Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements
Siyuan Liu1,2, Guoqiang Yi2, Zhonglin Tang,2,3, Bin Chen,1 1. College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; 2. Genome Analysis Laboratory of the Ministry of Agriculture, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China 3. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Supported by Position Expert of Hunan Province Pig Industry Technology System No.2019-2021 Shenzhen Key Technology Projects No.JSGG20180507182028625 National Science and Technology Major Project of China No.2016ZX08006002-005 the Key R&D Programmes of Guangdong Province No.2018B020203002
作者简介 About authors 刘思远,在读博士研究生,专业方向:动物遗传育种与繁殖。E-mail:515970802@qq.com。
Abstract The CRISPR/Cas9 system is a powerful tool which has been extensively used for genome editing in the past few years. Nuclease-dead Cas9 (CRISPR/dCas9), a Cas9 protein mutant without splicing ability, along with loss-of- function (LOF), gain-of-function (GOF), or non-coding genes scanning approaches can reveal genome-scale functional determinants. CRISPR/Cas9 has been widely adopted to decipher disease mechanisms and pinpoint drug targets in the life science field, and also provide novel insights into animal genetics and breeding. In this review, we summarize the research progress in high-throughput CRISPR/Cas9 screening for revealing the functional genes and regulatory elements in the whole genome. We also highlight the applications of CRISPR/Cas9 system in the animal cells, providing a reference for gene editing and other related research in related fields. Keywords:CRISPR/Cas9;genome-wide screening;functional gene;regulatory elements
PDF (553KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展. 遗传[J], 2020, 42(5): 435-443 doi:10.16288/j.yczz.19-390 Siyuan Liu. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements. Hereditas(Beijing)[J], 2020, 42(5): 435-443 doi:10.16288/j.yczz.19-390
在细胞层面的全基因组功能筛查流程可分为以下几个步骤:(1)确定表型与基因筛选范围;(2)构建全基因组敲除或激活基因的sgRNA文库;(3)包装慢病毒文库,通过低感染复数(multiplicity of infection, MOI)的全基因组慢病毒文库并感染目的细胞,构建稳定表达sgRNA的细胞文库并获得稳定表达株[25];(4)筛选细胞表型:对转染后的细胞施加抗生素或药物等压力并保留能存活的细胞(阳性筛选)、挑选死亡细胞(阴性筛选)或细胞增殖能力和筛选标记基因等;(5)分别提取筛选后细胞的基因组并建库;(6)利用高通量测序手段获得细胞文库中的sgRNA序列信息,并筛选目的性状的关联基因等步骤[11,26]。CRISPR/ Cas9全基因组功能筛选系统具体工作流程如图1所示。
BaliouS, AdamakiM, KyriakopoulosAM, SpandidosDA, PanayiotidisM, ChristodoulouI, ZoumpourlisV . CRISPR therapeutic tools for complex genetic disorders and cancer (Review) , 2018,53(2):443-468. [本文引用: 1]
Kruminis-KaszkielE, JuranekJ, MaksymowiczW, WojtkiewiczJ . CRISPR/Cas9 technology as an emerging tool for targeting Amyotrophic Lateral Sclerosis (ALS) , 2018,19(3):906. [本文引用: 1]
CrispoM, MuletAP, TessonL, BarreraN, CuadroF, Dos Santos-Neto PC, NguyenTH, CreneguyA, BrusselleL, AnegonI, MenchacaA. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes , 2015,10(8):e0136690. [本文引用: 1]
JansenR, EmbdenJD, GaastraW, SchoulsLM . Identification of genes that are associated with DNA repeats in prokaryotes , 2002,43(6):1565-1575. [本文引用: 1]
IshinoY, ShinagawaH, MakinoK, AmemuraM, NakataA . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987,169(12):5429-5433. [本文引用: 1]
BrounsSJJ, JoreMM, LundgrenM, WestraER, SlijkhuisRJH, SnijdersAPL, DickmanMJ, MakarovaKS, KooninEV, Van der Oost J,. Small CRISPR RNAs guide antiviral defense in prokaryotes , 2008,321(5891):960-964. [本文引用: 1]
PourcelC, SalvignolG, VergnaudG . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies , 2005,151(Pt 3):653-663. [本文引用: 1]
AndersC, NiewoehnerO, DuerstA, JinekM . Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014,513(7519):569-573. [本文引用: 1]
WymanC, KanaarR . DNA double-strand break repair: all's well that ends well , 2006,40:363-383. [本文引用: 1]
MaoZ, BozzellaM, SeluanovA, GorbunovaV . DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells , 2008,7(18):2902-2906. DOI:10.4161/cc.7.18.6679URL [本文引用: 1]
KampmannM . CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine , 2018,13(2):406-416. DOI:10.1021/acschembio.7b00657URL [本文引用: 1]
ChenC, HaoS, BaiY, ZhangJP, ZhangJB, ChengT . Establishment and optimization of genome-wide CRISPR/ Cas9-sgRNA screening system in THP1cell line for functional oncogenes and tumor suppressor genes Scientia Sinica Vitae, 2016,46(7):839-850. [本文引用: 1]
MorgensDW, DeansRM, LiA, BassikMC . Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes , 2016,34(6):634-636. [本文引用: 1]
SchusterA, ErasimusH, FritahS, Nazarov PV, vanDyck E, NiclouSP, GolebiewskaA,. RNAi/CRISPR screens: from a pool to a valid hit , 2019,37(1):38-55. [本文引用: 1]
KlannTS, BlackJB, ChellappanM, SafiA, SongL, HiltonIB, CrawfordGE, ReddyTE, GersbachCA . CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome , 2017,35(6):561-568. [本文引用: 1]
WangZ, YangY, LiS, LiK, TangZ . Analysis and comparison of long non-coding RNAs expressed in the ovaries of Meishan and Yorkshire pigs , 2019,50(6):660-669. [本文引用: 1]
YuX, WangZ, SunH, YangY, LiK, TangZ . Long non-coding MEG3 is a marker for skeletal muscle development and meat production traits in pigs , 2018,49(6):571-578. [本文引用: 1]
ZhengXM, ChenJ, PangHB, LiuS, GaoQ, WangJR, QiaoWH, WangH, LiuJ, OlsenKM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication , 2019, 5(12): eaax3619. [本文引用: 1]
CaiP, OttenAB, ChengB, IshiiMA, ZhangW, HuangBB, QuK, SunBK . A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasi , 2020,30(1):22-34. DOI:10.1101/gr.251561.119URL [本文引用: 1]
EspositoR, BoschN, LanzósA, PolidoriT, Pulido- QuetglasC, JohnsonR . Hacking the cancer genome: Profiling therapeutically actionable long Non-coding RNAs using CRISPR-Cas9 screening , 2019,35(4):545-557. DOI:10.1016/j.ccell.2019.01.019URL [本文引用: 1]
LiuY, CaoZZ, WangYN, GuoY, XuP, YuanPF, LiuZH, HeY, WeiWS . Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites , 2018,36(12):1203-1210. [本文引用: 1]
TangZL, LiY, WanP, LiXP, ZhaoSH, LiuB, FanB, ZhuMJ, YuM, LiK . LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs , 2007,8(6):R115. [本文引用: 1]
LiY, XuZY, LiHY, XiongYZ, ZuoB . Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs , 2010,6(4):350-360. [本文引用: 1]
BiPP, Ramirez-MartinezA, LiH, CannavinoJ, McanallyJR, SheltonJM, Sánchez-OrtizE, Bassel-DubyR, OlsonEN . Control of muscle formation by the fusogenic micropeptide myomixer , 2017,356(6335):323-327. [本文引用: 1]
MacLeodRS, CawleyKM, GubrijI, NookaewI, OnalM, O'BrienCA . Effective CRISPR interference of an endogenous gene via a single transgene in mice , 2019,9(1):17312. [本文引用: 1]
AhmadHI, AhmadMJ, AsifAR, AdnanM, IqbalMK, MehmoodK, MuhammadSA, BhuiyanAA, ElokilA, DuXY, ZhaoCZ, LiuXD, XieSS . A Review of CRISPR- Based genome editing: Survival, evolution and challenges , 2018,28:47-68. [本文引用: 1]
ZhangK, LiuW, LiuXF, ChenYS, LiuXH, HeZY . Generation of cell strains containing point mutations in HPRT1 by CRISPR/Cas9 Hereditas (Beijing), 2019,41(10):939-949. [本文引用: 2]
LiuH, LiDM, ZhuLY, LaiLJ, YanWY, LuYS, WeiY, HuangYQ, FangM, SuYG, YangF, ShuW . Research on the knockout of LMNA gene by CRISPR/Cas9 system in human cell lines Hereditas(Beijing), 2019,41(1):66-75. [本文引用: 1]
LiL, WeiK, ZhengG, LiuX . CRISPR-Cpf1-Assisted multiplex genome editing and transcriptional repression in streptomyces , 2018,84(18):e00827-18. [本文引用: 1]
DepardieuF, BikardD . Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels , 2019,172:61-75. [本文引用: 1]
LiW, TengF, LiTD, ZhouQ . Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems , 2013,31(8):684-686. [本文引用: 1]
HuangJJ, CaoCW, ZhengGM, ZhaoJG . Genome editing technologies drive the development of pig genetic improvement Hereditas(Beijing), 2017,39(11):1078-1089. [本文引用: 1]
LiS, YangYY, QiuY, ChenYH, XuLL, DingQR . Applications of genome editing tools in precision medicine research Hereditas(Beijing), 2017,39(3):177-188. [本文引用: 1]
WuYX, LiangD, WangYH, BaiMZ, TangW, BaoSM, YanZQ, LiDS, LiJS . Correction of a genetic disease in mouse via use of CRISPR-Cas9 , 2013,13(6):659-662. [本文引用: 1]
BianSH, HouY, ZhouX, LiXL, YongJ, WangYC, WangWD, YanJ, HuBQ, GuoHS, WangJL, GaoS, Mao yn, DongJ, ZhuP, XiuDR, YanLY, WenL, QiaoJ, TangFC, FuW. Single-cell multiomics sequencing and analyses of human colorectal cancer , 2018,362(6418):1060-1063. [本文引用: 1]
KanesakaY, OkadaM, ItoS, OyamaT . Monitoring single- cell bioluminescence of Arabidopsis leaves to quantitatively evaluate the efficiency of a transiently introduced CRISPR/Cas9 system targeting the circadian clock gene ELF3 , 2019,36(3):187-193. [本文引用: 1]
Diaz-HernandezME, KhanNM, TrochezCM, YoonT, MayeP, PresciuttiSM, GibsonG, DrissiH . Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics , 2019,235(6):5241-5255. [本文引用: 1]