Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection
Xiangpeng He1,2, Bingjie Zou2, Xiemin Qi2, Shan Chen2, Yan Lu2, Qing Huang3, Guohua Zhou,1,21. School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China 2. Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China 3. Center of Inspection and Technical Research, Jiangsu Institute for Food and Drug Control, Nanjing 210000, China
Supported by the National Natural Science Foundation of China.61871403 Supported by the National Natural Science Foundation of China.81673390 Supported by the National Natural Science Foundation of China.81603219 Supported by the National Natural Science Foundation of China.81603196 Jiangsu Provincial Science Fund for Distinguished Young Scholars.BK20180005 Six Talent Peaks Project in Jiangsu Province.2015-WSN-085 Jiangsu Provincial Medical Youth Talent Program.QNRC2016889
作者简介 About authors 何祥鹏,硕士研究生,专业方向:分子诊断E-mail:hxpbio@outlook.com。
Abstract Rapid detection of pathogenic microorganisms is key to the epidemiologic identification, prevention and control of disease in the field of public health. PCR-based pathogen detection methods have been widely used because they overcome the time-consuming issues that traditional culture-based methods required including the limited window required by immunological detection. However, the requirement on precision temperature-controlled thermal cyclers severely limits their use in resource-limited areas. The detection methods of pathogenic microorganisms based on isothermal amplification of nucleic acids are free of dependence on high-precision temperature control equipment, but requirements for nucleic acids extraction, amplification and detection must be defined. In recent years, a number of alternative methods for pathogenic microorganism detection have been developed by combining microfluidic technology with nucleic acid isothermal amplification technology. By designing the chip structures, optimizing the injection modes, and utilizing multiple detection and quantitative methods, the integration of pathogen nucleic acid extraction, amplification and detection is achieved. The method provides advantages of less instrument dependence, decreased operator requirements, smaller sample size, and higher automation which are suitable for the rapid detection of pathogenic microorganisms in various environments. In this review, we summarize several microfluidic detection methods based on nucleic acid isothermal amplification for pathogens including amplification principles, injection methods and detection methods. These methods provide more capability for the rapid screening of pathogenic microorganisms which enhances the management of infectious diseases in the field of public health. Keywords:pathogen microorganism detection;isothermal amplification;microfluidic chip
世界卫生组织(World Health Organization,WHO)发布的《2018世界卫生统计报告》指出,病原体依然是危害人类健康与生命的重要原因之一,尤其对6岁以下儿童,由病原体引起的呼吸道感染、腹泻及疟疾是导致死亡的第一原因。在病原体类型中,尤以病原微生物传播更为隐秘,疫情爆发更为突然、难控,破坏性往往也更为严重,例如2018年8月在我国爆发的非洲猪瘟疫情,给国家造成了重大经济损失,同时也使食品安全面临严峻挑战。因此,对病原微生物的防控关乎人民健康与国家安危,发展简单快速的病原微生物检测技术是病原体防控的关键之一[1]。
A:LAMP外引物F3/B3和内引物FIP/BIP与靶标互补的6个区域,如其中F3与F3c互补,B3与B3c互补;B:起始结构产物生成步骤,引物FIP通过F2区域与模板链F2c结合并进行延伸,之后F3与靶标F3c结合并进行链置换反应,FIP延伸产物被替换释放,释放的单链末端形成环结构(结构3)。BIP和B3以相似的方式进行,生成两端具有环结构的产物5。C:循环放大步骤,结构5以自身为模板,从3°末端F1区域开始自引发DNA合成,同时FIP退火至环状结构中的F2c区域并进行延伸得到结构6。结构6以自身为模板延伸,置换下与结构5互补的产物7。结构7到结构8再到结构5与结构5到结构6再到结构7类似。结构9和结构10分别由结构6和结构8生成。在环状结构与FIP/BIP引物的共同作用下生成含有多个重复靶标序列的结构11、12。参考文献[22]修改绘制。 Fig. 3Principle of loop-mediated isothermal amplification
2.1 不同进样方式的LAMP微流控芯片
不同于RPA反应,LAMP无需严格控制反应体系内各组分的加入次序及酶的激活时间,使LAMP微流控芯片的进样方式设计更为容易。因此,除了基于碟式的LAMP微流控芯片[8,29,30]外有更多进样形式可供选择。有研究者利用纸的吸水性进样,可在芯片内完成样本的提取,并通过预载的冻干试剂完成核酸扩增检测反应[31],相对于RPA纸基芯片其集成度更高,整个过程无需额外手动操作,使病原微生物检测更为方便高效。但该类芯片的操作与检测依然为开放式,易产生扩增产物交叉污染,导致假阳性结果。美国加利福尼亚大学伯克利分校Luke P. Lee课题组开发了一款利用真空负压自动进样大的微流控芯片,如图4A所示。该芯片以PDMS为基质,在进样通道及反应室周边设置密闭的真空室,将芯片放置于真空环境中。由于PDMS具有透气性,因此真空室内的空气会逐渐被排空,芯片内部形成负压,由此提供进样动力,同时该芯片反应单元为一个封闭空间,可最大程度防止产物交叉污染的发生[32]。但是由于难以控制负压的大小,使该芯片较难集成样本提取步骤。因此,如何实现无仪器依赖的进样方式是LAMP芯片发展的重要方向,也是实现病原微生物POCT的关键之一。
A:RCA扩增原理,环状模板两端与连接模板退火,并进行连接,使模板成环,之后引物与环状模板退火后经DNA聚合酶进行延伸,最终可得到一条含有多个重复模板序列的长DNA单链。B:RCA微流控芯片,在微流控内壁修饰由适配体,可将大肠杆菌特异性捕获。适配体-引物复合体与被捕获的大肠杆菌结合,引物以环状DNA为模板进行延伸,通过荧光探针对延伸产物进行检测。参考文献[40,42]修改绘制。 Fig. 5Principles of RCA and the microfluidic chip
A:NASBA扩增原理,含有T7序列的引物1与靶RNA杂交,进行逆转录生成DNA,加Rnase使RNA降解,并加入引物2与DNA杂交延伸,生成双链DNA。由双链DNA经T7 RNA 聚合酶进行转录生成RNA。然后进行循环。最终生成大量RNA经荧光探针进行检测。B:NASBA数字化微流控芯片,首先在干净的芯片通入油相填充真个芯片,再加入反应体系,使反应体系填充至每个小室。由于小室底部通道疏水,因此并不会经小室底部的通道流出。最后再通油相封闭主通道,使每个小室独立分隔。形成数字化液滴芯片。参考文献[44]修改绘制。 Fig. 6Principles of NASBA and the microfluidic chip
A:HDA扩增原理,首先双链DNA经解旋酶解旋,单链被单链结合蛋白结合。引物与单链特异性杂交后经聚合酶延伸,最后形成新的双链;B:HDA微流控芯片,芯片内置SPE提取柱、反应单元、废液池,各位置开关阀门可控制液体流向。反应末端为疏水出气孔,可在满足进样的同时防止液体流出。参考文献[55]修改绘制。 Fig. 7Principles of HDA and the microfluidic chip
KhanHA, BaigFK, MehboobR . Nosocomial infections: Epidemiology, prevention, control and surveillance , 2017,7(5):478-482. URL [本文引用: 1]
BuT, HuangQ, YanL, HuangL, ZhangM, YangQ, YangB, WangJ, ZhangD . Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth , 2018,84:536-543. URL [本文引用: 1]
SaikiRK, ScharfS, FaloonaF, MullisKB, HornGT, ErlichHA, ArnheimN . Enzymatic amplification of beta- globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia , 1985,230(4732):1350-1354. URL [本文引用: 1]
SaingamP, LiB, YanT . Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples , 2018,149:73-79. URL [本文引用: 1]
WangM, YangJ, GaiZ, HuoS, ZhuJ, LiJ, WangR, XingS, ShiG, ShiF, ZhangL . Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk , 2018,266:251-256. URL [本文引用: 1]
ChenJW, ShaoN, ZhangYC, ZhuYS, YangLT, TaoSC . A visual multiplex PCR microchip with easy sample loading Hereditas(Beijing), 2017,39(6):525-534. [本文引用: 1]
MartzyR, KolmC, KrskaR, MachRL, FarnleitnerAH, ReischerGH . Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis , 2019,411(9):1695-1702. [本文引用: 1]
ZhangL, TianF, LiuC, FengQ, MaT, ZhaoZ, LiT, JiangX, SunJ . Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids , 2018,18(4):610-619. URL [本文引用: 3]
PiepenburgO, WilliamsC, StempleD, ArmesNA . DNA detection using recombination proteins , 2006,4(7):e204. URL [本文引用: 6]
MaYD, LuoK, ChangWH, LeeGB . A microfluidic chip capable of generating and trapping emulsion droplets for digital loop-mediated isothermal amplification analysis , 2018,18(2):296-303. URL [本文引用: 2]
ChoiG, JungJH, ParkBH, OhSJ, SeoJH, ChoiJS, Kim doH, SeoTS . A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria , 2016,16(12):2309-2316. URL [本文引用: 3]
ChenJ, XuY, YanH, ZhuY, WangL, ZhangY, LuY, XingW . Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification , 2018,18(16):2441-2452. URL [本文引用: 2]
RohrmanBA, Richards-KortumRR . A paper and plastic device for performing recombinase polymerase amplification of HIV DNA , 2012,12(17):3082-3088. URL [本文引用: 1]
ZengJ, ZhangS, TangK, ChenG, YuanW, TangY . 3-D manipulation of a single nano-droplet on graphene with an electrowetting driving scheme: critical condition and tunability , 2018,10(34):16079-16086. URL [本文引用: 1]
KimTH, ParkJ, KimCJ, ChoYK . Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens , 2014,86(8):3841-3848. URL [本文引用: 2]
SongSW, KimSD, OhDY, LeeY, LeeAC, JeongY, BaeHJ, LeeD, LeeS, KimJ, KwonS . High‐throughput screening: one‐step generation of a drug‐releasing hydrogel microarray‐on‐a‐chip for large‐scale sequential drug combination Screening , 2019,6(3):1801380. URL [本文引用: 1]
KuanCP, ChangWS, YangTC . Use of fluorescent microsphere-based assay for detection of three Cucurbit- Infecting viruses , 2018,102(11):2324-2329. URL [本文引用: 1]
HuangH, JinL, YangX, SongQ, ZouB, JiangS, SunL, ZhouG . An internal amplification control for quantitative nucleic acid analysis using nanoparticle-based dipstick biosensors , 2013,42:261-266. URL [本文引用: 1]
SreejithKR, OoiCH, JinJ, DaoDV, NguyenNT . Digital polymerase chain reaction technology-recent advances and future perspectives , 2018,18(24):3717-3732. URL [本文引用: 1]
FengS, DavydovaEK, DuW, KreutzJE, PiepenburgO, IsmagilovRF . Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip , 2011,83(9):3533-3540. URL [本文引用: 1]
NotomiT, OkayamaH, MasubuchiH, YonekawaT, WatanabeK, AminoN, HaseT . Loop-mediated isothermal amplification of DNA , 2000,28(12):E63. URL [本文引用: 3]
NagamineK, HaseT, NotomiT . Accelerated reaction by loop-mediated isothermal amplification using loop primers , 2002,16(3):223-229. URL [本文引用: 1]
SinghR, SinghDP, SavargaonkarD, SinghOP, BhattRM, ValechaN . Evaluation of SYBR green I based visual loop-mediated isothermal amplification (LAMP) assay for genus and species-specific diagnosis of malaria in P. vivax and P. falciparum endemic regions , 2017,54(1):54-60. [本文引用: 1]
FangX, LiuY, KongJ, JiangX . Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens , 2010,82(7):3002-3006. URL [本文引用: 3]
ArimatsuY, KaewkesS, LahaT, SripaB . Specific diagnosis of opisthorchis viverrini using loop-mediated isothermal amplification (LAMP) targeting parasite microsatellites , 2015,141(Pt B):368-371. URL [本文引用: 1]
KaarjK, AkarapipadP, YoonJY . Simpler, faster, and sensitive zika virus assay using smartphone detection of Loop-mediated Isothermal amplification on paper microfluidic chips , 2018,8(1):12438. [本文引用: 2]
LuY, MaX, WangJ, ShengN, DongT, SongQ, RuiJ, ZouB, ZhouG . Visualized detection of single-base difference in multiplexed loop-mediated isothermal amplification amplicons by invasive reaction coupled with oligonucleotide probe-modified gold nanoparticles , 2016,90:388-393. [本文引用: 1]
ParkBH, OhSJ, JungJH, ChoiG, SeoJH, KimDH, LeeEY, SeoTS . An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics , 2016,91:334-340. [本文引用: 1]
PangB, FuK, LiuY, DingX, HuJ, WuW, XuK, SongX, WangJ, MuY, ZhaoC, LiJ . Development of a self-priming PDMS/paper hybrid microfluidic chip using mixed-dye-loaded loop-mediated isothermal amplification assay for multiplex foodborne pathogens detection , 2018,1040:81-89. URL [本文引用: 1]
ZhiX, DengM, YangH, GaoG, WangK, FuH, ZhangY, ChenD, CuiD . A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors , 2013,54:372-377. [本文引用: 2]
HsiehK, PattersonAS, FergusonBS, PlaxcoKW, SohHT . Rapid, sensitive, and quantitative detection of pathogenic dna at the point of care through microfluidic electrochemical quantitative Loop‐Mediated Isothermal amplification , 2012,51(20):4896-4900. URL [本文引用: 1]
MaYD, ChangWH, LuoK, WangCH, LiuSY, YenWH, LeeGB . Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane , 2017,99:547-554. [本文引用: 1]
BanérJ, NilssonM, Mendel-HartvigM, LandegrenU . Signal amplification of padlock probes by rolling circle replication , 1998,26(22):5073-5078. URL [本文引用: 1]
AliMM, LiF, ZhangZ, ZhangK, KangDK, AnkrumJA, LeXC, ZhaoW . Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine , 2014,43(10):3324-3341. URL [本文引用: 1]
ZouB, MaY, WuH, ZhouG . Signal amplification by rolling circle amplification on universal flaps yielded from target-specific invasive reaction , 2011,137(3):729-734. [本文引用: 1]
JiangY, ShanZ, CaoX . A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification , 2017,251:976-984. URL [本文引用: 1]
WangJ, KreutzJE, ThompsonAM, QinY, SheenAM, WangJ, WuL, XuS, ChangM, RaugiDN, SmithRA, GottliebGS . SD-chip enabled quantitative detection of HIV RNA using digital nucleic acid sequence-based amplification (dNASBA) , 2018,18(22):3501-3506. URL [本文引用: 3]
BrinkAA, VervoortMB, MiddeldorpJM, MeijerCJ, van den BruleAJ . Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR , 1998,36(11):3164-3169. [本文引用: 1]
ClancyE, CoughlanH, HigginsO, BooTW, CormicanM, BarrettL, SmithTJ, ReddingtonK, BarryT . Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis , 2016,127:197-202. URL [本文引用: 1]
MotréA, LiY, KongH . Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase , 2008,420(1):17-22. URL [本文引用: 1]
MaF, LiuM, TangB, ZhangCY . Sensitive quantification of microRNAs by isothermal helicase-dependent amplification , 2017,89(11):6182-6187. URL [本文引用: 1]
BarbieriD, VenturoliS, RöslF, Rincon-OrozcoB . Detection of high-risk human papillomavirus type 16 and 18 using isothermal helicase-dependent amplification , 2014,79(2):178-182. URL [本文引用: 1]
MaF, LiuWJ, ZhangQ, ZhangCY . Sensitive detection of microRNAs by duplex specific nuclease-assisted target recycling and pyrene excimer switching , 2017,53(76):10596-10599. URL [本文引用: 1]
TongY, TangW, KimHJ, PanX, RanalliTA, KongH . Development of isothermal TaqMan assays for detection of biothreat organisms , 2008,45(5):543-557. URL [本文引用: 1]
MahalanabisM, DoJ, AlmuayadH, ZhangJY, KlapperichCM . An integrated disposable device for DNA extraction and helicase dependent amplification , 2010,12(2):353-359. URL [本文引用: 2]