要小于浮体器件, 但是随着LET值的不断增大, 两种P型SOI器件的抗单粒子能力相近. 图 4 室温下SOI PMOS及输出节点3的单粒子瞬态脉冲 (a) 瞬态电流脉冲; (b) 瞬态电压脉冲 Figure4. Single-event-transient pulse of SOI PMOS and output 3 at room temperature: (a) The current pulse; (b) the voltage pulse.
23.2.入射SOI器件时反相器链瞬态脉冲的温度相关性 -->
3.2.入射SOI器件时反相器链瞬态脉冲的温度相关性
为了研究工作环境温度对物理器件及输出节点的单粒子瞬态脉冲的影响, 模拟中选取LET值为40 MeV·cm2/mg的高能粒子分别在200, 250, 300, 350, 400 和450 K的温度下轰击浮体器件和SELBOX SOI器件, 文中采用国际上通用的半高宽(电流或电压峰值的一半)作为脉冲宽度. 图5为高能粒子入射N型浮体器件和SELBOX SOI器件的脉冲宽度与温度的关系. 从图5 (a)可以观察到, SELBOX SOI器件的电流脉冲宽度随温度的升高而增加, 且增加的幅度要远远小于浮体器件. 从图5 (b)观察到, 在电压脉冲传播至节点3后, SELOBX SOI器件的输出电压脉冲宽度随温度升高几乎不变. 可见N型SELBOX SOI器件瞬态脉冲宽度相较于浮体器件受温度的影响较小. 图 5 SOI NMOS及输出节点3的脉冲宽度随温度的变化 (a) 瞬态电流脉冲宽度的变化; (b) 瞬态电压脉冲宽度的变化 Figure5. The pulsewidth of SOI NMOS and output 3 at different temperatures: (a) Changes of the current pulsewidth; (b) changes of the voltage pulsewidth.
图6为高能粒子入射P型浮体器件和SELBOX SOI器件时脉冲宽度与温度的关系. 对比浮体器件的脉冲宽度可以发现, SELBOX SOI器件的电流脉冲宽度和电压脉冲宽度在300 K以下要高于浮体器件, 随着温度逐渐升高, 其瞬态电流脉冲宽度和电压脉冲宽度反而要小于浮体器件. 但纵观200—450 K整个温度区间, P型SELBOX SOI器件的电流脉冲宽度和电压脉冲宽度的变化量均要小于浮体器件. 可见尽管温度对两种SOI器件的单粒子脉冲宽度都产生了一定影响, 但SELBOX结构有效抑制了温度对P型SOI器件单粒子效应的影响. 图 6 SOI PMOS及输出节点3的脉冲宽度随温度的变化 (a) 瞬态电流脉冲宽度的变化; (b) 瞬态电压脉冲宽度的变化 Figure6. The pulsewidth of SOI PMOS and output 3 at different temperatures: (a) Changes of the current pulsewidth; (b) changes of the voltage pulsewidth.
-->
4.1.SOI NMOS的电荷收集的温度相关性分析
图7 所示为在不同温度下SOI NMOS的电荷收集量. 从图7 (a)可以看出, 90 nm工艺下的浮体器件不只有漂移扩散过程, 还产生了显著的双极放大过程, 这是因为全介质隔离的结构使得电离产生的空穴无法导出, 电势被抬高后源体结正偏导致大量电子从源极注入. 温度引起热载流子的碰撞电离率产生变化的关系式为$ \alpha = A{\rm{exp}}\left( { - {E_i}/kT} \right)$, 其中Ei为3, Eg为禁带宽度, A为材料系数, k为玻尔兹曼常数, T为热力学温度. 当温度升高时, 沟道中获得能量的高能热载流子[18]通过碰撞电离激发更多的空穴, 不断抬高体电势, 使得双极放大持续时间增加, 导致漏极收集的电荷量随温度升高而增加. 图 7 在不同温度下SOI NMOS的电荷收集量 (a) 浮体器件; (b) SELBOX SOI器件 Figure7. The charge collection of SOI NMOS at different temperatures: (a) Floating-body device; (b) SELBOX SOI device.