李慧,
邓明江,
柴小粉,
韩振海,
王忆,
中国农业大学园艺学院 北京 100193
基金项目: 国家重点研发计划专项2016YFD0201100
国家现代农业产业技术体系建设专项资金项目CARS-27
详细信息
通讯作者:王忆, 主要研究果树逆境生理与分子生物学。E-mail: wangyi@cau.edu.cn
中图分类号:S661.1计量
文章访问数:106
HTML全文浏览量:23
PDF下载量:20
被引次数:0
出版历程
收稿日期:2020-09-24
录用日期:2021-04-21
刊出日期:2021-08-01
Influence of apple grafting combinations on carbon storage in orchards
LYU Jiahong,LI Hui,
DENG Mingjiang,
CHAI Xiaofen,
HAN Zhenhai,
WANG Yi,
College of Horticulture, China Agricultural University, Beijing 100193, China
Funds: the Special Fund for the National Key Research and Development Project of China2016YFD0201100
the Industrial System Construction of Modern Agriculture of ChinaCARS-27
More Information
Corresponding author:WANG Yi, E-mail: wangyi@cau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:作为一种重要的农用植被类型,果园在我国陆地生态系统碳汇评价中占有重要的地位,其碳储量及其碳汇经济价值的估算是全球碳循环研究的重要内容。本研究以山定子、八棱海棠、平邑甜茶3种苹果砧木与‘富士’‘金冠’2种苹果接穗嫁接组成的6种砧穗组合为试验材料,分别对其植株、土壤、枯落物进行碳储量分析,对系统单位面积苹果树的碳储量汇总,探究不同砧穗组合土壤-植被系统固碳能力及其差异,为理清并进一步提升苹果园碳储量提供理论依据。结果表明:相比于其他组织,苹果根含碳率高;各器官中树干生物量最高,占总生物量的33.89%~47.95%。不同器官的碳储量差异较大,表现为树干>树枝>根,且树干碳储量占植株碳储量的38%以上。对各砧穗组合植株碳储量比较发现,同种砧木、不同接穗的砧穗组合间,植株碳储量差异显著,以山定子、平邑甜茶为砧木时,‘富士’为接穗的组合显著高于‘金冠’为接穗的组合;同种接穗不同砧木间植株碳储量差异不显著。而对各砧穗组合枯落物碳储量比较发现,同种砧木不同接穗间差异显著,以‘富士’为接穗的砧穗组合显著高于‘金冠’为接穗的组合;同种接穗不同砧木间,以山定子为砧木的砧穗组合枯落物碳储量显著高于八棱海棠和平邑甜茶,后两者间无显著差异。0~20 cm土壤的碳储量(57.86~80.91 t·hm-2)显著高于20~40 cm(20.15~25.97 t·hm-2)、40~60 cm(11.54~14.62 t·hm-2)及60~100 cm(17.41~33.98 t·hm-2)土层。‘金冠’/山定子砧穗组合单位面积碳储量值最高;各砧穗组合碳储量经济价值差异不大,平均17.084万元·hm-2。
关键词:苹果/
砧穗组合/
生物量/
碳储量
Abstract:Orchard ecosystems are an important form of agriculture that plays a significant role in the carbon sink of terrestrial ecosystems in China. Estimating carbon sequestration and economic value of orchards is a central part of global carbon cycle research. In this study, six orthogonal combinations of three stock species (Malus micromalus, M. baccata, and M. hupehensis) and two scions of apple cultivars ('Fuji' and 'Golden Delicious') were examined for the carbon storage in the vegetation layers, soil, and litter of apple orchard. Carbon storage in the orchard ecosystems was summarized, and the carbon sequestration capacities of different soil-vegetation systems were explored. This work provides a theoretical basis for improving the carbon storage of apple orchards. The results showed that, compared with other tissues, the roots had the highest carbon content, while the trunk biomass was the highest among all organs biomasses, accounting for 33.89% to 47.95% of the total biomass. The carbon storage of each organ was different and in the sequence of trunk > branches > root. Carbon storage in the trunk accounted for more than 38% of the whole plant. When comparing the plant carbon storage of each combination, there were significant differences between scions. When M. baccata and M. hupehensis were used as stocks, the combination with 'Fuji' as the scion was significantly higher than that with 'Golden Delicious'. Comparison of the litter carbon storage in the various stocks and scions showed significant differences between different scions of the same stock; the stock combination with 'Fuji' was significantly higher than the combination with 'Golden Delicious'. Carbon storage in the litter indicated that there were significant differences in carbon storage among stocks. Carbon storage in the litter of combinations with M. baccata as the stock was significantly higher than in the combinations with M. micromalus and M. hupehensis as stocks. However, there were no significant differences between the latter two. Carbon storage in the 0-20 cm soil layer (57.86-80.91 t·hm-2) was significantly higher than that in the 20-40 cm (20.15-25.97 t·hm-2), 40-60 cm (11.54-14.62 t·hm-2), and 60-100 cm (17.41-33.98 t·hm-2) soil layers. 'Golden Delicious'/M. baccata had the highest carbon storage value per area. Moreover, there was little difference in the economic value of carbon storage in each stock combination, with an average of RMB 170.84 thousand Yuan per hectare.
Key words:Apple/
Grafting combination/
Biomass/
Carbon sequestration
HTML全文

图1不同砧穗组合苹果树的植株碳储量
“*”表示接穗品种间在P < 0.05水平差异显著, “ns”表示砧木类型间无显著差异。
Figure1.Plant carbon storage of apple trees of each graft combinations
"*" indicates significant differences between scion cultivars at P < 0.05 level; "ns" indicates no significant differences among stock genotypes.


图2不同砧穗组合苹果树的枯落物碳储量
“*”和“**”表示接穗品种间或砧木类型间在P < 0.05和P < 0.01水平差异显著, “ns”表示砧木类型间无显著差异。
Figure2.Carbon storage of litter of apple trees of different grafting combinations
"*" and "**" indicate significant differences among scion cultivars or stock genotypes at P < 0.05 and P < 0.01 levels, respectively; "ns" indicates no significant differences among stock genotypes.

表1不同苹果砧穗组合生长状况
Table1.Growth status of different apple grafting combinations?
接穗品种 Scion cultivar | 砧木类型 Stock genotype | 株高 Plant height | 基径 Trunk diameter | 冠幅 Mean crown width |
富士 Fuji | 八棱海棠Malus micromalus | 462.33±18.37a | 11.27±1.29abc | 340.51±26.54a |
山定子Malus baccata | 468.67±23.1a | 11.52±0.58ab | 377.50±28.94a | |
平邑甜茶Malus hupehensis | 432.33±21.67a | 12.21±0.66a | 372.50±16.20a | |
金冠 Golden Delicious | 八棱海棠Malus micromalus | 471.33±14.64a | 10.16±0.44bcd | 377.83±35.77a |
山定子Malus baccata | 478.00±7.48a | 9.89±0.13cd | 290.61±14.36 a | |
平邑甜茶Malus hupehensis | 440.33±26.74a | 9.61±0.42d | 302.00±20.82a | |
不同小写字母表示不同砧穗组合间在P < 0.05水平差异显著。Different lowercase letters indicate significant differences among different grafting combinations at P < 0.05. |

表2不同砧穗组合苹果树各器官平均生物量和含碳率
Table2.Average biomass and carbon content of each organ of apple trees of different grafting combinations
接穗品种 Scion cultivar | 砧木类型 Stock genotype | 生物量Biomass (kg) | 含碳率Carbon content (g·kg-1) | |||||
树干 Trunk | 树枝 Branches | 根系 Root | 树干 Trunk | 树枝 Branches | 根系 Root | |||
富士 Fuji | 八棱海棠Malus micromalus | 25.57±5.45a | 13.20±1.75ab | 14.55±1.17ab | 41.77±0.35c | 42.71±3.17a | 44.47±1.04a | |
山定子Malus baccata | 23.60±2.59ab | 16.50±2.27a | 17.67±2.76ab | 42.66±0.20abc | 42.82±1.29a | 44.19±0.58a | ||
平邑甜茶Malus hupehensis | 26.27±1.98a | 18.64±2.95a | 18.90±4.04a | 42.46±1.00bc | 41.92±0.86a | 44.76±0.55a | ||
金冠 Golden Delicious | 八棱海棠Malus micromalus | 22.50±4.82ab | 15.71±4.30ab | 13.15±2.04ab | 42.08±0.39c | 43.47±1.06a | 44.52±0.63a | |
山定子Malus baccata | 19.27±4.50ab | 13.90±1.42ab | 16.92±2.65ab | 43.10±0.47ab | 42.56±0.45a | 45.00±0.75a | ||
平邑甜茶Malus hupehensis | 12.43±3.98ab | 12.28±0.99b | 11.97±1.57b | 43.62±0.32a | 42.65±0.35a | 45.50±0.31a | ||
不同小写字母表示不同砧穗组合间在P < 0.05水平差异显著。Different lowercase letters indicate significant differences among different grafting combinations at P < 0.05 level. |

表3基于基径(X)预测苹果各器官生物量(Y)的模型
Table3.Allometric models for predicting biomass of each organ of apple trees (Y) by diameter (X)
器官Organ | Y=aXb | |||
a | b | R2 | P | |
树干Trunk | 0.6841 | 1.2722 | 0.4344 | 0.0029 |
树枝Branches | 0.0864 | 2.3043 | 0.4838 | 0.0013 |
根系Roots | 0.8503 | 1.2133 | 0.3302 | 0.0126 |
地上部 Aboveground part | 0.9533 | 1.6704 | 0.5889 | 0.0002 |

表4不同砧穗组合苹果树各器官平均碳储量
Table4.Average carbon storage of each organ of apple trees of different grafting combinations?
接穗品种 Scion cultivar | 砧木类型 Stock genotype | 碳储量Carbon storage | 植株碳储量 Carbon storage of plant | ||
树干Trunk | 树枝Branches | 根系root | |||
富士 Fuji | 八棱海棠Malus micromalus | 10.68±2.30a | 5.60±1.07ab | 6.46±0.39a | 22.75±2.16ab |
山定子Malus baccata | 10.07±1.14ab | 7.08±1.11a | 7.82±2.85a | 22.39±2.67a | |
平邑甜茶Malus hupehensis | 11.13±0.57a | 7.20±1.39a | 8.47±1.91a | 26.80±1.57a | |
金冠 Golden Delicious | 八棱海棠Malus micromalus | 9.45±1.93ab | 6.20±1.99ab | 5.80±0.93a | 21.45±4.83ab |
山定子Malus baccata | 8.30±1.91ab | 5.93±0.66ab | 7.62±1.08a | 21.85±0.76ab | |
平邑甜茶Malus hupehensis | 5.43±2.16b | 4.60±0.39b | 5.45±0.75a | 15.47±3.30b | |
不同小写字母表示不同砧穗组合间在P < 0.05水平差异显著。Different lowercase letters indicate significant differences among different grafting combinations at P < 0.05. |

表5不同砧穗组合苹果的不同土层和枯落物碳储量
Table5.Soil carbon storage in different soil layers of apple trees of different grafting combinations?
接穗品种 Scion cultivar | 砧木类型 Stock genotype | 土层Soil layer (cm) | 枯落物 Litter | ||||
0~20 | 20~40 | 40~60 | 60~100 | 合计Tota | |||
富士 Fuji | 八棱海棠Malus micromalus | 57.86±2.79bA | 25.97±0.24aB | 13.10±1.93bC | 30.17±3.56aD | 127.10±1.76abc | 15.28±0.44c |
山定子Malus baccata | 60.38±3.41bA | 22.83±0.77bcC | 17.10±2.37aD | 28.36±1.14aB | 128.72±6.16abc | 26.95±0.79a | |
平邑甜茶Malus hupehensis | 61.43±2.74bA | 20.15±2.019dC | 12.21±0.80bD | 26.70±1.66aB | 120.49±1.41c | 16.57±0.44c | |
金冠 Golden Delicious | 八棱海棠Malus micromalus | 61.94±3.42bA | 24.71±2.56abB | 11.54±1.92bC | 27.45±5.93aB | 125.64±±9.28bc | 20.73±0.54b |
山定子Malus baccata | 63.12±3.07bA | 22.37±1.01cC | 14.62±1.50abD | 33.98±1.04aB | 134.09±±2.56ab | 26.38±0.73a | |
平邑甜茶Malus hupehensis | 80.91±5.55aA | 22.75±0.27cB | 14.60±0.21abC | 17.41±5.58bBC | 135.67±0.73a | 25.94±0.72a | |
不同小写字母表示同一土层不同砧穗组合间在P < 0.05水平差异显著, 不同大写字母表示同一砧穗组合不同土层间在P < 0.05水平差异显著。Different lowercase letters indicate significant differences among different grafting combinations in the same soil layer at P < 0.05 level; different capital letters indicate significant differences among different soil layers for the same grafting combination at P < 0.05 level. |

表6不同砧穗组合苹果树单位面积碳储量及年固碳经济价值
Table6.Carbon reserves and annual carbon-fixing economic values of apple trees of different grafting combinations
砧木品种 Scion cultivar | 接穗类型 Stock genotype | 单位面积碳储量 Carbon storage per unit area (t·hm-2) | 固碳价值 Value of carbon sequestration (×104 ¥·hm-2) | |||||||
土壤 Soil | 植株 Plant | 枯落物 Litter | 系统 System | 土壤 Soil | 树体 Plant | 枯落物 Litter | 系统 System | |||
富士 Fuji | 八棱海棠Malus micromalus | 127.10 | 13.67 | 0.15 | 140.92 | 15.252 | 1.6404 | 0.0180 | 16.910 | |
山定子Malus baccata | 128.72 | 14.97 | 0.27 | 143.96 | 15.446 | 1.7964 | 0.0324 | 17.275 | ||
平邑甜茶Malus hupehensis | 120.49 | 16.46 | 0.17 | 137.12 | 14.459 | 1.9752 | 0.0204 | 16.454 | ||
金冠 Golden Delicious | 八棱海棠Malus micromalus | 125.64 | 13.29 | 0.21 | 139.14 | 15.077 | 1.5948 | 0.0252 | 16.697 | |
山定子Malus baccata | 134.09 | 13.12 | 0.26 | 147.47 | 16.091 | 1.5744 | 0.0312 | 17.696 | ||
平邑甜茶Malus hupehensis | 135.67 | 9.66 | 0.26 | 145.59 | 16.280 | 1.1592 | 0.0312 | 17.471 |

参考文献
[1] | GRIGGS D J, NOGUER M. Climate change 2001: the scientific basis. Contribution of working group Ⅰ to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 2002, 57(8): 267-269 doi: 10.1256/004316502320517344 |
[2] | WALTHER G R, POST E, CONVEY P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389-395 doi: 10.1038/416389a |
[3] | GOOSSE H. Degrees of climate feedback[J]. Nature, 2010, 463(7280): 438-439 doi: 10.1038/463438a |
[4] | BUERMANN W, LINTNER B R, KOVEN C D, et al. The changing carbon cycle at Mauna loa Observatory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4249-4254 doi: 10.1073/pnas.0611224104 |
[5] | GUO Z D, HU H F, LI P, et al. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008[J]. Science in China: Life Sciences, 2013, 56(7): 661-671 doi: 10.1007/s11427-013-4492-2 |
[6] | 李壮, 张彩霞, 李敏, 等. 果园生态系统碳循环规律研究进展[J]. 辽宁农业科学, 2010, (6): 28-31 doi: 10.3969/j.issn.1002-1728.2010.06.008 LI Z, ZHANG C X, LI M, et al. Review of characteristics of carbon circle in orchard ecosystem[J]. Liaoning Agricultural Sciences, 2010, (6): 28-31 doi: 10.3969/j.issn.1002-1728.2010.06.008 |
[7] | 王艳萍, 高吉喜, 冯朝阳, 等. 北京京郊果园施用不同农肥的土壤呼吸特征研究[J]. 浙江大学学报: 农业与生命科学版, 2009, 35(1): 77-83 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200901012.htm WANG Y P, GAO J X, FENG C Y, et al. Soil respiration characteristics of different fertilization types in peach farms in Beijing suburb[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2009, 35(1): 77-83 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200901012.htm |
[8] | SOFO A, NUZZO V, PALESE A M, et al. Net CO2 storage in Mediterranean olive and peach orchards[J]. Scientia Horticulturae, 2005, 107(1): 17-24 doi: 10.1016/j.scienta.2005.06.001 |
[9] | LIGUORI G, GUGLIUZZA G, INGLESE P. Evaluating carbon fluxes in orange orchards in relation to planting density[J]. The Journal of Agricultural Science, 2009, 147(6): 637-645 doi: 10.1017/S002185960900882X |
[10] | RAHMAN H, HOLMES A, SAUNDERS S, et al. Carbon storage in kiwifruit orchards of New Zealand based on a above and below-ground biomass[C]//Fertiliser & Lime Research Centre Workshop. 2010, DOI: 10.13140/2.1.2793.7928 |
[11] | 李正才, 徐德应, 杨校生, 等. 7种不同林农土地利用类型残体的有机碳储量[J]. 浙江林学院学报, 2007, 24(5): 581-586 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX200705015.htm LI Z C, XU D Y, YANG X S, et al. Organic carbon storage in forest debris of seven vegetation cover types[J]. Journal of Zhejiang Forestry College, 2007, 24(5): 581-586 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX200705015.htm |
[12] | LAURI P E, TéROUANNE E, LESPINASSE J M, et al. Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years—an approach to regulation of fruit bearing[J]. Scientia Horticulturae, 1995, 64(4): 265-281 doi: 10.1016/0304-4238(95)00836-5 |
[13] | PALMER J W. Annual dry matter production and partitioning over the first 5 years of a bed system of crispin/M. 27 apple trees at four spacings[J]. The Journal of Applied Ecology, 1988, 25(2): 569 doi: 10.2307/2403845 |
[14] | WU T, WANG Y, YU C J, et al. Carbon sequestration by fruit trees—Chinese apple orchards as an example[J]. PLoS One, 2012, 7(6): e38883 doi: 10.1371/journal.pone.0038883 |
[15] | MARINI R P, SOWERS D S. Peach tree growth, yield, and profitability as influenced by tree form and tree density[J]. HortScience, 2000, 35(5): 837-842 doi: 10.21273/HORTSCI.35.5.837 |
[16] | FORSHEY C G, ELFVING D C. The relationship between vegetative growth and fruiting in apple trees[M]//Horticultural Reviews. Hoboken N J: John Wiley & Sons, Inc., 2011: 229-287 |
[17] | 白保勋, 王希宏, 张根梅, 等. 郑州市主要果树固碳量及其经济价值分析[J]. 上海农业学报, 2015, 31(5): 83-86 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201505020.htm BAI B X, WANG X H, ZHANG G M, et al. Analysis on the carbon fixation and economic value of main fruit trees in Zhengzhou City[J]. Acta Agriculturae Shanghai, 2015, 31(5): 83-86 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201505020.htm |
[18] | 石宗琳, 王益权, 冉艳玲, 等. 渭北苹果园土壤有机碳库变异特征[J]. 土壤学报, 2013, 50(1): 203-207 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201301025.htm SHI Z L, WANG Y Q, RAN Y L, et al. Variation of soil organic carbon pool in apple orchards in Weibei[J]. Acta Pedologica Sinica, 2013, 50(1): 203-207 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201301025.htm |
[19] | 丛佩华. 中国苹果品种[M]. 北京: 中国农业出版社, 2015 CONG P H. Chinese Apple Varieties[M]. Beijing: China Agricultural Press, 2015 |
[20] | FANG J Y, LIU G H, XU S L. Soil carbon pool in China and its global significance[J]. Journal of Environmental Sciences, 1996, 8(2): 249-254 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9612272546&site=ehost-live |
[21] | 刘华, 雷瑞德. 我国森林生态系统碳储量和碳平衡的研究方法及进展[J]. 西北植物学报, 2005, 25(4): 835-843 doi: 10.3321/j.issn:1000-4025.2005.04.036 LIU H, LEI R D. Research methods and advances of carbon storage and balance in forest ecosystems of China[J]. J Acta Botanica Boreali-Occidentalia Sinica, , 2005, 25(4): 835-843 doi: 10.3321/j.issn:1000-4025.2005.04.036 |
[22] | 李元玖, 陈奇伯, 熊好琴, 等. 滇中高原华山松人工林碳储量及固碳释氧效益[J]. 中南林业科技大学学报, 2015, 35(2): 79-84 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201502016.htm LI Y J, CHEN Q B, XIONG H Q, et al. Carbon storage and fixation, oxygen release of Pinus armandii plantations in middle Yunnan plateau, China[J]. Journal of Central South University of Forestry & Technology, 2015, 35(2): 79-84 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201502016.htm |
[23] | 王伟, 师庆东, 许紫峻, 等. 新疆经济林碳汇价值评估[J]. 西北林学院学报, 2018, 33(2): 283-288 doi: 10.3969/j.issn.1001-7461.2018.02.46 WANG W, SHI Q D, XU Z J, et al. Non-timber forest carbon sink value assessment in Xinjiang[J]. Journal of Northwest Forestry University, 2018, 33(2): 283-288 doi: 10.3969/j.issn.1001-7461.2018.02.46 |
[24] | 王哲, 韩玉洁, 康宏樟, 等. 黄浦江上游主要树种水源涵养林生态系统碳储量[J]. 生态学杂志, 2012, 31(8): 1930-1935 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201208008.htm WANG Z, HAN Y J, KANG H Z, et al. Carbon storage of main tree species plantations for water resources conservation in upper reaches of Huangpu River, Shanghai[J]. Chinese Journal of Ecology, 2012, 31(8): 1930-1935 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201208008.htm |
[25] | GOOD R E, GOOD N F. Growth analysis of pitch pine seedlings under three temperature regimes[J]. Forest Science, 1976, 22(4): 445-448 http://www.ingentaconnect.com/content/saf/fs/1976/00000022/00000004/art00017 |
[26] | YEN T M, LEE J S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model[J]. Forest Ecology and Management, 2011, 261(6): 995-1002 doi: 10.1016/j.foreco.2010.12.015 |
[27] | 李燕, 张建国, 段爱国, 等. 杉木人工林生物量估算模型的选择[J]. 应用生态学报, 2010, 21(12): 3036-3046 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201012008.htm LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3036-3046 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201012008.htm |
[28] | 郭雪艳, 蔡婷, 段秀文, 等. 上海主要经果林生态系统碳储量及其分布格局[J]. 生态学杂志, 2013, 32(11): 2881-2885 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201311007.htm GUO X Y, CAI T, DUAN X W, et al. Carbon storage and distribution pattern in main economic fruit forest ecosystems in Shanghai, East China[J]. Chinese Journal of Ecology, 2013, 32(11): 2881-2885 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201311007.htm |
[29] | 马传栋. 生态经济学[M]. 北京: 中国社会科学出版社, 2015 MA C D. Ecological Economics[M]. Beijing: China Social Sciences Press, 2015 |
[30] | 吴晓莲, 程玥晴, 罗友进, 等. 重庆三峡库区柑橘果园系统碳储量及碳汇潜能研究[J]. 西南农业学报, 2014, 27(2): 693-698 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201402042.htm WU X L, CHENG Y Q, LUO Y J, et al. Carbon sequestration and storage of Citrus orchard system in Three Gorges Reservoir region of Chongqing[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(2): 693-698 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201402042.htm |
[31] | 李晓光, 郭凯, 封晓辉, 等. 滨海盐渍区不同土地利用方式土壤-植被系统碳储量研究[J]. 中国生态农业学报, 2017, 25(11): 1580-1590 doi: 10.13930/j.cnki.cjea.170263 LI X G, GUO K, FENG X H, et al. Carbon storage of soil-vegetation system under different land use patterns in saline coastal regions[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1580-1590 doi: 10.13930/j.cnki.cjea.170263 |
[32] | 李壮, 张彩霞, 李敏, 等. 果园生态系统碳循环规律研究进展[J]. 辽宁农业科学, 2010, (6): 28-31 doi: 10.3969/j.issn.1002-1728.2010.06.008 LI Z, ZHANG C X, LI M, et al. Review of characteristics of carbon circle in orchard ecosystem[J]. Liaoning Agricultural Sciences, 2010, (6): 28-31 doi: 10.3969/j.issn.1002-1728.2010.06.008 |
[33] | 闫淑君, 洪伟. 森林碳汇项目产权界定与价值评估的有关问题探讨[J]. 林业工作研究, 2003, (12): 18-26 YAN S J, HONG W. Discussion on issues related to the definition and value evaluation of forest carbon sequestration projects[J]. Forestry Work Research, 2003, (12): 18-26 |
[34] | 季志平, 苏印泉, 贺亮, 等. 秦岭北坡几种人工林根系及土壤有机碳剖面分布特征的研究[J]. 西北植物学报, 2006, 26(10): 2155-2158 doi: 10.3321/j.issn:1000-4025.2006.10.032 JI Z P, SU Y Q, HE L, et al. Root system and organic carbon distributions in soil profiles of several plantations of northern slope of Qinling Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2155-2158 doi: 10.3321/j.issn:1000-4025.2006.10.032 |
[35] | GERON C D, RUARK G A. Comparison of constant and variable allometric ratios for predicting foliar biomass of various tree genera[J]. Canadian Journal of Forest Research, 1988, 18(10): 1298-1304 doi: 10.1139/x88-200 |
[36] | 胡长青, 桂小杰, 徐永新. 湖南省森林生态系统碳汇经济价值初探[J]. 湖南林业科技, 2005, 32(3): 1-6 doi: 10.3969/j.issn.1003-5710.2005.03.001 HU C Q, GUI X J, XU Y X. Valuation of carbon sequestration service of forest ecosystem in Hunan Province[J]. Hunan Forestry Science and Technology, 2005, 32(3): 1-6 doi: 10.3969/j.issn.1003-5710.2005.03.001 |
[37] | 杨美丽, 褚宏洋, 庄皓明, 等. 森林碳汇经济价值评估研究——以山东省为例[J]. 山东农业大学学报: 社会科学版, 2017, 19(2): 77-84 doi: 10.3969/j.issn.1008-8091.2017.02.013 YANG M L, CHU H Y, ZHUANG H M, et al. Research on the economic value of forest carbon sink — Taking Shandong Province as an example[J]. Journal of Shandong Agricultural University: Social Science Edition, 2017, 19(2): 77-84 doi: 10.3969/j.issn.1008-8091.2017.02.013 |
[38] | 张鑫, 李俊梅. 昆明西山森林公园碳汇功能及其经济价值估算[J]. 环境科学与技术, 2010, 33(S2): 559-562 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S2146.htm ZHANG X, LI J M. Evaluation of carbon-sink function and its economic value of Xishan forest park in Kunming[J]. Environmental Science & Technology, 2010, 33(S2): 559-562 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S2146.htm |
[39] | 黄方. 湖南主要森林生态系统碳汇功能经济价值及其生态对策研究[D]. 长沙: 中南林业科技大学, 2007 HUANG F. Research on carbon-sink function economic value and its ecological measure of main forest ecosystems in Hunan[D]. Changsha: Central South University of Forestry & Technology, 2007 |