Gene editing technology and its recent progress in disease therapy
Xuran Niu, Shuming Yin, Xi Chen, Tingting Shao, Dali Li,Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
Abstract Gene editing is a genetic manipulation technology which utilizes bacterial nucleases to accurately and efficiently modify DNA or RNA. Gene editing has broad applications in basic research, breeding, and drug screening, and it is gaining validity and applicability to the therapy of many diseases especially genetic-based disease. In this review, we summarize the development of gene editing technology, its different strategies and applications in the treatment of disease, and the research of gene editing therapy for genetic diseases (including base editor and epigenetic regulation) in the treatment of disorders and diseases of the blood system, liver, muscle and nervous system. Finally, we discuss the future development prospects of gene editing therapy. Keywords:gene editing;gene therapy;genetic diseases
PDF (713KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 牛煦然, 尹树明, 陈曦, 邵婷婷, 李大力. 基因编辑技术及其在疾病治疗中的研究进展[J]. 遗传, 2019, 41(7): 582-598 doi:10.16288/j.yczz.19-102 Xuran Niu, Shuming Yin, Xi Chen, Tingting Shao, Dali Li. Gene editing technology and its recent progress in disease therapy[J]. Hereditas(Beijing), 2019, 41(7): 582-598 doi:10.16288/j.yczz.19-102
基因疗法(gene therapeutics)的概念最早由美国科学家Michael Blease于1968年提出。直到1989年,美国的联邦食品与药品管理局(Food and Drug Administration, FDA)才首次同意了将载体导入的基因治疗方法用于晚期恶性黑色素瘤患者,标志着人类基因治疗(gene therapy)临床试验的开启。FDA对基因治疗的定义是“通过各种手段修复缺陷基因,以实现减缓或者治愈疾病目的的技术”。可以看到,基因治疗主要是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,从而达到治疗目的。至今已有超过2600多项基因治疗的临床试验获批开展。2012年,欧洲批准了格利贝拉(Glybera)作为第一个上市的基因药物,用于治疗罕见性遗传病——脂蛋白脂肪酶缺乏症(lipoprotein lipase deficiency, LPLD)。虽然该药物最后因为定价太高和需求不足而退出市场,但作为一个标志性的产品,代表着基因药物正式作为疾病治疗的新方法应用于临床。最近几年,基因治疗更是取得蓬勃发展。2016年,基因治疗药物Strimvelis被欧洲药品管理局(European Medicines Agency, EMA)批准,用于治疗儿童腺苷脱氨酶(adenosine deaminase, ADA)缺乏性重度联合免疫缺陷症(ADA-severe combined immunodeficiency, ADA-SCID)。2017年,来自美国Spark公司的具有跨时代意义的眼部罕见病基因治疗产品Luxturna获批上市,这也是FDA批准的首个基因治疗药物。另外,对于血友病、β地中海贫血、杜氏肌营养不良和1型脊髓性肌萎缩症(spinal muscular atrophy type 1, SMA1)等疾病而言,相应的基因治疗药物都在临床实验中取得了令人振奋的治疗效果,有望在近年获批上市,为相应疾病的治疗提供新的选择。
2.1 基因治疗的策略
长期以来,在科研和临床实践中,基因治疗的基本策略主要包括两类:一种是利用较为直接的方法对局部或全身注射含有修复基因片段的病毒或非病毒载体(in vivo therapy);另一种是将患者的体细胞(如造血干细胞)从体内分离,在体外进行培养并使用携带有正常基因片段的载体修复突变基因,最后通过注射的方法将改良后的细胞回输入患者体内(ex vivo therapy)以进行疾病的治疗[65](图3)。两种策略在不同组织器官的疾病治疗中各有侧重,为多种疾病的治疗提供了方法学支持。ex vivo方法对于目的细胞(如造血干细胞)的遗传改造是在实验室中进行的,即使存在编辑效率较低的可能,但仍然可以通过实验筛选出正确改造的细胞,之后只需要进行扩大培养再回输回患者体内即可。而in vivo方法的整个编辑过程都是在体内进行,这就需要编辑方法和工具有较高活性;此外,在in vivo方法中,病毒载体注入人体之后,安全性是最关键的指标。关于治疗策略的安全性和有效性等问题将在下文做进一步讨论。
DarrowJJ . Luxturna: FDA documents reveal the value of a costly gene therapy , 2019,24(4):949-954. URL [本文引用: 1]
HanX, NiW . Cost-Effectiveness analysis of glybera for the treatment of lipoprotein lipase deficiency , 2015,18(7):A756. [本文引用: 1]
SchimmerJ, BreazzanoS . Investor outlook: rising from the ashes; GSK's European approval of strimvelis for ADA-SCID , 2016,27(2):57-61. URL [本文引用: 1]
GuptaSK, ShuklaP . Gene editing for cell engineering: trends and applications , 2017,37(5):672-684. URL [本文引用: 1]
TakataM, SasakiMS, SonodaE, MorrisonC, HashimotoM, UtsumiH, Yamaguchi-IwaiY, ShinoharaA, TakedaS . Homologous recombination and non- homologous end-joining pathways of DNA double- strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells , 1998,17(18):5497-5508. URL [本文引用: 1]
LieberMR, MaY, PannickeU, SchwarzK . Mechanism and regulation of human non-homologous DNA end- joining , 2003,4(9):712-720. [本文引用: 1]
JoungJK, SanderJD . TALENs: a widely applicable technology for targeted genome editing , 2012,14(1):49-55. [本文引用: 1]
SanderJD, JoungJK . CRISPR-Cas systems for editing, regulating and targeting genomes , 2014,32(4):347-355. [本文引用: 1]
KomorAC, BadranAH, LiuDR . CRISPR-Based technologies for the manipulation of eukaryotic genomes , 2017,168(1-2):20-36. URL [本文引用: 1]
MarcaidaMJ, PrietoJ, RedondoP . Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering , 2008,105(44):16888-16893. URL [本文引用: 1]
LamKN, van BakelH, CoteAG, van der VenA, HughesTR . Sequence specificity is obtained from the majority of modular C2H2 Zinc-finger arrays , 2011,39(11):4680-4690. URL [本文引用: 1]
Ul AinQ, ChungJY, KimYH . Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN , 2014,205:120-127. [本文引用: 1]
BonasU, StallRE, StaskawiczB . Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria , 1989,218(1):127-136. URL [本文引用: 1]
KayS, HahnS, MaroisE, HauseG, BonasU . A bacterial effector acts as a plant transcription factor and induces a cell size regulator , 2007,318(5850):648-651. URL [本文引用: 1]
SugioA, YangB, ZhuT, WhiteFF . Two type III effector genes of Xanthomonas oryzae pv. Oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice , 2007,104(25):10720-10725. URL [本文引用: 1]
BochJ, ScholzeH, SchornackS, LandgrafA, HahnS, KayS, LahayeT, NickstadtA, BonasU . Breaking the code of DNA binding specificity of TAL-type III effectors , 2009,326(5959):1509-1512. URL [本文引用: 1]
MoscouMJ, BogdanoveAJ . A simple cipher governs DNA recognition by TAL effectors , 2009,326(5959):1501. URL [本文引用: 1]
BedellVM, WangY, CampbellJM, PoshustaTL, StarkerCG, Krug RG2nd, TanW, PenheiterSG, MaAC, LeungAY, FahrenkrugSC, CarlsonDF, VoytasDF, ClarkKJ, EssnerJ, EkkerSC . In vivo genome editing using a high-efficiency TALEN system , 2012,491(7422):114-118. [本文引用: 1]
TanWS, CarlsonDF, WaltonMW, FahrenkrugSC, HackettPB . Precision editing of large animal genomes , 2012,80:37-97. URL [本文引用: 1]
JoungJK, SanderJD . TALENs: a widely applicable technology for targeted genome editing , 2013,14(1):49-55. [本文引用: 1]
LeeHB, SundbergBN, SigafoosAN, ClarkKJ . Genome engineering with TALE and CRISPR systems in neuroscience , 2016,7:47. [本文引用: 1]
QiuZ, LiuM, ChenZ, ShaoY, PanH, WeiG, YuC, ZhangL, LiX, WangP, FanHY, DuB, LiuB, LiuM, LiD . High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases , 2013,41(11):e120. URL [本文引用: 1]
TongC, HuangG, AshtonC, WuH, YanH, YingQL . Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs , 2012,39(6):275-280. URL [本文引用: 1]
LiuJ, LiC, YuZ, HuangP, WuH, WeiC, ZhuN, ShenY, ChenY, ZhangB, DengWM, JiaoR . Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy , 2012,39(5):209-215. URL [本文引用: 1]
ChristianM, QiY, ZhangY, VoytasDF . Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases , 2013,3(10):1697-1705. URL [本文引用: 1]
IshinoY, ShinagawaH, MakinoK, AmemuraM, NakataA . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987,169(12):5429-5433. URL [本文引用: 1]
JansenR, EmbdenJD, GaastraW, SchoulsLM . Identification of genes that are associated with DNA repeats in prokaryotes , 2002,43(6):1565-1575. URL [本文引用: 1]
GasiunasG, BarrangouR, HorvathP, SiksnysV . Cas9- crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012,109(39):E2579-2586. URL [本文引用: 1]
FonfaraI, Le RhunA, ChylinskiK, MakarovaKS, LécrivainAL, BzdrengaJ, KooninEV, CharpentierE . Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2014,42(4):2577-2590. URL [本文引用: 1]
FuY, FodenJA, KhayterC, MaederML, ReyonD, JoungJK, SanderJD . High frequency off target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013,31(9):822-826. [本文引用: 1]
RanFA, CongL, YanWX, ScottDA, GootenbergJS, KrizAJ, ZetscheB, ShalemO, WuX, MakarovaKS, KooninEV, SharpPA, ZhangF . In vivo genome editing using Staphylococcus aureus Cas9 , 2015,520(7546):186-191. [本文引用: 1]
ZetscheB, GootenbergJS, AbudayyehOO, SlaymakerIM, MakarovaKS, EssletzbichlerP, VolzSE, JoungJ, van derOost J, RegevA, KooninEV, ZhangF . Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system , 2015,163(3):759-771. URL [本文引用: 1]
HuJH, MillerSM, GeurtsMH, TangW, ChenL, SunN, ZeinaCM, GaoX, ReesHA, LinZ, LiuDR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018,556(7699):57-63. [本文引用: 1]
KomorAC, KimYB, PackerMS, ZurisJA, LiuDR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016,533(7603):420-424. [本文引用: 1]
GaudelliNM, KomorAC, ReesHA, PackerMS, BadranAH, BrysonDI, LiuDR . Programmable base editing of AT to GC in genomic DNA without DNA cleavage , 2017,551(7681):464-471. [本文引用: 1]
WeiY, ZhangXH, LiDL . The ”new favorite” of gene editing technology-single base editors Hereditas (Beijing), 2017,39(12):1115-1121. [本文引用: 3]
LiZ, ZhangD, XiongX, YanB, XieW, SheenJ, LiJF . A potent Cas9-derived gene activator for plant and mammalian cells , 2017,3(12):930-936. URL [本文引用: 1]
LiuXS, WuH, JiX, StelzerY, WuX, CzaudernaS, ShuJ, DadonD, YoungRA, JaenischR . Editing DNA methylation in the mammalian genome , 2016,167(1):233-247. URL [本文引用: 2]
LiuP, ChenM, LiuY, QiLS, DingS . CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency , 2018,22(2):252-261. URL [本文引用: 1]
Cano-RodriguezD, GjaltemaRA, JilderdaLJ, JellemaP, Dokter-FokkensJ, RuitersMH, RotsMG . Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner , 2016,7:12284. [本文引用: 1]
KearnsNA, PhamH, TabakB, GengaRM, SilversteinNJ, GarberM, MaehrR . Functional annotation of native enhancers with a Cas9-histone demethylase fusion , 2015,12(5):401-403. [本文引用: 1]
HiltonIB, D'IppolitoAM, VockleyCM, ThakorePI, CrawfordGE, ReddyTE, GersbachCA . Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015,33(5):510-517. [本文引用: 1]
KwonDY, ZhaoYT, LamonicaJM, ZhouZ . Locus-specific histone deacetylation using a synthetic CRISPRCas9-based HDAC , 2017,8:15315. [本文引用: 1]
MendenhallEM, WilliamsonKE, ReyonD, ZouJY, RamO, JoungJK, BernsteinBE . Locus-specific editing of histone modifications at endogenous enhancers , 2013,31(12):1133-1136. [本文引用: 1]
NaldiniL . Gene therapy returns to centre stage , 2015,526(7573):351-360. [本文引用: 1]
SinnPL, SauterSL, McCrayPB . Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production , 2005,12(14):1089-1098. [本文引用: 1]
YaoX, WangX, LiuJ, ShiL, HuangP, YangH . CRISPR/Cas9-mediated targeted integration in vivo using a homology-mediated end joining-based strategy , 2018(133). [本文引用: 1]
KomorAC, KimYB, PackerMS, ZurisJA, LiuDR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016,533(7603):420-424. [本文引用: 1]
BillonP, BryantEE, JosephSA, NambiarTS, HaywardSB, RothsteinR, CicciaA . CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons , 2017, 67(6): 1068-1079. e4. URL [本文引用: 1]
RyuSM, KooT, KimK, LimK, BaekG, KimST, KimHS, KimDE, LeeH, ChungE, KimJS . Adenine base editing in mouse embryos and an adult mouse model of duchenne muscular dystrophy , 2018,36(6):536-539. [本文引用: 1]
VilligerL, Grisch-ChanHM, LindsayH, RingnaldaF, PoglianoCB, AllegriG, FingerhutR, HäberleJ, MatosJ, RobinsonMD, ThönyB, SchwankG . Treatment of a metabolic liver disease by in vivo genome base editing in adult mice , 2018,24(10):1519-1525. [本文引用: 1]