1.School of Physical Science and Technology, Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2.Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China 3.School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
Fund Project:Project supported by National Natural Science Foundation of China (Grant No. 11774252), the National Science of Jiangsu Province, China (Grant No. BK20161210), the Qing Lan Project of Jiangsu Province, the “333” Project (Grant No. BRA2015353), and the PAPD of Jiangsu Higher Education Institutions, China.
Received Date:28 November 2018
Accepted Date:30 December 2018
Available Online:01 March 2019
Published Online:05 March 2019
Abstract:We explore the coherent perfect absorption of light in a nonlocal metal-dielectric composite film in which metallic nanoparticles (gold) are randomly embedded in the dielectric host medium (silica). The two coherent light beams illuminate the gold-silica composite slab respectively from the left and right sides at the same angle of incidence and the conditions required for coherent perfect absorption are investigated each as a function of different system parameters. Under different system parameters, we study the coherent perfect absorption of a nonlocal particle composite medium. A nonlocal effective medium theory is proposed to approximately describe the metal-dielectric composite film. The effective permittivity and effective permeability of the composite medium are approximated by using the effective medium theory under the model of coated sphere with core and shell. According to the effective dielectric parameters of the composite medium, we can obtain the transmission coefficient and reflection coefficient of the plane wave incident on the slab. By comparing and analyzing the coherent perfect absorptions of the composite medium under nonlocal and local conditions, we find that under the influence of nonlocal effect when the size of particle is very small, the frequency range of incident light that produces the coherent perfect absorption of the composite medium increases and the small size can also cause the coherent perfect absorption to occur in wider frequency range. Especially, we pay attention to the choosing of physical parameters in the design of coherent perfect absorption with macroscopic composite slab when we take the nonlocal effect (or spatial dispersion) into account. In the further calculation, the coherent perfect absorption of the composite medium can be realized by changing the system parameters such as the thickness of composite slab, the wavelength of incident light, the volume fraction of metal particles, etc. We also bring about the coherent perfect absorption at a small volume fraction which satisfies all the conditions. Finally, according to these results, we can realize the control of the coherent perfect absorption with nonlocal effect. Our study may be helpful in designing the optical nanoabsorbers. Keywords:nonlocal effect/ coherent perfect absorption/ composite media/ effective medium theory
如果从左侧入射产生的反射波(${r_1}$)与从右侧入射产生的透射波(${t_2}$)的振幅相同, 相位相差为${\text{π}}$, 即$|{r_1}| = |{t_2}|$, $|\Delta \phi | = |{\phi _{r1}} - {\phi _{t2}}| = {\text{π}}$, (${\phi _{r1}}$和${\phi _{t2}}$分别是${r_1}$和${t_2}$的相位), 此时二者会相消即产生相干完美吸收. 并且由于内在的对称性, 即${r_1} = {r_2}, \; {t_1} = $${t_2}$, 导致在介质两侧的总散射幅度也是相同的. 因此, 在入射介质中相消意味着在出射介质中同样会相消, 这也就导致了相干完美吸收. 在图2的结构当中, 非局域金属纳米颗粒的介电常数由横模介电常数$\varepsilon _{\rm{T}} $和纵模介电常数$\varepsilon _{\rm{L}} $来描述, 分别由下式表示[23,24]: 图 2 有效媒质理论模型, 红色为金属颗粒, 蓝色为基底介质, 灰色为有效介质 Figure2. The model of effective medium. The red part is metal particles, the blue part is base medium, and the grey part is effective medium.
3.理论计算与讨论为了研究复合介质的相干完美吸收效应, 我们分别计算了金属颗粒体积分数f为0.1, 0.01, 0.0012时有效介电常数${\varepsilon _{{\rm{eff}}}}$的实部以及虚部随入射光波长$\lambda $的变化情况, 如图3所示. 图 3 (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012时有效介电常数的实部; (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012时有效介电常数的虚部随$\lambda $的变化; 此时d为5 ${\text{μ}}{\rm m}$, a为2 nm Figure3. (a1), (b1) and (c1) are the real parts of effective permittivity as function of $\lambda $, for (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012; (a2), (b2), (c2) are the imaginary parts of effective permittivity as function of $\lambda $, for (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012. d = 5 ${\text{μ}}{\rm m}$, a = 2 nm.
从图3中可以发现, 考虑非局域效应对复合介质相干完美吸收的影响, 金属颗粒的体积分数较低时(f = 0.01, 0.0012)${\varepsilon _{{\rm{eff}}}}$的实部会在入射波波长310 nm左右有一个峰值, 当体积分数较高(f为0.1)时这一峰值会出现在320 nm附近, 这表明金属颗粒体积分数会影响非局域效应下复合介质的相干完美吸收, 金属颗粒体积分数越小复合介质的有效介电常数实部的峰值也会减小. 本文研究了散射光强的对数${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$, 认为当${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2} < - 3$时, 两侧的散射很小, 可以忽略不计, 在同时满足$|{r_1}| = |{t_2}|$, $|\Delta \phi | = |{\phi _{r1}} - {\phi _{t2}}| = $${\text{π}}$时即可产生所谓的相干完美吸收. 图4绘制出了非局域和局域情况下用不同尺寸的金属颗粒填充复合介质时${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$与$\lambda $和f 的函数关系. 图 4 (a1), (b1), (c1) a = 2, 5, 10 nm时, 局域效应下$\lg|r_1+t_2|^2$与$\lambda $和f的函数关系; (a2), (b2), (c2)对应情况下考虑非局域效应时的结果; 入射角$\theta$ = 45° Figure4.$\lg |r_1 \!+\! t_2|^2$ as functions of $\lambda $ and f with different metallic nanoparticle radius (a) a = 2 nm, (b) a = 5 nm, (c)a = 10 nm: (a1), (b1) and (c1) are within the local description and (a2), (b2) and (c2) are within the nonlocal description. The incident angle is $\theta$=45°.
从图4(a1), (b1), (c1)的对比可以很清楚地看到, 金属颗粒的尺度越小, 各体积分数下产生完美吸收的入射光波长的范围就越宽, 而且波长的极大值也会对应减小, 即频率增加. 从图4(a1)和(a2), (b1)和(b2)的对比也很容易看出, 金属颗粒的尺寸越小, 在非局域效应的影响下会导致完美吸收产生的入射光的频率显著增加, 当a = 10 nm时, 非局域和局域的结果几乎没有区别, 即金属非局域效应的影响完全可以忽略不计. 这也进一步说明金属非局域效应在小尺度结构中的影响是不能忽略的. 在研究小尺度颗粒填充情况下金属非局域效应的影响时, 选取a = 2 nm, 讨论非局域效应下不同的系统参数的变化对复合介质的相干完美吸收产生的影响. 首先, 考虑复合介质板的厚度d对相干完美吸收的影响. 图5绘制了不同介质板厚度下, ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$与$\lambda $和f 的函数关系图像. 图 5 (a) d = 2 ${\text{μ}}{\rm m}$, (b) d = 5 ${\text{μ}}{\rm m}$, (c)、d = 10 ${\text{μ}}{\rm m}$时散射光强对数${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$与$\lambda $和f的函数关系图, 此时入射角$\theta $为45° Figure5.${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f with thickness of medium plate (a) d = 2 ${\text{μ}}{\rm m}$, (b) d = 5 ${\text{μ}}{\rm m}$, (c) d = 10 ${\text{μ}}{\rm m}$. The incident angle is $\theta $ = 45°.
图5的结果表明, 在体积分数相同的情况下, 复合介质板较窄时可以出现完美吸收的入射光的波长的范围也较窄. 为了得到产生相干完美吸收所需要的f及$\lambda $, 我们同样采取了以上的方法, 在相干完美吸收所需条件的基础上, 首先研究散射光强的问题. 图6绘制了${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$与$\lambda $和f的函数关系图, 此时选取f的范围为0—0.01. 图 6a = 2 nm, d = 5 ${\text{μm}}$, ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$与$\lambda $及f的函数关系 Figure6. Color map of ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f for a = 2 nm, d = 5 ${\text{μm}}$.