Digital PCR and its application in biological detection
Xiujing Feng, Hongmei Yi, Xingxu Ren, Jiali Ren, Jianrong Ge, Fengge Wang,Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
Supported by the National Key Research and Development Program of China No.2017YFD0102001 the National Genetically Modified Organisms Key Breeding Projects of China No.2017ZX08013001
作者简介 About authors 冯秀晶,博士,研究方向:转基因植物检测。E-mail:fengxj187@126.com;。
Abstract Various derivative technologies based on PCR for nucleic acid detection have emerged with the continuous development and the diverse needs of molecular biology technology. Digital PCR (dPCR) is a nucleic acid detection method for large scale amplification based on a single molecular template, which runs an individual PCR reaction using chambers/wells or droplets. dPCR can be used for absolute quantification for the initial concentration of samples without calibrator and drawing standard curve, showing the characteristics of high sensitivity, specificity, and accuracy. In this review, we introduce the history of technology development, principle, and instrument platform types of digital PCR in detail. Then, we summarize the application of this technology in GMO quantification, disease diagnosis, environment and food supervision. Finally, we describe the application prospect of dPCR, providing a reference for the development and utilization of this technology in the future. Keywords:digital PCR;single molecule;absolute quantification
PDF (654KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 冯秀晶, 易红梅, 任星旭, 任佳丽, 葛建镕, 王凤格. 数字PCR技术及其在检测领域的应用. 遗传[J], 2020, 42(4): 363-373 doi:10.16288/j.yczz.19-351 Xiujing Feng. Digital PCR and its application in biological detection. Hereditas(Beijing)[J], 2020, 42(4): 363-373 doi:10.16288/j.yczz.19-351
基于反应室的数字PCR (chamber-based digital PCR, cdPCR)工作流程是将预先混合的PCR反应液通过微流控技术生成乳化液滴并注入预制的固态隔板(室)进行样品分散,然后移至专用热循环仪上进行PCR扩增,读取荧光信号,统计阳性腔室的数目进行分析计算[22]。每种设备所装载反应腔室数目和大小不同,同一设备上各反应腔室大小相同,可确保各腔室之间运行环境一致,cdPCR平台可分散反应单元数量通常低于基于微滴的数字PCR (droplet digital PCR, ddPCR)平台。
生物技术的迅猛发展促进了转基因作物的诞生。在转基因植物研究中,为确保转基因植物的稳定整合和遗传,通常会选择单拷贝的纯合转基因植株作为进一步研究的对象,而且纯合子个体的检测和随后的选择是促进转基因植物从实验室转移到大田的关键。此外,在转基因作物进入市场前,各个国家、组织和地区都制定了明确的政策和法规进行监管,转基因作物中插入的外源基因拷贝数是生物安全评价中一项重要内容[23]。因此,在进行转基因植株检测时会根据需求不同测定其拷贝数与合子性。先前的研究一般采用Southern blot [24,25]、qPCR[26,27,28]和NGS[29]等方法进行检测。但以上检测方法均存在一定程度的缺陷。Southern blot可确定被检转基因植株的拷贝数,也可根据杂交信号亮度差异区分杂合与纯合植株,但模板需求量大而且对DNA质量要求较高,耗时繁琐而且若采用同位素标记探针还会有辐射影响[30]。采用qPCR对于转基因植株的合子性进行检测,不同的实验室获得结果存在争议:或主张该方法无法区分纯合子与杂合子;或可通过精确的扩增条件进行有效区分杂合子[26]。若以qPCR检测转基因植株的拷贝数,对于基因组较大的转基因植株则无法区分一个或两个拷贝,需达到2倍以上的差异[31]。dPCR在转基因植株拷贝数及其杂合子鉴定方面具有模板用量少、节省时间及劳动量和结果更为精准的优势。在玉米(Zea mays L.)中,采用qPCR和ddPCR两种方法均可成功检测出转基因玉米杂合子,但ddPCR因其可直接绝对定量而更为便捷[32]。目前已建立了适用于水稻(Oryza.sativa L.)、柑橘(Citrus sinensis L.)、马铃薯(Solanum tuberosum L.)、玉米(Zea mays L.)、番茄(Solanum lycopersicum L.)和小麦(Triticum aestivum L.) 6种转基因作物外源基因拷贝数的ddPCR检测体系[33]。
3.1.2 dPCR对转基因产品成分的检测
自1996年转基因作物商业化生产以来,转基因作物种植面积逐渐增多。据ISAAA(International Service for the Acquisition of Agri-biotech Applications)统计结果,截止到2018年,全球已有70个国家进行了转基因作物应用(种植或进口用作食品/饲料),种植面积已达1.917亿ha [34]。鉴于人们对转基因作物的认知,各国采用了标识制度对转基因产品进行监管,并根据各自需求制定了相应的标识阈值,因此需要相应的技术方法对转基因产品组分进行精确定量[35,36,37]。目前已发布的转基因作物检测标准(物种、元件和事件特异性)多是基于Taqman水解探针的qPCR方法[38,39]。随着技术进步和获批转基因作物数量的增加,复合性状转基因作物已然占据市场主导地位,而基因编辑等新育种技术所培育的品种正推向市场,继续完全使用qPCR方法进行转基因产品成分检测则面临巨大挑战:(1)每种组分的qPCR定量都需要相应的校准品和高质量的标准曲线;(2)检测和定量含有多个转化事件的样品时(如评估食品或饲料标签),总体相对标准偏差(relative standard deviation, RSD)等于所有转化事件定量分析结果的总和,难以在含量临近检测限(limit of detection, LOD)时进行精准定量;(3)抑制剂对校准品和待检样品扩增效率影响较大,易导致定量结果有所偏差;(4)校准品制备繁琐且价格昂贵,增大了检测成本。dPCR可在一定程度上解决使用qPCR检测所存在的问题。
现有qPCR检测标准可以直接转化为dPCR,多个实验室已开始测试并验证了dPCR在转基因生物检测方面的潜力。我国已制定了转基因产品数字PCR检测方法的标准。利用cdPCR方法对转基因玉米MON810有证标准物质进行DNA拷贝数定量分析,获得了与以质粒DNA作为校准品的qPCR方法一致的检测结果,确定了以cdPCR方法检测转基因作物的检测限(limit of detection, LOD)和定量限(limit of quantitation, LOQ)[8,40]。多个研究团队对ddPCR方法中的相关参数(引物浓度、反应单元体积、退火/延伸温度和液滴分离等)进行了优化评估,建立了适用于标准物质和常规检测样品的ddPCR定量分析方法[41,42,43]。Morisset等[44]利用ddPCR对常规的食品和饲料样品中的转基因成分进行了定量适用性分析,与已验证的qPCR和cdPCR相比更为精确和经济有效。
基因编辑是近年来一个重大的技术突破,该技术已经广泛应用于基因功能研究、人类疾病治疗、物种改良等多个方面。定性及精确定量评估基因编辑实验是否成功仍是一大难点。在已知编辑背景信息的情况下,基因编辑频率数字PCR (gene-editing frequency digital PCR, GEF-dPCR)利用两个不同标记的探针,同时对给定样本中编辑的和野生型等位基因进行定量,该方法可与定点测序结果相互验证[70]。dPCR最早是应用在对人类细胞系基因组编辑效率进行检测[71,72];在植物上,首先通过dPCR对CRISPR转基因植株进行高通量筛选,然后根据筛选结果,用限制性内切酶消化/PCR扩增技术对检测数值相对较高的植株进一步分析[73,74]。由于基因编辑作物已经推向市场,欧盟将基因编辑作物监管等同于先前转基因作物[75,76,77],对其检测可借鉴dPCR对编辑效率检测的经验,以实现对基因编辑转基因作物含量的定量检测。
SaikiRK, ScharfS, FaloonaF, MullisKB, HornGT, ErlichHA, ArnheimN . Enzymatic amplification of beta- globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia , 1985,230(4732):1350-1354. [本文引用: 1]
HiguchiR, DollingerG, WalshPS, GriffithR . Simultaneous amplification and detection of specific DNA sequences , 1992,10(4):413-417. [本文引用: 1]
OttesenEA, HongJW, QuakeSR, LeadbetterJR . Microfluidic digital PCR enables multigene analysis of individual environmental bacteria , 2006,314(5804):1464-1467. [本文引用: 2]
WhiteRA, BlaineyPC, FanHC, QuakeSR . Digital PCR provides sensitive and absolute calibration for high throughput sequencing , 2009,10:116. [本文引用: 1]
KimH, BartschMS, RenziRF, HeJ, Van de Vreugde JL, ClaudnicMR, PatelKD. Automated digital microfluidic sample preparation for next-generation DNA sequencing , 2011,16(6):405-414. [本文引用: 1]
ChanM, ChanMW, LohTW, LawHY, YoonCS, ThanSS, ChuaJM, WongCY, YongWS, YapYS, HoGH, AngP, LeeASG . Evaluation of nanofluidics technology for high-throughput SNP genotyping in a clinical setting , 2011,13(3):305-312. [本文引用: 1]
SpurgeonSL, JonesRC, RamakrishnanR . High throughput gene expression measurement with real time PCR in a microfluidic dynamic array , 2008,3(2):e1662 [本文引用: 1]
CorbisierP, BhatS, PartisL, XieVRD, EmslieKR . Absolute quantification of genetically modified MON810 maize ( Zea mays L.) by digital polymerase chain reaction , 2010,396(6):2143-2150. [本文引用: 2]
SykesPJ, NeohSH, BriscoMJ, HughesE, CondonJ, MorleyAA . Quantitation of targets for PCR by use of limiting dilution , 1992,13(3):444-449. [本文引用: 1]
LiCY . Principle and application of digital PCR Biotech World, 2014,11:10-13. [本文引用: 1]
DressmanD, YanH, TraversoG, KinzlerKW, VogelsteinB . Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations , 2003,100(15):8817-8822. [本文引用: 1]
PerkelJM . Life science technologies: The digital PCR revolution , 2014,344(6180):212-214. [本文引用: 1]
DubeS, QinJ, RamakrishnanR . Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device , 2008, 3(8):e2876. [本文引用: 1]
DongLH, MengY, SuiZW, WangJ, WuLQ, FuBQ . Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material , 2015,5:13174. [本文引用: 1]
BasuAS . Digital assays part I: partitioning statistics and digital PCR , 2017,22(4):369-386. [本文引用: 1]
HuJY, JiangY, YangLT . Quantification of genetically modified maize ( Zea mays) MON863 by QuantStudio TM 3D digital PCR J Agric Biotech, 2016,24(8):1216-1224. [本文引用: 1]
DemekeT, DobnikD . Critical assessment of digital PCR for the detection and quantification of genetically modified organisms , 2018,410(17):4039-4050. [本文引用: 1]
BakerM . Digital PCR hits its stride , 2012,9(6):541-544. [本文引用: 1]
LiaoPY, HuangYY . Digital PCR: endless frontier of 'Divide and Conquer' , 2017,8(8):231. [本文引用: 1]
General Office of the Ministry of Agriculture. Guidelines for the safety assessment of agricultural genetically modified organisms.2017. [本文引用: 1]
HuaZH, ZhuXF, LinHS, GaoZY, QianQ, YanMX, HuangDN . Studies of the integration and expression of exogenes in transgenic rice obtained via particle bombardment transformation Acta Genetica Sinica, 2001,28(11):1012-1018. [本文引用: 1]
BubnerB, BaldwinIT . Use of real-time PCR for determining copy number and zygosity in transgenic plants , 2004,23(5):263-271. [本文引用: 2]
PriorFA, TackaberryES, AubinRA, CasleyWL . Accurate determination of zygosity in transgenic rice by real-time PCR does not require standard curves or efficiency correction , 2006,15(2):261-265. [本文引用: 1]
MieogJC, HowittCA, RalJP . Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay , 2013,13:71. [本文引用: 1]
FritschL, FischerR, WambachC, DudekM, SchillbergS, Schr?perF . Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize , 2015,24(4):615-623. [本文引用: 1]
PassrichaN, SaifiS, KhatodiaS, TutejaN . Assessing zygosity in progeny of transgenic plants: current methods and perspectives , 2016,3(3):e46. [本文引用: 1]
BubnerB, GaseK, BaldwinIT . Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR , 2004,4:14. [本文引用: 1]
XuXL, PengC, WangXF, ChenXY, WangQ, XuJF . Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize , 2016,25(6):855-864. [本文引用: 1]
CollierR, DasguptaK, XingYP, HernandezBT, ShaoM, RohozinskiD, KovakE, Lin J, de Oliveira MLP, StoverE, McCueKF, HarmonFG, BlechlA, ThomsonJG, ThilmonyR . Accurate measurement of transgene copy number in crop plants using droplet digital PCR , 2017,90(5):1014-1025. [本文引用: 1]
Global status of commercialized biotech/gm crops in 2018. Biotech crop adoption surges as economic benefits accumulate 23 years , brief 54. [本文引用: 1]
GruèreGP, RaoSR . A review of international labeling policies of genetically modified food to evaluate india's proposed rule , 2007,10(1):51-64. [本文引用: 1]
MilavecM, DobnikD, YangLT, ZhangDB, GrudenK, ZelJ . GMO quantification: valuable experience and insights for the future , 2014,406(26):6485-6497. [本文引用: 1]
ScholtensIM, KokEJ, HougsL, MolenaarB, Thissen JT, van der VoetH . Increased efficacy for in-house validation of real-time PCR GMO detection methods , 2010,396(6):2213-2227. [本文引用: 1]
BerdalKG, Holst-jensen A. Roundup Ready ? soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses , 2001,213:432-438. [本文引用: 1]
BurnsMJ, BurrellAM, FoyCA . The applicability of digital PCR for the assessment of detection limits in GMO analysis , 2010,231(3):353-362. [本文引用: 1]
GerdesL, BuschU, PecoraroS . Parallelised real-time PCR for identification of maize GMO events , 2012,234(2):315-322. [本文引用: 1]
K?ppelR, BucherT . Rapid establishment of droplet digital PCR for quantitative GMO analysis , 2015,241(3):427-439. [本文引用: 1]
FuHB, YanCJ, LiS, LiuXC, ZhangM . Application of digital PCR technology in detection of genetically modified components Liaoning Agric Sci, 2017, ( 1):50-53. [本文引用: 1]
MorissetD, ?tebihD, MilavecM, GrudenK, ?elJ . Quantitative analysis of food and feed samples with droplet digital PCR , 2013,8(5):e62583. [本文引用: 3]
GerdesL, IwobiA, BuschU, PecoraroS . Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms , 2016,7:9-20. [本文引用: 1]
Félix-UrquídezD, Pérez-UrquizaM, Valdez TorresJB, León-FélixJ, García-EstradaR, Acatzi-SilvaA . Development, optimization, and evaluation of a duplex droplet digital PCR assay to quantify the T-nos/hmg copy number ratio in genetically modified maize , 2016,88(1):812-819. [本文引用: 1]
DobnikD, ?tebihD, BlejecA, MorissetD, ?elJ . Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection , 2016,6:35451. [本文引用: 1]
WhaleAS, HuggettJF, TzonevS . Fundamentals of multiplexing with digital PCR , 2016,10:15-23. [本文引用: 1]
PrettoD, MaarD, YrigollenCM, ReganJ, TassoneF . Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR , 2015,61(1):182-190. [本文引用: 1]
DobnikD, SpilsbergB, Bogo?alec Ko?irAB, Holst-JensenA, ?elJ . Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction , 2015,87(16):8218-8226. [本文引用: 1]
Ko?irAB, SpilsbergB, Holst-JensenA, ?elJ, DobnikD . Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines , 2017,7(1):8601. [本文引用: 1]
ZimmermannBG, GrillS, HolzgreveW, ZhongXY, JacksonLG, HahnS . Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? , 2008,28(12):1087-1093. [本文引用: 1]
FanMHC, BlumenfeldYJ, El-SayedYY, ChuehJ, Quake SR . Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy , 2009, 200(5): 543.e1-547.e7. [本文引用: 1]
UsherCL, McCarroll SA . Complex and multi-allelic copy number variation in human disease , 2015,14(5):329-338. [本文引用: 1]
BarrettAN, McDonnell TC, ChanKC, ChittyLS . Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia , 2012,58(6):1026-1032. [本文引用: 1]
TrypsteenW, KiselinovaM, VandekerckhoveL, De SpiegelaereW . Diagnostic utility of droplet digital PCR for HIV reservoir quantification , 2016,2(3):162-169. [本文引用: 1]
SedlakRH, JeromeKR . Viral diagnostics in the era of digital polymerase chain reaction , 2013,75(1):1-4. [本文引用: 1]
HennekinneJA, De BuyserML, DragacciS . Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation , 2012,36(4):815-836. [本文引用: 1]
Stenfors ArnesenLP, FagerlundA, GranumPE . From soil to gut: Bacillus cereus and its food poisoning toxins , 2008,32(4):579-606. [本文引用: 1]
Coudray-MeunierC, FraisseA, Martin-LatilS, GuillierL, DelannoyS, FachP, PerelleS . A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples , 2015,201:17-26. [本文引用: 1]
WilsonM, GlaserKC, Adams-FishD, BoleyM, MaydaM, MolestinaRE . Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani , 2015,149:24-31. [本文引用: 1]
StrandDA, Holst-JensenA, ViljugreinH, EdvardsenB, KlavenessD, JussilaJ, VralstadT . Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments , 2011,95(1):9-17. [本文引用: 2]
Ra?kiN, DreoT, Gutierrez-AguirreI, BlejecA, RavnikarM . Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples , 2014,10(1):42. [本文引用: 1]
DoiH, TakaharaT, MinamotoT, MatsuhashiS, UchiiK, YamanakaH . Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species , 2015,49(9):5601-5608. [本文引用: 2]
MasagoY, KontaY, KazamaS, InabaM, ImagawaT, TohmaK, SaitoM, SuzukiA, OshitaniH, OmuraT . Comparative evaluation of real-time PCR methods for human noroviruses in wastewater and human stool , 2016,11(8):e0160825.
HuangWC, ChouYP, KaoPM, HsuTK, SuHC, HoYN, YangYC, HsuBM . Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters , 2016,73(8):1832-1841. [本文引用: 1]
Ra?kiN, MorissetD, Gutierrez-AguirreI, RavnikarM . One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses , 2014,406(3):661-667. [本文引用: 1]
CaoY, RaithMR, GriffithJF . Droplet digital PCR for simultaneous quantification of general and human- associated fecal indicators for water quality assessment , 2015,70:337-349. [本文引用: 1]
MockU, HauberI, FehseB . Digital PCR to assess gene- editing frequencies (GEF-dPCR) mediated by designer nucleases , 2016,11(3):598-615. [本文引用: 1]
FindlaySD, VincentKM, BermanJR, PostovitLM . A digital PCR-based method for efficient and highly specific screening of genome edited cells , 2016,11(4):e0153901. [本文引用: 1]
MiyaokaY, ChanAH, JudgeLM, YooJ, HuangM, NguyenTD, LizarragaPP, SoPL, ConklinBR . Isolation of single-base genome-edited human iPS cells without antibiotic selection , 2014,11(3):291-293. [本文引用: 1]
GaoR, FeyissaBA, CroftM, HannoufaA . Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa , 2018,247(4):1043-1050. [本文引用: 1]
LiuCX, GengLZ, XuJP . Detection methods of genome editing in plants Hereditas (Beijing), 2018,40(12):1075-1091. [本文引用: 1]