Fund Project:Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61704132, 61501363), Xi'an Intelligent Visiting Perception Key Laboratory Project (Grant No. 201805061ZD12CG45), and Principal Fund from Xi'an Technological University (Grant Nos. XAGDXJJ16007, XAGDXJJ18001).
Received Date:23 October 2018
Accepted Date:19 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:In microelectronic and photovoltaic industry, semiconductors are the base materials in which impurities or defects have a serious influence on the properties of semiconductor-based devices. The determination of the electronic transport properties, i.e., the carrier bulk lifetime ($\tau $), diffusion coefficient (D) and front surface recombination velocity (S1), is important in the evaluation of semiconductor materials. In this paper, the influence of reabsorption of spontaneously emitted photons within silicon wafers on conventional frequency domain photocarrier radiometric (PCR) is theoretically analyzed. The model with photon reabsorption, proposed by our previous paper, in which both band-to-band absorption and free carrier absorption are taken into account, is used. It is shown that the influence strongly depends on not only the doping level, but also the excess carrier density and its distribution, which are sensitive to the electronic transport properties. The influences of photon reabsorption on PCR amplitude and phase increase with doping level and carrier lifetime increasing. While, as the diffusion coefficient and the front surface recombination velocity increase, the influence of photon reabsorption on PCR amplitude decreases but on PCR phase increases. If photon reabsorption is ignored in the determination of the electronic transport parameters for high-doping silicon wafers via multi-parameter fitting, there are large errors for the fitted results. For a sample with $\tau $ = 50 μs, D = 20 cm2/s, and S1 = 10 m/s, if the effect of photon reabsorption is ignored, the fitting results with conventional PCR model are 55.66 μs, 19.98 cm2/s, and 11.94 m/s, and the corresponding deviations from the true value are 11.33%, 0.10%, and 19.40%, respectively. In addition, simulation results show the effect of photon reabsorption can be greatly reduced with a suitable filter in front of the detector, while still enabling the majority of the emitted signal to be captured. For example, with a 1100 nm long-pass filter, the fitted results for the same sample above are 51.43 μs, 20.19 cm2/s, and 9.88 m/s with the relative errors of 2.86%, 0.95%, and 1.23%, respectively. It should be pointed out that an infinitely steep cut-on edge of the long-pass filter is assumed in our simulations, while in fact the influences of the filter on PCR signal and the fitted results should be further considered. Keywords:photocarrier radiometric/ photon reabsorption/ electronic transport parameters/ free carrier absorption/ silicon wafers
图 3 PR对PCR信号的影响 (a)振幅; (b)相位; (c)相对误差 Figure3. Influence of PR on PCR signal: (a) Amplitude; (b) phase; (c) relative error.
由于PL信号源于过剩载流子的辐射复合, 同时PR中自由载流子吸收也与过剩载流子有关, 因此PR对PL信号和PCR信号的影响必然与过剩载流子有关. 图5(a)给出了不同调制频率时光抽运中心位置过剩载流子的纵向分布情况. 随着调制频率的增加, 过剩载流子浓度逐渐减小, 同时其分布更趋近于样品前表面. 为了便于分析过剩载流子的分布情况, 定义过剩载流子分布的平均深度为 图 5r = 0 μm时 (a) 过剩载流子浓度纵向分布; (b)平均深度与调制频率的关系 Figure5. (a) Vertical excess carrier density distribution and (b) mean depth as a function of the modulation frequency at r = 0 μm.
$\bar d = \dfrac{{\displaystyle\int_0^L {z\Delta N\left( z \right)dz} }}{{\displaystyle\int_0^L {\Delta N\left( z \right)dz} }}.$
图5(b)给出了过剩载流子平均深度与调制频率的关系. 在低频范围, 平均深度受调制频率的影响不大, 但随着调制频率的进一步增大, 过剩载流子平均深度逐渐减小. 从图3到图5的结果和上述分析可以明显看出, PR对PCR信号的影响取决于过剩载流子浓度及分布情况. 随着调制频率的增加, 过剩载流子浓度及平均深度逐渐减小, 过剩载流子浓度减小导致自由载流子吸收减小, 平均深度的减小使得辐射复合光子重吸收距离减小, 二者共同使得PR对PCR信号振幅和相位的影响逐渐减小. 由于不同样品的电子输运参数不同, 而过剩载流子浓度及分布又与电子输运参数相关, 因此有必要分析电子输运参数对PR的影响程度. 图6给出了不同载流子寿命时PR对PCR信号的影响. 随着载流子寿命的增加, 过剩载流子浓度和扩散长度(${L_{{\rm{eff}}}} = \sqrt {{{\left( {1 + {\rm{i}}\omega \tau } \right)}/{D\tau }}} $)[7]均增加, 前者导致自由载流子吸收增大, 后者导致更多过剩载流子扩散至样品内部而远离前表面, 使其平均深度增大, 二者共同导致PR对PCR信号的影响增大. 另外, 高频情况时, PR对PCR信号的影响受载流子寿命的影响较小. 图 6 载流子寿命变化时, PR效应对PCR信号的影响 Figure6. Influence of PR on PCR signal for silicon wafers with different carrier lifetimes.
图7给出了不同载流子扩散系数时PR对PCR信号的影响. 随着扩散系数的增加, 过剩载流子浓度减小, 扩散长度增加, 前者导致自由载流子吸收减小, 使PR的影响减小, 后者导致更多过剩载流子扩散至样品内部而远离前表面, 使其平均深度增大, 使PR的影响增大. 从仿真结果来看, 当载流子扩散系数增大时, 短波范围内, PR对PL信号的振幅和相位的影响增大, 而长波范围内对振幅的影响减小, 对相位影响变化不大. 同时, PR对PCR振幅信号的影响减小, 而对PCR相位信号的影响增大, 这与PR对PL信号的影响相一致. 图 7 载流子扩散系数变化时, PR效应对PCR信号的影响 Figure7. Influence of PR on PCR signal for silicon wafers with different diffusion coefficients.
图8给出了不同前表面复合速率时PR对PCR信号的影响. 随着前表面复合速率的增加, 过剩载流子浓度减小, 导致自由载流子吸收减小, 同时过剩载流子的平均深度减小, 二者共同使得PR对PL和PCR信号振幅的影响减小, 对相位的影响增大. 当前表面复合速率变化时, PR对振幅的影响体现在几乎整个PL谱范围内, 而对相位的影响主要体现在短波范围内. 另外, 对于高频调制, 表面复合速率变化时, 由于过剩载流子浓度及分布的变化并不明显, PR对信号影响的变化相应减小. 图 8 前表面复合速率变化时, PR效应对PCR信号的影响 Figure8. Influence of PR on PCR signal for silicon wafers with different front surface recombination velocities.
图9给出了样品掺杂浓度变化时PR对PL和PCR信号的影响. 随着掺杂浓度的增加, 自由载流子吸收增强, 对于PL信号振幅, 在长波范围受光子重吸收的影响增大, 且较为明显, 而短波范围内的变化并不明显; 对于PL信号相位, 在长波范围受PR的影响减小, 而短波范围内的影响增大. 对于PCR信号, 掺杂浓度增大时, PR对其低频振幅和相位的影响均明显减小, 而对高频相位的影响减小程度较弱. 图 9 掺杂浓度变化时, PR效应对PCR信号的影响 Figure9. Influence of PR on PCR signal for silicon wafers with different doping densities.