删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施肥对紫色土农田土壤有机碳损失过程的影响

本站小编 Free考研考试/2022-01-01

沈姣1, 2,,
王小国1,,,
马晗1, 2
1.中国科学院山地表生过程与生态调控重点实验室/中国科学院水利部成都山地灾害与环境研究所 成都 610041
2.中国科学院大学 北京 100049
基金项目:国家重点研发计划项目(2017YFD0800505)资助

详细信息
作者简介:沈姣, 主要研究方向为土壤碳循环。E-mail: 1278035438@qq.com
通讯作者:王小国, 主要研究方向为土壤学、生态系统生物地球化学循环。E-mail: xgwang@imde.ac.cn
中图分类号:X51; X53

计量

文章访问数:70
HTML全文浏览量:16
PDF下载量:19
被引次数:0
出版历程

收稿日期:2021-03-05
录用日期:2021-04-01
网络出版日期:2021-07-26
刊出日期:2021-09-06

Effect of fertilizer application on soil carbon loss in purple soil

SHEN Jiao1, 2,,
WANG Xiaoguo1,,,
MA Han1, 2
1. Key Laboratory of Mountain Surface Growth and Ecological Regulation, Chinese Academy of Sciences / Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds:This study was supported by the National Key Research and Development Project of China (2017YFD0800505)

More Information
Corresponding author:E-mail: xgwang@imde.ac.cn


摘要
HTML全文
(8)(2)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农田土壤有机碳气体交换与径流损失的研究大都相对孤立, 对二者之间的同步观测研究较少。本文利用紫色土坡地可测壤中流的径流小区, 开展了不同施肥处理下紫色土农田土壤有机碳土-气交换和土-水界面迁移过程的同步观测试验。试验处理包括: 无肥对照(CK)、常规氮磷钾(NPK)、猪厩肥配施氮磷钾(OMNPK)、秸秆配施氮磷钾(RSDNPK)。结果表明: 1)不同施肥处理的土壤异养呼吸速率与通量均呈现: RSDNPK>OMNPK>NPK>CK, 表明施加无机肥、有机肥和秸秆还田均会增加紫色土的土壤CO2排放, 其中秸秆还田配施氮磷钾肥的CO2排放通量为4155.87 kg(C)?hm?2, 显著大于其他施肥处理。2)不同施肥处理的土壤有机碳径流损失通量表现为: RSDNPK>OMNPK>CK>NPK, 径流损失途径也存在差异, 与CK相比, RSDNPK处理在降低紫色土泥沙损失通量的同时, 显著增加了壤中流可溶性有机碳(DOC)损失通量, 达8.29 kg(C)?hm?2, 各施肥处理的壤中流DOC损失通量占径流碳损失总通量的49.82%~92.11%, 说明壤中流DOC损失是紫色土有机碳径流损失的主要方式。3) RSDNPK处理的土壤有机碳损失总通量显著大于其他施肥处理, OMNPK与NPK处理的总通量没有显著差异; 各施肥处理的CO2排放通量占总通量的比例均大于99%, 说明气态损失是紫色土有机碳损失的主要途径。4)本文计算了不同施肥处理的单位产量碳损失通量, 将作物经济效益与生态环境负荷相结合, 结果表明CK的单位产量碳损失通量显著大于其他3个施肥处理。OMNPK处理的土壤有机碳含量为5.86 g?kg?1, 大于NPK处理, 说明施加有机肥有利于土壤有机碳的积累, 因此在紫色土地区可以优先考虑施加有机肥配施氮磷钾肥。
关键词:施肥/
紫色土/
CO2排放通量/
可溶性有机碳/
地表径流/
壤中流
Abstract:Studies on organic carbon gas exchange and runoff loss in farmland soil are relatively isolated, and the synergy between the two pathways is poorly understood. In this study, simultaneous tests of organic carbon gas exchange and soil–water interface migration process of purple soil under different fertilization treatments were conducted using a runoff plot that allowed interflow observation. The experimental treatments included no fertilizer (CK), chemical fertilizer (nitrogen, phosphorus, and potassium; NPK), pig manure plus synthetic NPK fertilizer (OMNPK), and the incorporation of crop residues plus synthetic NPK fertilizer (RSDNPK). The results showed that 1) the soil respiration rate and carbon dioxide (CO2) emission flux under different fertilization treatments were RSDNPK > OMNPK > NPK > CK, indicating that the application of chemical fertilizer, organic fertilizer, and straw returning increased the soil respiration rate of purple soil. The CO2 emission flux of RSDNPK was 4155.87 kg(C)?hm?2, significantly higher than those of the other fertilization treatments. 2) The soil organic carbon runoff loss flux was in the order of RSDNPK > OMNPK > CK > NPK, and there were differences in the runoff loss pathways under different fertilization treatments. RSDNPK reduced sediment erosion and significantly increased the flux of dissolved organic carbon (DOC) loss in the interflow, reaching 8.29 kg(C)?hm?2. The DOC loss flux of the interflow accounted for 49.82%–92.11% of the total runoff carbon loss flux under different fertilization treatments, indicating that interflow was the main pathway of soil organic carbon loss in purple soil. 3) The total fluxes of soil organic carbon loss under RSDNPK were significantly higher than those under other fertilization treatments, which was not significantly different between OMNPK and NPK. The proportion of CO2 emission fluxes to the total fluxes was more than 99% in each fertilization treatment, indicating that gaseous loss was the main mechanism of organic carbon loss in purple soil. 4) We calculated the carbon loss flux per unit yield for each fertilization treatment and combined the economic benefits with the ecological environmental load. The results showed that the carbon loss flux per unit yield in CK was significantly higher than that in other fertilization treatments. The soil organic carbon content of the OMNPK treatment was 5.86 g?kg?1, greater than that of NPK, indicating that organic fertilizer application is beneficial to the accumulation of soil organic carbon. OMNPK should thus be prioritized in the purple soil area.
Key words:Fertilization/
Purple soil/
CO2 emission flux/
Dissolved organic carbon/
Surface flow/
Interflow

HTML全文


图1紫色土坡地土壤有机碳气态损失过程和径流损失过程的同步观测试验小区示意图[11]
Figure1.Schematic diagram of simultaneous observation experiment plot for gaseous loss process and runoff loss process of soil organic carbon of purple soil slope[11]


下载: 全尺寸图片幻灯片


图2不同施肥处理的紫色土异养呼吸速率动态
各处理说明见表1。Description of each treatment is shown in the table 1.
Figure2.Dynamics of soil heterotrophic respiration rates under different fertilization treatments


下载: 全尺寸图片幻灯片


图3不同施肥处理的历次产流事件的径流深
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels among different fertilization treatments.
Figure3.Runoff depth of every runoff event under different fertilization treatments


下载: 全尺寸图片幻灯片


图4历次产流事件中不同施肥处理的产沙特征和泥沙有机碳通量(图柱为泥沙有机碳通量, 曲线为泥沙浓度)
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels among different fertilization treatments.
Figure4.Characteristics of sediment yield and total organic carbon (TOC) flux in each runoff event under different fertilization treatments (in the figure, the columns show the TOC fluxes, and the curves show the sediment concentrations)


下载: 全尺寸图片幻灯片


图5历次产流事件中不同施肥处理的可溶性有机碳(DOC)迁移浓度及损失通量(图柱为DOC通量, 曲线为DOC浓度)
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels among different fertilization treatments.
Figure5.Concentrations and amounts of dissolved organic carbon (DOC) in surface flow and interflow in each runoff event under different fertilization treatments (in the figure, the columns show the DOC flux, and the curves show the DOC concentrations)


下载: 全尺寸图片幻灯片


图6不同施肥处理的玉米产量
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels between different fertilization treatments.
Figure6.Maize yield under different fertilization treatments


下载: 全尺寸图片幻灯片


图7各施肥处理总有机碳(TOC)和可溶性有机碳(DOC)的径流损失途径及其通量
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels among different fertilization treatments.
Figure7.Pathways and amounts of soil total organic carbon (TOC) and dissolved organic carbon (DOC) loss under different fertilization treatments


下载: 全尺寸图片幻灯片


图8不同施肥处理的单位产量碳损失通量(A)和土壤有机碳含量(B)
各处理说明见表1, 图中不同字母表示不同施肥处理间在P<0.05水平差异显著。Description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 levels among different fertilization treatments.
Figure8.Carbon loss fluxes per unit crop yield (A) and soil organic carbon content (B) under different fertilization treatments


下载: 全尺寸图片幻灯片

表1各处理的肥料类型及用量
Table1.Fertilizer types and application rates of each treatment
处理 Treatment猪厩肥 Pig slurry (t?hm?2)秸秆 Crop residue (t?hm?2)化肥 Mineral fertilizer (kg?hm?2)
NP2O5K2O
CK
NPK1509036
OMNPK3.4 909036
RSDNPK4.91209036
猪粪肥和秸秆的全氮含量分别为1.7%和0.6%。The total nitrogen contents of pig slurry and crop residue are 1.7% and 0.6%, respectively.


下载: 导出CSV
表2不同施肥处理的土壤有机碳损失途径及通量
Table2.Pathways and amounts of soil organic carbon loss under different fertilization treatments
处理
Treatment
有机碳气态损失通量
Organic carbon gaseous loss flux [kg(C)?hm?2]
有机碳气态损失
占总量比例
Proportion of gaseous loss of organic carbon (%)
有机碳径流损失通量
Flux of organic carbon runoff loss [kg(C)?hm?2]
有机碳径流损失
占总量比例
Proportion of organic carbon runoff loss (%)
有机碳损失总量
Total fluxes of organic carbon loss [kg(C)?hm?2]
CK1575.36±101.05c99.576.85±0.38bc0.431582.21±100.86c
NPK2181.82±106.55b99.735.87±0.31c 0.272187.69±106.72b
OMNPK2423.47±126.46b99.668.15±1.42ab0.342431.63±126.39b
RSDNPK4155.87±422.66a99.789.01±0.34a 0.224164.87±422.49a
  各处理说明见表1。数据是平均值±标准差, 同列不同小写字母表示各处理差异显著(P<0.05)。Description of each treatment is shown in the table 1. Data is mean ± standard deviation, and different lowercase letters in the same column indicate significant differences among different fertilization treatments (P<0.05)。


下载: 导出CSV

参考文献(28)
[1]郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 2011, 56(26): 2162?2173 doi: 10.1360/csb2011-56-26-2162
ZHENG J F, CHENG K, PAN G X, et al. Perspectives on studies on soil carbon stocks and carbon sequestration potential of China[J]. Chinese Science Bulletin, 2011, 56(26): 2162?2173 doi: 10.1360/csb2011-56-26-2162
[2]HUA K K, ZHU B, WANG X G. Soil organic carbon loss from carbon dioxide and methane emissions, as well as runoff and leaching on a hillslope of Regosol soil in a wheat-maize rotation[J]. Nutrient Cycling in Agroecosystems, 2015, 103(1): 75?86 doi: 10.1007/s10705-015-9722-5
[3]周运来, 张振华, 钱晓晴, 等. 施肥方式对土壤CO2释放的影响及其机理研究进展[J]. 江苏农业学报, 2016, 32(2): 472?480 doi: 10.3969/j.issn.1000-4440.2016.02.036
ZHOU Y L, ZHANG Z H, QIAN X Q, et al. Research progress in soil CO2 emission affected by fertilization modes and its mechanism[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(2): 472?480 doi: 10.3969/j.issn.1000-4440.2016.02.036
[4]陈涛, 郝晓晖, 杜丽君, 等. 长期施肥对水稻土土壤有机碳矿化的影响[J]. 应用生态学报, 2008, 19(7): 1494?1500
CHEN T, HAO X H, DU L J, et al. Effects of long-term fertilization on paddy soil organic carbon mineralization[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1494?1500
[5]花可可. 紫色土坡耕地土壤固碳机制研究[D]. 北京: 中国科学院大学, 2013
HUA K K. Mechanisms of soil organic carbon sequestration on sloping cropland of purple soil[D]. Beijing: University of Chinese Academy of Sciences, 2013
[6]贾松伟, 贺秀斌, 陈云明, 等. 黄土丘陵区土壤侵蚀对土壤有机碳流失的影响研究[J]. 水土保持研究, 2004, 11(4): 88?90 doi: 10.3969/j.issn.1005-3409.2004.04.019
JIA S W, HE X B, CHEN Y M, et al. Effect of soil erosion on soil organic carbon loss on the loess hilly areas[J]. Research of Soil and Water Conservation, 2004, 11(4): 88?90 doi: 10.3969/j.issn.1005-3409.2004.04.019
[7]肖胜生, 汤崇军, 王凌云, 等. 自然降雨条件下红壤坡面有机碳的选择性迁移[J]. 土壤学报, 2017, 54(4): 874?884
XIAO S S, TANG C J, WANG L Y, et al. Soil erosion-induced selective transfer of organic carbon in red soil slope field under natural rainfall[J]. Acta Pedologica Sinica, 2017, 54(4): 874?884
[8]聂小东, 李忠武, 王晓燕, 等. 雨强对红壤坡耕地泥沙流失及有机碳富集的影响规律研究[J]. 土壤学报, 2013, 50(5): 900?908
NIE X D, LI Z W, WANG X Y, et al. Effect of rainfall intensity on soil loss from slope farmland of red soil and organic carbon enrichment in sediment[J]. Acta Pedologica Sinica, 2013, 50(5): 900?908
[9]熊子怡, 郑杰炳, 王丹, 等. 不同施肥条件下紫色土旱坡地可溶性有机碳流失特征[J]. 环境科学, 2021, 42(2): 967?976
XIONG Z Y, ZHENG J B, WANG D, et al. Characteristics of dissolved organic carbon loss in purple soil sloping fields with different fertilization treatments[J]. Environmental Science, 2021, 42(2): 967?976
[10]汪涛, 朱波, 罗专溪, 等. 紫色土坡耕地硝酸盐流失过程与特征研究[J]. 土壤学报, 2010, 47(5): 962?970 doi: 10.11766/trxb200904130168
WANG T, ZHU B, LUO Z X, et al. Nitrate loss from sloping cropland of purple soil[J]. Acta Pedologica Sinica, 2010, 47(5): 962?970 doi: 10.11766/trxb200904130168
[11]朱波, 周明华, 况福虹, 等. 紫色土坡耕地氮素淋失通量的实测与模拟[J]. 中国生态农业学报, 2013, 21(1): 102?109
ZHU B, ZHOU M H, KUANG F H, et al. Measurement and simulation of nitrogen leaching loss in hillslope cropland of purple soil[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 102?109
[12]史书, 木志坚, 吴波, 等. 长期不同施肥处理对稻-麦轮作紫色土稻季CO2排放的影响[J]. 西南大学学报: 自然科学版, 2015, 37(7): 16?22
SHI S, MU Z J, WU B, et al. Effects of different treatments of long-term fertilization on carbon dioxide emission from paddy fields with purple soil[J]. Journal of Southwest University: Natural Science Edition, 2015, 37(7): 16?22
[13]道力格亚. 长期不同施肥处理下旱地CO2和CH4排放特征的研究[D]. 杨凌: 西北农林科技大学, 2018
DAOLIGEYA. Emission characteristics of CO2 and CH4 on dryland under different long-term fertilizations[D]. Yangling: Northwest A & F University, 2018
[14]张庆忠, 吴文良, 王明新, 等. 秸秆还田和施氮对农田土壤呼吸的影响[J]. 生态学报, 2005, 25(11): 2883?2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
ZHANG Q Z, WU W L, WANG M X, et al. The effects of crop residue amendment and N rate on soil respiration[J]. Acta Ecologica Sinica, 2005, 25(11): 2883?2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
[15]井大炜, 邢尚军. 鸡粪与化肥不同配比对杨树苗根际土壤酶和微生物量碳、氮变化的影响[J]. 植物营养与肥料学报, 2013, 19(2): 455?461 doi: 10.11674/zwyf.2013.0223
JING D W, XING S J. Effects of chicken manure mixed with inorganic fertilizer on soil enzyme activities, microbial biomass C and N at rhizosphere of poplar seedlings[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 455?461 doi: 10.11674/zwyf.2013.0223
[16]龚伟, 颜晓元, 王景燕. 长期施肥对土壤肥力的影响[J]. 土壤, 2011, 43(3): 336?342
GONG W, YAN X Y, WANG J Y. Effect of long-term fertilization on soil fertility[J]. Soils, 2011, 43(3): 336?342
[17]花可可, 王小国, 朱波. 施肥方式对紫色土土壤异养呼吸的影响[J]. 生态学报, 2014, 34(13): 3602?3611
HUA K K, WANG X G, ZHU B. Impacts of fertilization regimes on soil heterotrophic respiration of purple soil[J]. Acta Ecologica Sinica, 2014, 34(13): 3602?3611
[18]DRINKWATER L E, WAGONER P, SARRANTONIO M. Legume-based cropping systems have reduced carbon and nitrogen losses[J]. Nature, 1998, 396(6708): 262?265 doi: 10.1038/24376
[19]贾伟, 周怀平, 解文艳, 等. 长期秸秆还田秋施肥对褐土微生物碳、氮量和酶活性的影响[J]. 华北农学报, 2008, 23(2): 138?142 doi: 10.7668/hbnxb.2008.02.031
JIA W, ZHOU H P, XIE W Y, et al. Effects of long-term returning corn stalks to the field combined with applying fertilizer in autumn on microbial biomass C, N and enzyme activity in cinnamon soil[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(2): 138?142 doi: 10.7668/hbnxb.2008.02.031
[20]李玮, 张佳宝, 张丛志. 秸秆还田方式和氮肥类型对黄淮海平原夏玉米土壤呼吸的影响[J]. 中国生态农业学报, 2012, 20(7): 842?849 doi: 10.3724/SP.J.1011.2012.00842
LI W, ZHANG J B, ZHANG C Z. Effects of straw incorporation and N fertilization on soil respiration during maize (Zea mays L.) growth in Huanghuaihai Plain[J]. Chinese Journal of Eco-Agriculture, 2012, 20(7): 842?849 doi: 10.3724/SP.J.1011.2012.00842
[21]ZHU B, WANG T, KUANG F H, et al. Measurements of nitrate leaching from a hillslope cropland in the central Sichuan basin, China[J]. Soil Science Society of America Journal, 2009, 73(4): 1419?1426 doi: 10.2136/sssaj2008.0259
[22]JIN K, CORNELIS W M, GABRIELS D, et al. Residue cover and rainfall intensity effects on runoff soil organic carbon losses[J]. CATENA, 2009, 78(1): 81?86 doi: 10.1016/j.catena.2009.03.001
[23]寇青青. 生物炭对紫色土水分下渗及再分布过程影响研究[D]. 重庆: 西南大学, 2019
KOU Q Q. Effect of biochar on water infiltration and redistribution process of purple soil[D]. Chongqing: Southwest University, 2019
[24]于维忠. 论流域产流[J]. 水利学报, 1985, (2): 1–11
YU W Z. On mechanism of runoff-generation in watershed [J]. Journal of Hydraulic Engineering, 1985, (2): 1–11
[25]ZHOU H, PENG X H, DARBOUX F. Effect of rainfall kinetic energy on crust formation and interrill erosion of an ultisol in subtropical China[J]. Vadose Zone Journal, 2013, 12(4): vzj2013.01.0010 doi: 10.2136/vzj2013.01.0010
[26]张越, 王创云, 邓妍, 等. 不同施肥处理对玉米光合特性及产量形成的影响[J]. 山西农业科学, 2015, 43(4): 430?433, 438 doi: 10.3969/j.issn.1002-2481.2015.04.17
ZHANG Y, WANG C Y, DENG Y, et al. Effects of different fertilization treatments on photosynthetic characteristics and yield formation of maize[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(4): 430?433, 438 doi: 10.3969/j.issn.1002-2481.2015.04.17
[27]劳秀荣, 孙伟红, 王真, 等. 秸秆还田与化肥配合施用对土壤肥力的影响[J]. 土壤学报, 2003, 40(4): 618?623 doi: 10.3321/j.issn:0564-3929.2003.04.020
LAO X R, SUN W H, WANG Z, et al. Effect of matching use of straw and chemical fertilizer on soil fertility[J]. Acta Pedologica Sinica, 2003, 40(4): 618?623 doi: 10.3321/j.issn:0564-3929.2003.04.020
[28]ZHOU M H, ZHU B, WANG X G, et al. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system[J]. Soil Biology and Biochemistry, 2017, 115: 21?34 doi: 10.1016/j.soilbio.2017.08.005

相关话题/土壤 过程 图片 生态 观测