Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
Guoling Li1, Shanxin Yang1, Zhenfang Wu1,2, Xianwei Zhang,2 1. National Engineering Research Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China 2. Wens Foodstuff Co., Ltd., Xinxing 527439, China
Supported by the National Transgenic Major Projects No.2016ZX08006002
作者简介 About authors 李国玲,在读博士研究生,专业方向:基因编辑。E-mail:792268184@qq.com。
摘要 基因编辑技术是指通过人为方式在基因组插入、缺失或替换特定碱基,对遗传物质进行精确修饰和定向编辑的一种技术。近年来,锌指核酸内切酶(zinc-finger endonuclease, ZFN)、类转录激活因子效应物核酸酶(transcription activator-like effector nuclease, TALEN)、成簇规律间隔短回文重复序列及其相关系统(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9, CRISPR/Cas9)等基因编辑技术的出现,使特异性靶向修饰动物基因组序列成为可能。虽然利用CRISPR/Cas9等基因编辑工具可以在细胞基因组高效产生双链断裂(double-strand breaks, DSB),但利用同源定向修复(homology directed repair, HDR)介导的精确插入(knock in, KI)效率却十分低下。本文结合当前基因编辑技术的发展现状,对目前提高CRISPR/Cas9介导的动物基因组KI策略进行了综述,以期为人类疾病模型制备、基因治疗和家畜遗传改良等提供借鉴。 关键词:基因编辑;CRISPR/Cas9;精确插入;同源定向修复;非同源末端连接
Abstract Gene-editing technology can artificially modify genetic material of targeted loci by precise insertion, deletion, or replacement in the genomic DNA. In recent years, with the developments of zinc-finger endonuclease (ZFN), transcription activator-like effector nuclease (TALEN), clustered regularly interspaced short palindromic repeats/CRISPR- associated protein 9 (CRISPR/Cas9) technologies, such precise modifications of the animal genomes have become possible. Although gene-editing tools, such as CRISPR/Cas9, can efficiently generate double-strand breaks (DSBs) in mammalian cells, the homology-directed repair (HDR) mediated knock-in (KI) efficiency is extremely low. In this review, we briefly describe the current development of gene-editing tools and summarize the recent strategies to enhance the CRISPR/Cas9- mediated KI efficiency, which will provide a reference for the generation of human disease models, research on gene therapy and livestock genetic improvement. Keywords:gene editing;CRISPR/Cas9;knock in;homology directed repair;non-homologous end joining
PDF (581KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展 . 遗传[J], 2020, 42(7): 641-656 doi:10.16288/j.yczz.20-056 Guoling Li. Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals. Hereditas(Beijing)[J], 2020, 42(7): 641-656 doi:10.16288/j.yczz.20-056
基因编辑技术是指通过人为方式在基因组插入、缺失或替换特定碱基,对遗传物质进行精确修饰和定向编辑的一种技术。传统的基因编辑方法利用随机整合或同源重组(homologous repair, HR)等方式将DNA片段插入基因组,这种方式存在精确插入(knock in, KI)效率低和外源基因表达不稳定等问题,严重制约了其在农业和医学领域的应用。近年来,随着锌指核酸内切酶(zinc-finger endonuclease, ZFN)、类转录激活因子效应物核酸酶(transcription activator- like effector nuclease, TALEN)和成簇规律间隔短回文重复序列及其相关系统(clustered regularly interspaced short palidromic repeats/CRISPR-associated protein 9, CRISPR/Cas9)等基因编辑技术的出现,以其高效率、特异性靶向等特征在农业和医学领域得到广泛应用,先后在大肠杆菌(Escherichia coli)、酵母(Saccharomyces cerevisiae)、果蝇(Drosophila melanogaster)、斑马鱼(Danio rerio)、小鼠(Mus musculus)、大鼠(Rattus norvegicus)、猪(Sus scrofa)和恒河猴(Macaca mulatta)等物种中显示了强大的基因编辑能力,展示出广阔的应用前景[1,2,3,4,5,6,7]。动物细胞基因组产生双链断裂(double-strand breaks, DSB)后,主要激活体内非同源末端连接(non-homologous end joining, NHEJ)或同源定向修复(homology directed repair, HDR)两种不同的修复机制,其中HDR介导的KI在人类疾病模型制备、基因治疗和农业遗传改良等方面具有重要作用,但是其效率十分低下[7],因此在CRISPR/Cas9高效产生DSB的前提下,如何提高动物基因组KI效率仍然充满挑战。本文结合当前基因编辑技术的发展,对目前提高CRISPR/Cas9介导的动物基因组KI策略进行了综述,以期为人类疾病模型制备、基因治疗和家畜遗传改良等提供借鉴。
KomorAC, BadranAH, LiuDR . CRISPR-based technologies for the manipulation of eukaryotic genomes , 2017,168(1-2):20-36. [本文引用: 1]
GaoYP, WuHB, WangYS, LiuX, ChenLL, LiQ, CuiCC, LiuX, ZhangJC, ZhangY . Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects , 2017,18(1):13. [本文引用: 1]
ChenYC, ZhengYH, KangY, YangWL, NiuYY, GuoXY, TuZC, SiCY, WangH, XingRX, PuXQ, YangSH, LiSH, JiWZ, LiXJ . Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9 , 2015,24(13):3764-3774. [本文引用: 1]
MaruyamaT, DouganSK, TruttmannMC, BilateAM, IngramJR, PloeghHL . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining , 2015,33(5):538-542. [本文引用: 8]
WahDA, BitinaiteJ, SchildkrautI, AggarwalAK . Structure of Fok I has implications for DNA cleavage , 1998,95(18):10564-10569. [本文引用: 1]
KimYG, ChaJ, ChandrasegaranS . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain , 1996,93(3):1156-1160. [本文引用: 1]
MoscouMJ, BogdanoveAJ . A simple cipher governs DNA recognition by TAL effectors , 2009,326(5959):1501. [本文引用: 1]
RomerP, RechtS, LahayeT . A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens , 2009,106(48):20526-20531. [本文引用: 1]
CasiniA, OlivieriM, PetrisG, MontagnaC, ReginatoG, MauleG, LorenzinF, PrandiD, RomanelA, DemichelisF, IngaA, CeresetoA . A highly specific SpCas9 variant is identified by in vivo screening in yeast , 2018,36(3):265-271. [本文引用: 1]
LeeJK, JeongE, LeeJ, JungM, ShinE, KimYH, LeeK, JungI, KimD, KimS, KimJS . Directed evolution of CRISPR-Cas9 to increase its specificity , 2018,9(1):3048. [本文引用: 1]
HuJH, MillerSM, GeurtsMH, TangWX, ChenLW, SunN, ZeinaCM, GaoX, ReesHA, LinZ, LiuDR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018,556(7699):57-63. [本文引用: 1]
XuS, CaoSS, ZouBJ, YueYY, GuC, ChenX, WangP, DongXH, XiangZ, LiK, ZhuMS, ZhaoQS, ZhouGH . An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease , 2016,17(1):186. [本文引用: 1]
BinMS, LeeJM, KangJG, LeeNE, HaDI, KimDY, KimSH, YooK, KimD, KoJH, KimYS . Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang , 2018,9(1):3651. [本文引用: 1]
MaliP, YangLH, EsveltKM, AachJ, GuellM, DicarloJE, NorvilleJE, ChurchGM . RNA-guided human genome engineering via Cas9 , 2013,339(6121):823-826. [本文引用: 1]
EsveltKM, MaliP, BraffJL, MoosburnerM, YaungSJ, ChurchGM . Orthogonal Cas9 proteins for RNA-guided gene regulation and editing , 2013,10(11):1116-1121. [本文引用: 1]
RanFA, CongL, YanWX, ScottDA, GootenbergJS, KrizAJ, ZetscheB, ShalemO, WuXB, MakarovaKS, KooninEV, SharpPA, ZhangF . In vivo genome editing using Staphylococcus aureus Cas9 , 2015,520(7546):186-191. [本文引用: 1]
YamadaM, WatanabeY, GootenbergJS, HiranoH, RanFA, NakaneT, IshitaniR, ZhangF, NishimasuH, NurekiO . Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems , 2017,65(6):1109-1121. [本文引用: 1]
BursteinD, HarringtonLB, StruttSC, ProbstAJ, AnantharamanK, ThomasBC, DoudnaJA, BanfieldJF . New CRISPR-Cas systems from uncultivated microbes , 2017,542(7640):237-241. [本文引用: 1]
KomorAC, KimYB, PackerMS, ZurisJA, LiuDR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016,533(7603):420-424. [本文引用: 1]
GaudelliNM, KomorAC, ReesHA, PackerMS, BadranAH, BrysonDI, LiuDR . Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage , 2017,551(7681):464-471. [本文引用: 1]
KoblanLW, DomanJL, WilsonC, LevyJM, TayT, NewbyGA, MaiantiJP, RaguramA, LiuDR . Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction , 2018,36(9):843-846. [本文引用: 1]
ReesHA, LiuDR . Base editing: precision chemistry on the genome and transcriptome of living cells , 2018,19(12):770-788. [本文引用: 1]
RenYX, XiaoRD, LouXM, FangXD . Research advance and application in the gene therapy of gene editing technologies Hereditas(Beijing), 2019,41(1):18-27. [本文引用: 3]
LiS, YangYY, QiuY, ChenY, XuLW, DingQR . Applications of genome editing tools in precision medicine research Hereditas(Beijing), 2017,39(3):177-188. [本文引用: 3]
QuL, LiHS, JiangYH, DongCS . The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases Hereditas(Beijing), 2015,37(10):974-982. [本文引用: 1]
FirthAL, MenonT, ParkerGS, QuallsSJ, LewisBM, KeE, DargitzCT, WrightR, KhannaA, GageFH, VermaIM . Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs , 2015,12(9):1385-1390. [本文引用: 1]
HowdenSE, MaufortJP, DuffinBM, ElefantyAG, StanleyEG, ThomsonJA . Simultaneous reprogramming and gene correction of patient fibroblasts , 2015,5(6):1109-1118. [本文引用: 1]
ChangCW, LaiYS, WestinE, Khodadadi-JamayranA, PawlikKM, LambLJ, GoldmanFD, TownesTM . Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting , 2015,12(10):1668-1677. [本文引用: 1]
YinH, XueW, ChenSD, BogoradRL, BenedettiE, GrompeM, KotelianskyV, SharpPA, JacksT, AndersonDG . Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014,32(6):551-553. [本文引用: 1]
GuanYT, MaYL, LiQ, SunZL, MaL, WuLJ, WangLR, ZengL, ShaoYJ, ChenYT, MaN, LuWQ, HuKW, HanHH, YuYH, HuangYH, LiuMY, LiDL . CRISPR/ Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse , 2016,8(5):477-488. [本文引用: 1]
YangY, WangLL, BellP, McmenaminD, HeZN, WhiteJ, YuHW, XuCY, MorizonoH, MusunuruK, BatshawML, WilsonJM . A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice , 2016,34(3):334-338. [本文引用: 1]
DewittMA, MagisW, BrayNL, WangTJ, BermanJR, UrbinatiF, HeoSJ, MitrosT, MunozDP, BoffelliD, KohnDB, WaltersMC, CarrollD, MartinDI, CornJE . Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells , 2016,8(360):134r-360r. [本文引用: 1]
WuYX, LiangD, WangYH, BaiMZ, TangW, BaoSM, YanZQ, LiDS, LiJS . Correction of a genetic disease in mouse via use of CRISPR-Cas9 , 2013,13(6):659-662. [本文引用: 1]
BochJ, ScholzeH, SchornackS, LandgrafA, HahnS, KayS, LahayeT, NickstadtA, BonasU . Breaking the code of DNA binding specificity of TAL-type III effectors , 2009,326(5959):1509-1512. [本文引用: 1]
Kato-InuiT, TakahashiG, HsuS, MiyaokaY . Clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 with improved proof- reading enhances homology-directed repair , 2018,46(9):4677-4688. [本文引用: 1]
Carlson-StevermerJ, AbdeenAA, KohlenbergL, GoedlandM, MoluguK, LouM, SahaK . Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing , 2017,8(1):1711. [本文引用: 1]
MaM, ZhuangFF, HuXB, WangBL, WenXZ, JiJF, XiJJ . Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system , 2017,27(4):578-581. [本文引用: 1]
GuB, PosfaiE, RossantJ . Efficient generation of targeted large insertions by microinjection into two-cell- stage mouse embryos , 2018,36(7):632-637. [本文引用: 1]
SavicN, RingnaldaFC, LindsayH, BerkC, BargstenK, LiYZ, NeriD, RobinsonMD, CiaudoC, HallJ, JinekM, SchwankG . Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair , 2018,7:e33761. [本文引用: 1]
AirdEJ, LovendahlKN, StMA, HarrisRS, GordonWR . Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template , 2018,1:54. [本文引用: 1]
AceytunoRD, PiettCG, Havali-ShahriariZ, EdwardsRA, ReyM, YeRQ, JavedF, FangSJ, ManiR, WeinfeldM, HammelM, TainerJA, SchriemerDC, Lees-Miller S P,GloverJ. Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex , 2017,45(10):6238-6251. [本文引用: 1]
ChuVT, WeberT, WefersB, WurstW, SanderS, RajewskyK, KuhnR . Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells , 2015,33(5):543-548. [本文引用: 3]
ZhangJP, LiXL, LiGH, ChenWQ, ArakakiC, BotimerGD, BaylinkD, ZhangL, WenW, FuYW, XuJ, ChunN, YuanWP, ChengT, ZhangXB . Efficient precise knockin with a double cut HDR donor after CRISPR/ Cas9-mediated double-stranded DNA cleavage , 2017,18(1):35. [本文引用: 6]
JayavaradhanR, PillisDM, GoodmanM, ZhangF, ZhangY, AndreassenPR, MalikP . CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites , 2019,10(1):2866. [本文引用: 1]
TranNT, BashirS, LiX, RossiusJ, ChuVT, RajewskyK, KühnR . Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors , 2019,10:365. [本文引用: 1]
GutschnerT, HaemmerleM, GenoveseG, DraettaGF, ChinL . Post-translational regulation of Cas9 during G1 enhances homology-directed repair , 2016,14(6):1555-1566. [本文引用: 2]
HowdenSE, MccollB, GlaserA, VadolasJ, PetrouS, LittleMH, ElefantyAG, StanleyEG . A Cas9 variant for efficient generation of indel-free knockin or gene- corrected human pluripotent stem cells , 2016,7(3):508-517. [本文引用: 1]
NakadeS, TsubotaT, SakaneY, KumeS, SakamotoN, ObaraM, DaimonT, SezutsuH, YamamotoT, SakumaT, SuzukiKT . Microhomology-mediated end-joining- dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9 , 2014,5:5560. [本文引用: 1]
AidaT, NakadeS, SakumaT, IzuY, OishiA, MochidaK, IshikuboH, UsamiT, AizawaH, YamamotoT, TanakaK . Gene cassette knock-in in mammalian cells and zygotes by enhanced MME [J]. , 2016,17(1):979. [本文引用: 1]
SakumaT, NakadeS, SakaneY, SuzukiKT, YamamotoT . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems , 2016,11(1):118-133. [本文引用: 1]
PaixA, FolkmannA, GoldmanDH, KulagaH, GrzelakMJ, RasolosonD, PaidemarryS, GreenR, ReedRR, SeydouxG . Precision genome editing using synthesis- dependent repair of Cas9-induced DNA breaks , 2017,114(50):E10745-E10754. [本文引用: 1]
LiangXQ, PotterJ, KumarS, RavinderN, ChesnutJD . Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA , 2017,241:136-146. [本文引用: 1]
Rivera-TorresN, StrouseB, BialkP, NiamatRA, KmiecEB . The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides , 2014,9(5):e96483. [本文引用: 1]
RichardsonCD, RayGJ, DewittMA, CurieGL, CornJE . Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA , 2016,34(3):339-344. [本文引用: 2]
YumluS, StummJ, BashirS, DreyerAK, LisowskiP, DannerE, Kühn R. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/ Cas9 , 2017, 121-122:29-44. [本文引用: 1]
YangLH, GuellM, ByrneS, YangJL, De LosAA, MaliP, AachJ, Kim-KiselakC, BriggsAW, RiosX, HuangPY, DaleyG, ChurchG . Optimization of scarless human stem cell genome editing , 2013,41(19):9049-9061. [本文引用: 1]
MiuraH, QuadrosRM, GurumurthyCB, OhtsukaM . Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors , 2018,13(1):195-215. [本文引用: 1]
QuadrosRM, MiuraH, HarmsDW, AkatsukaH, SatoT, AidaT, RedderR, RichardsonGP, InagakiY, SakaiD, BuckleySM, SeshacharyuluP, BatraSK, BehlkeMA, ZeinerSA, JacobiAM, IzuY, ThoresonWB, UrnessLD, MansourSL, OhtsukaM, GurumurthyCB . Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins , 2017,18(1):92. [本文引用: 1]
YoshimiK, KunihiroY, KanekoT, NagahoraH, VoigtB, Mashimo T. ssODN-mediated knock-in with CRISPR- Cas for large genomic regions in zygotes , 2016,7:10431. [本文引用: 1]
LinS, StaahlBT, AllaRK, DoudnaJA . Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery , 2014,3:e04766. [本文引用: 3]
MaXJ, ChenX, JinY, GeWY, WangWY, KongLH, JiJF, GuoX, HuangJ, FengXH, FuJF, ZhuSY . Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells , 2018,9(1):1303. [本文引用: 1]
YuC, LiuYX, MaTH, LiuK, XuSH, ZhangY, LiuHL, La RussaM, XieM, DingS, QiLS . Small molecules enhance CRISPR genome editing in pluripotent stem cells , 2015,16(2):142-147. [本文引用: 3]
PinderJ, SalsmanJ, DellaireG . Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing , 2015,43(19):9379-9392. [本文引用: 4]
LinZY, ZhangYL, GaoTY, WangLD, ZhangQ, ZhouJ, ZhaoJ . Homologous recombination efficiency enhanced by inhibition of MEK and GSK3β , 2014,52(11):889-896. [本文引用: 1]
BorelF, LacroixFB, MargolisRL . Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis , 2002,115(Pt 14):2829-2838. [本文引用: 1]
MiyaokaY, BermanJR, CooperSB, MayerlSJ, ChanAH, ZhangB, Karlin-NeumannGA, ConklinBR . Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome- editing , 2016,6:23549. [本文引用: 1]
KouranovaE, ForbesK, ZhaoGJ, WarrenJ, BartelsA, WuYM, CuiXX . CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos , 2016,27(6):464-475. [本文引用: 1]
YanNN, SunYS, FangYY, DengJR, MuL, XuK, MymrykJS, ZhangZY . A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells , 2019,19:775-789. [本文引用: 2]
RichardsonCD, KazaneKR, FengSJ, ZelinE, BrayNL, SchaferAJ, FloorSN, CornJE . CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway , 2018,50(8):1132-1139. [本文引用: 2]
XieZC, PangDX, WangKK, LiMJ, GuoNN, YuanHM, LiJN, ZouXD, JiaoHP, OuyangHS, LiZJ, TangXC . Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts , 2017,7(1):3036. [本文引用: 3]
LiGL, ZhongCL, MoJX, QuanR, WuZF, LiZC, YangHQ, ZhangXW . Advances in site-specific integration of transgene in animal genome Hereditas(Beijing), 2017,39(2):98-109. [本文引用: 1]
WangNZ, LiuJR, WangC, BaiLY, JiangXF . Asymmetric total syntheses of (-)-jerantinines A, C, and E, (-)-16-methoxytabersonine, (-)-vindoline, and (+)- vinblastine , 2018,20(1):292-295. [本文引用: 1]
ChiuWH, LuoSJ, ChenCL, ChengJH, HsiehCY, WangCY, HuangWC, SuWC, LinCF . Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells , 2012,83(9):1159-1171. [本文引用: 1]
WeiRJ, WuWR, PanCT, YuCY, LiCF, ChenLR, LiangSS, ShiueYL . Inhibition of the formation of autophagosome but not autolysosome augments ABT-751-induced apoptosis in TP53-deficient Hep-3B cells , 2019,234(6):9551-9563. [本文引用: 1]
SinghP, SchimentiJC, Bolcun-FilasE . A mouse geneticist's practical guide to CRISPR applications , 2015,199(1):1-15. [本文引用: 1]
ZhangYB, ZhangZW, GeW . An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing , 2018,293(17):6611-6622. [本文引用: 2]
GerlachM, KraftT, BrennerB, PetersenB, NiemannH, MontagJ . Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene , 2018,9(6):296. [本文引用: 1]
RiesenbergS, MaricicT . Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells , 2018,9(1):2164. [本文引用: 2]
LiuYL, YangY, KangXJ, LinB, YuQ, SongB, GaoG, ChenYY, SunXF, LiXP, BuL, FanY . One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection , 2017,6:57-67. [本文引用: 1]
SteyerB, BuQ, CoryE, JiangK, DuongS, SinhaD, SteltzerS, GammD, ChangQ, SahaK . Scarless genome editing of human pluripotent stem cells via transient puromycin selection , 2018,10(2):642-654. [本文引用: 1]
BoelA, De SaffelH, SteyaertW, CallewaertB, De PaepeA, CouckePJ, Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments , 2018, 11(10): dmm035352. [本文引用: 2]
HeXJ, TanCL, WangF, WangYF, ZhouR, CuiDX, YouWX, ZhaoH, RenJW, FengB . Knock-in of large reporter genes in human cells via CRISPR/Cas9- induced homology-dependent and independent DNA repair , 2016,44(9):e85. [本文引用: 1]
AuerTO, DelBF . Homology-independent integration of plasmid DNA into the zebrafish genome , 2016,1451:31-51. [本文引用: 1]