冯仰强1,,,
董莉霞1,
王钧1,
李广2
1.甘肃农业大学信息科学技术学院 兰州 730070
2.甘肃农业大学林学院 兰州 730070
基金项目: 甘肃省高等学校创新基金项目2020B-121
国家自然科学基金项目31660348
甘肃省自然科学基金项目20JR10RA509
甘肃农业大学科技创新基金项目GAU-STS-2018-12
甘肃农业大学青年导师扶持基金项目GAU-QDFC-2020-13
甘肃省财政专项GSCZZ-20160909
详细信息
作者简介:聂志刚, 主要研究方向为农业生态模型。E-mail: niezg@gsau.edu.cn
通讯作者:冯仰强, 主要研究方向为农业信息化。E-mail: 1826519669@qq.com
中图分类号:S153计量
文章访问数:106
HTML全文浏览量:30
PDF下载量:26
被引次数:0
出版历程
收稿日期:2020-12-29
录用日期:2021-03-31
刊出日期:2021-07-01
Effect of temperature increase on dryland spring wheat yield in different precipitation years
NIE Zhigang1,,FENG Yangqiang1,,,
DONG Lixia1,
WANG Jun1,
LI Guang2
1. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
2. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
Funds: the Innovation Fund of Colleges and Universities in Gansu Province2020B-121
the National Natural Science Foundation of China31660348
the Natural Science Foundation of Gansu Province20JR10RA509
the Science and Technology Innovation Fund of Gansu Agricultural UniversityGAU-STS-2018-12
the Youth Tutor Support Fund of Gansu Agricultural UniversityGAU-QDFC-2020-13
the Special Fiscal Project in Gansu ProvinceGSCZZ-20160909
More Information
Corresponding author:FENG Yangqiang, E-mail: 1826519669@qq.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究不同降水年型下温度升高对黄土丘陵区旱地春小麦产量的影响效应,本研究以甘肃省定西市安定区1979-2018年历史气象数据为基础,运用APSIM模型对不同降水年型下日最高、最低温度在0~2℃范围内耦合变化时旱地春小麦的产量进行模拟,并采用二次多项式回归、单因素分析和通径分析研究了不同降水年型下温度升高对旱地春小麦产量的影响机制。结果表明:在试验设计范围内,不同降水年型下旱地春小麦产量与日最低温度、日最高温度呈开口向上的二次抛物线变化且无阈值出现。日最高温度不变、日最低温度升高对产量呈正效应,其增产效果表现为干旱年>平水年>湿润年,日最低温度每增加0.5℃,最大增产幅度为3.99%;日最低温度不变、日最高温度升高对产量呈负效应,其减产效果表现为干旱年>湿润年>平水年,日最高温度每增加0.5℃,最大减产幅度为9.18%。不同降水年型下温度升高导致了旱地春小麦减产,日最高、最低温度升高对产量存在负交互关系,日最高温度升高带来的减产效应远大于日最低温度升高带来的增产效应。
关键词:APSIM/
旱地春小麦/
产量/
降水年型/
温度
Abstract:Climate change significantly affects crop production. To explore the effects of temperature increase on dryland spring wheat yield in different precipitation years in the hilly regions of the Loess Plateau, this study incorporated the meteorological data of Dingxi City, Gansu Province, from 1979 to 2018. Dryland spring wheat yield was simulated with the Agricultural Production Systems Simulator (APSIM) model when the daily maximum and minimum temperatures changed in the range of 0-2℃ in different precipitation years. Quadratic polynomial regression, single-factor analysis, and path analysis were used to study the influence mechanisms of temperature increase on dryland spring wheat yield. The results showed that the relationships between dryland spring wheat yield and daily minimum temperature, and between dryland spring wheat yield and daily maximum temperature were quadratic parabolas with an upward opening in different precipitation years, without a threshold value. When the daily maximum temperature was constant, an increase in the daily minimum temperature had a positive effect on the yield. The effect of increasing production was as follows: drought year > normal year > wet year. For every 0.5℃ increase in the daily minimum temperature, the average dryland spring wheat yield increased by 1.32% in wet years, 3.06% in normal years, and 3.99% in drought years. When the daily minimum temperature was constant, an increase in the daily maximum temperature had a negative effect on yield. The effect of production reduction was as follows: drought year > wet year > normal year. For every 0.5℃ increase in the daily maximum temperature, the average dryland spring wheat yield decreased by 9.08% in wet years, 7.98% in normal years, and 9.18% in drought years. The yield thresholds reached 798.61 kg·hm-2 in wet years when the daily maximum temperature increased by 7.1℃, 1118.21 kg·hm-2 in normal years when the daily maximum temperature increased by 3.9℃, and 1026.88 kg·hm-2 in drought years when the daily maximum temperature increased by 3.1℃. Increased temperature led to a decrease in dryland spring wheat yield in different precipitation years. There was a negative interaction between the daily maximum temperature and daily minimum temperature. The effect of reduced production caused by increased daily maximum temperature was much greater than the effect of increased production caused by increased daily minimum temperature.
Key words:Agricultural Production Systems Simulator (APSIM)/
Dryland spring wheat/
Yield/
Precipitation year/
Temperature
HTML全文

图1湿润年型(a)、平水年型(b)和干旱年型(c)下日最高温度和最低温度变化对春小麦产量的单因素效应
Figure1.Single factor effects of changes in daily maximum temperature and minimum temperature on spring wheat yield in wet year (a), normal year (b) and drought year (c)


图2湿润年型(a)、平水年型(b)和干旱年型(c)下日最低温度(X1)和最高温度(X2)对春小麦产量(Y)的通径分析
Figure2.Path analysis of daily minimum temperature (X1) and maximum temperature (X2) on spring wheat yield (Y) in wet years (a), normal years (b) and drought years (c)

表11979—2018年研究区降水年型划分
Table1.Classification of precipitation years from 1979 to 2018 in the study area
降水年型 Precipitation year | 年均降水量 Average annual precipitation (mm) | 合计 Total | 年份 Year |
湿润年 Wet year | 223.1 | 16 | 1979, 1981, 1984, 1985, 1986, 1990, 1991, 1993, 1994, 1998, 1999, 2003, 2005, 2012, 2013, 2014 |
平水年 Normal year | 179.6 | 11 | 1980, 1983, 1987, 1988, 1992, 1996, 2002, 2007, 2010, 2015, 2016 |
干旱年 Drought year | 119.6 | 13 | 1982, 1989, 1995, 1997, 2000, 2001, 2004, 2006, 2008, 2009, 2011, 2017, 2018 |

表2APSIM模型模拟的不同降水年型日最高温度和最低温度不同幅度升高对春小麦产量的影响
Table2.Simulated yields of spring wheat under different increase ranges of daily maximum and minimum temperatures in differentprecipitation years with APSIM model?
降水年型 Precipitation year | 日最低温度增幅 Increase in daily minimum temperature (℃) | 日最高温度增幅Increase in daily maximum temperature (℃) | ||||
0 | 0.5 | 1.0 | 1.5 | 2.0 | ||
湿润年 Wet year | 0 | 2242.21 | 2040.38 | 1864.79 | 1705.28 | 1557.08 |
0.5 | 2287.53 | 2087.63 | 1900.92 | 1726.97 | 1569.34 | |
1.0 | 2313.46 | 2104.18 | 1919.90 | 1740.53 | 1576.51 | |
1.5 | 2340.43 | 2127.26 | 1950.64 | 1758.48 | 1592.34 | |
2.0 | 2387.32 | 2165.21 | 1978.18 | 1785.34 | 1611.15 | |
平水年 Normal year | 0 | 1794.96 | 1642.26 | 1499.07 | 1378.48 | 1290.80 |
0.5 | 1838.73 | 1693.74 | 1532.76 | 1418.79 | 1317.96 | |
1.0 | 1898.79 | 1734.75 | 1582.65 | 1459.34 | 1360.25 | |
1.5 | 1972.97 | 1780.97 | 1632.94 | 1508.56 | 1400.35 | |
2.0 | 2011.17 | 1845.08 | 1698.93 | 1568.46 | 1452.76 | |
干旱年 Drought year | 0 | 1587.01 | 1424.57 | 1289.69 | 1178.67 | 1091.06 |
0.5 | 1644.63 | 1475.73 | 1337.52 | 1218.49 | 1128.92 | |
1.0 | 1718.56 | 1535.65 | 1384.18 | 1263.55 | 1163.54 | |
1.5 | 1793.47 | 1594.47 | 1443.63 | 1306.89 | 1215.36 | |
2.0 | 1881.76 | 1676.38 | 1510.08 | 1360.54 | 1265.67 | |
春小麦产量为同一降水年型的模拟产量的平均值。The yield of spring wheat is the average value of simulated yield in the same precipitation years. |

表3不同降水年型日最低温度(X1)和最高温度(X2)对春小麦产量单因素方程
Table3.Single factor equations of daily minimum (X1) and maximum (X2) temperatures on spring wheat yield in different precipitation years
降水年型 Precipitation year | 日最低温度 Daily minimum temperature | 日最高温度 Daily maximum temperature |
湿润年Wet year | $Y{\rm{ = 2243}}{\rm{.18 + 67}}{\rm{.94}}{X_1} + 1.32{X_1}^2$ | $Y{\rm{ = 2243}}{\rm{.18}} - {\rm{400}}{\rm{.01}}{X_2} + 27.69{X_2}^2$ |
平水年Normal year | $Y{\rm{ = 1798}}{\rm{.65 + 88}}{\rm{.93}}{X_1} + 11.12{X_1}^2$ | $Y{\rm{ = 17978}}{\rm{.65}} - {\rm{342}}{\rm{.54}}{X_2} + 43.11{X_2}^2$ |
干旱年Drought year | $Y{\rm{ = 1588}}{\rm{.65 + 115}}{\rm{.32}}{X_1} + 13.76{X_1}^2$ | $Y{\rm{ = 1588}}{\rm{.65}} - {\rm{360}}{\rm{.98}}{X_2} + 57.99{X_2}^2$ |

参考文献
[1] | 苏布达, 王腾飞, 尹宜舟. IPCC第五次评估报告关于气候变化影响的检测和归因主要结论的解读[J]. 气候变化研究进展, 2014, 10(3): 203-207 doi: 10.3969/j.issn.1673-1719.2014.03.008 SU B D, WANG T F, YIN Y Z. Interpretation of the IPCC fifth assessment report on detection and attribution of observed impacts[J]. Progressus Inquisitiones DE Mutatione Climatis, 2014, 10(3): 203-207 doi: 10.3969/j.issn.1673-1719.2014.03.008 |
[2] | 董思言, 高学杰. 长期气候变化——IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1): 56-59 doi: 10.3969/j.issn.1673-1719.2014.01.012 DONG S Y, GAO X J. Long-term climate change: Interpretation of IPCC Fifth Assessment Report[J]. Progerssus Inquisitiones DE Mutatione Climatis, 2014, 10(1): 56-59 doi: 10.3969/j.issn.1673-1719.2014.01.012 |
[3] | 周长进, 董锁成, 李岱. 定西地区主要生态环境问题与对策[J]. 干旱区资源与环境, 2004, 18(6): 32-37 doi: 10.3969/j.issn.1003-7578.2004.06.008 ZHOU C J, DONG S C, LI D. Ecological crisis and the countermeasures of Dingxi District[J]. Journal of Arid Land Resources & Environment, 2004, 18(6): 32-37 doi: 10.3969/j.issn.1003-7578.2004.06.008 |
[4] | 包刚, 覃志豪, 周义, 等. 气候变化对中国农业生产影响的模拟评价进展[J]. 中国农学通报, 2012, 28(2): 303-307 doi: 10.3969/j.issn.1000-6850.2012.02.059 BAO G, QIN Z H, ZHOU Y, et al. Advances of evaluation of climate change impact on crop yield[J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 303-307 doi: 10.3969/j.issn.1000-6850.2012.02.059 |
[5] | 李卫民, 张佳宝, 朱安宁. 空气温湿度对小麦光合作用的影响[J]. 灌溉排水学报, 2008, 27(3): 90-92 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200803026.htm LI W M, ZHANG J B, ZHU A N. Effects of air temperature and humidity on the photosynthesis of winter wheat[J]. Journal of Irrigation and Drainage, 2008, 27(3): 90-92 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200803026.htm |
[6] | 董莉霞, 李广, 刘强, 等. 旱地春小麦产量对逐日最低温度和最高温度变化响应的模拟与分析[J]. 中国生态农业学报, 2013, 21(8): 1016-1022 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201308017.htm DONG L X, LI G, LIU Q, et al. Simulation analysis of spring wheat grain yield response to mean daily minimum and maximum temperature in drylands[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 1016-1022 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201308017.htm |
[7] | 王钧, 李广, 闫丽娟, 等. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 2020, 53(5): 904-916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202005004.htm WANG J, LI G, YAN L J, et al. Simulation of spring wheat yield response to temperature changes of different growth stages in drylands[J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202005004.htm |
[8] | 齐月, 王鹤龄, 张凯, 等. 气候变化对黄土高原半干旱区春小麦生长和产量的影响——以定西市为例[J]. 生态环境学报, 2019, 28(7): 1313-1321 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201907004.htm QI Y, WANG H L, ZHANG K, et al. Effects of climate change on growth and yield of spring wheat in semi-arid region of the loess plateau: a case study of Dingxi City[J]. Ecology and Environmental Sciences, 2019, 28(7): 1313-1321 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201907004.htm |
[9] | 张华, 王浩. 1967-2017年甘肃省小麦需水量和缺水量时空特征[J]. 干旱区地理, 2019, 42(5): 1094-1104 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201905015.htm ZHANG H, WANG H. Spatial and temporal characteristics of water requirement and water deficit of wheat in Gansu Province from 1967 to 2017[J]. Arid Land Geography, 2019, 42(5): 1094-1104 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201905015.htm |
[10] | 董志强, 张丽华, 吕丽华, 等. 不同灌溉方式对冬小麦光合速率及产量的影响[J]. 干旱地区农业研究, 2015, 33(6): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201506002.htm DONG Z Q, ZHANG L H, LYU L H, et al. Effects of different irrigation methods on photosynthetic rate and yield of winter wheat[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201506002.htm |
[11] | 高艳梅, 孙敏, 高志强, 等. 不同降水年型旱地小麦覆盖对产量及水分利用效率的影响[J]. 中国农业科学, 2015, 48(18): 3589-3599 doi: 10.3864/j.issn.0578-1752.2015.18.003 GAO Y M, SUN M, GAO Z Q, et al. Effects of mulching on grain yield and water use efficiency of dryland wheat in different rainfall years[J]. Scientia Agricultura Sinica, 2015, 48(18): 3589-3599 doi: 10.3864/j.issn.0578-1752.2015.18.003 |
[12] | 任新庄, 闫丽娟, 李广, 等. 陇中旱地春小麦产量对降水与温度变化的响应模拟[J]. 干旱地区农业研究, 2018, 36(3): 125-129 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201803020.htm REN X Z, YAN L J, LI G, et al. Simulation of the effects of precipitation and temperature change on spring wheat yield in dryland of Central Gansu[J]. Agricultural Research in the Arid Areas, 2018, 36(3): 125-129 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201803020.htm |
[13] | 周文魁. 气候变化对中国粮食生产的影响及应对策略[D]. 南京: 南京农业大学, 2012 ZHOU W K. Impact of climate change impact on Chinese food production and its countermeasures[D]. Nanjing: Nanjing Agricultural University, 2012 |
[14] | 毛婧杰, 李广. 陇中地区降水量对小麦产量的影响[J]. 草业科学, 2014, 31(2): 290-295 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201402015.htm MAO J J, LI G. Impacts of precipitation on wheat yield during growth period[J]. Pratacultural Science, 2014, 31(2): 290-295 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201402015.htm |
[15] | 周景博, 刘亮. 未来气候变化对中国小麦产量影响的差异性研究——基于Meta回归分析的定量综述[J]. 中国农业气象, 2018, 39(3): 141-151 doi: 10.3969/j.issn.1000-6362.2018.03.001 ZHOU J B, LIU L. Study on the differences of the impact of future climate change on wheat yield in China-quantitative review based on meta regression analysis[J]. Chinese Journal of Agrometeorology, 2018, 39(3): 141-151 doi: 10.3969/j.issn.1000-6362.2018.03.001 |
[16] | 于琦, 李军, 周栋, 等. 不同降水年型黄土旱塬冬小麦免耕与深松轮耕蓄墒增收效应[J]. 中国农业科学, 2019, 52(11): 1870-1882 doi: 10.3864/j.issn.0578-1752.2019.11.003 YU Q, LI J, ZHOU D, et al. Effects of no-tillage/subsoiling rotational tillage system on increasing soil water storage and crop yield under different precipitation patterns of winter wheat in the loess plateau[J]. Scientia Agricultura Sinica, 2019, 52(11): 1870-1882 doi: 10.3864/j.issn.0578-1752.2019.11.003 |
[17] | 裴雪霞, 党建友, 张定一, 等. 不同降水年型下播期对晋南旱地小麦产量和水分利用率的影响[J]. 中国生态农业学报, 2017, 25(4): 553-562 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201704010.htm PEI X X, DANG J Y, ZHANG D Y, et al. Impact of sowing date on yield and water use efficiency of wheat in different precipitation years in dryland of South Shanxi[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 553-562 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201704010.htm |
[18] | 茹晓雅, 李广, 陈国鹏, 等. 不同降水年型下水氮调控对小麦产量及生物量的影响[J]. 作物学报, 2019, 45(11): 1725-1734 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201911013.htm RU X Y, LI G, CHEN G P, et al. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years[J]. Acta Agronomica Sinica, 2019, 45(11): 1725-1734 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201911013.htm |
[19] | 李广, 李玥, 黄高宝, 等. 不同耕作措施旱地小麦生产应对气候变化的效应分析[J]. 草业学报, 2012, 21(5): 160-168 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201205020.htm LI G, LI Y, HUANG G B, et al. The effects of climate change on dryland wheat production under different tillage systems[J]. Acta Prataculturae Sinica, 2012, 21(5): 160-168 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201205020.htm |
[20] | 李广, 李玥, 黄高宝, 等. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应[J]. 中国生态农业学报, 2012, 20(8): 1088-1095 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201208022.htm LI G, LI Y, HUANG G B, et al. Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1088-1095 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201208022.htm |
[21] | 李广, 黄高宝, William Bellotti, 等. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性[J]. 生态学报, 2009, 29(5): 2655-2663 doi: 10.3321/j.issn:1000-0933.2009.05.056 LI G, HUANG G B, BELLOTTI W, et al. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region[J]. Acta Ecologica Sinica, 2009, 29(5): 2655-2663 doi: 10.3321/j.issn:1000-0933.2009.05.056 |
[22] | 刘霞. IPCC发布全球升温1.5℃特别报告[EB/OL]. 北京: 科技日报, (2018-10-10)[2021-02-15].https://m.gmw.cn/2018-10/10/content_31624046.htm?s=gmwreco&p=2 LIU X. IPCC released special report of global warming of 1.5℃[EB/OL]. Beijing: Science and Technology Daily, (2018-10-10)[2021-02-15]. https://m.gmw.cn/2018-10/10/content_31624046.htm?s=gmwreco&p=2 |
[23] | 李世平, 靖金莲, 安晓东, 等. 晋南冬麦区春霜冻发生特点及其对产量影响分析[J]. 中国农学通报, 2016, 32(9): 183-187 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201609033.htm LI S P, JING J L, AN X D, et al. Spring frost and its impact on yield in winter wheat area of southern Shanxi[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 183-187 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201609033.htm |
[24] | 房世波, 谭凯炎, 任三学, 等. 气候变暖对冬小麦生长和产量影响的大田实验研究[J]. 中国科学: 地球科学, 2012, 42(7): 1069-1075 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207015.htm FANG S B, TAN K Y, REN S X, et al. Fields experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5℃[J]. Science China: Earth Science, 2012, 42(7): 1069-1075 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207015.htm |
[25] | 逯玉兰, 李广, 闫丽娟, 等. 1971-2017年陇中地区气候变化及其对旱地春小麦产量的影响[J]. 麦类作物学报, 2020, 40(2): 234-242 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202002014.htm LU Y L, LI G, YAN L J, et al. Climate changes in middle of Gansu Province from 1971 to 2017 and its impact on yield of dryland spring wheat[J]. Journal of Triticeae Crops, 2020, 40(2): 234-242 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202002014.htm |
[26] | 赵鸿, 王润元, 尚艳, 等. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望[J]. 干旱气象, 2016, 34(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201601001.htm ZHAO H, WANG R Y, SHANG Y, et al. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress[J]. Journal of Arid Meteorology, 2016, 34(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201601001.htm |
[27] | 高美玲, 张旭博, 孙志刚, 等. 中国不同气候区小麦产量及发育期持续时间对田间增温的响应[J]. 中国农业科学, 2018, 51(2): 386-400 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201802017.htm GAO M L, ZHANG X B, SUN Z G, et al. Wheat yield and growing period in response to field warming in different climatic zones in China[J]. Scientia Agricultura Sinica, 2018, 51(2): 386-400 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201802017.htm |
[28] | 张凯, 王润元, 冯起, 等. 模拟增温和降水变化对半干旱区春小麦生长及产量的影响[J]. 农业工程学报, 2015, 31(S1): 161-170 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2015S1019.htm ZHANG K, WANG R Y, FENG Q, et al. Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1): 161-170 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2015S1019.htm |
[29] | 张冬梅, 池宝亮, 张伟, 等. 不同降水年型施肥量对旱地玉米生长及水分利用效率的影响[J]. 西北农业学报, 2012, 21(7): 84-90 doi: 10.3969/j.issn.1004-1389.2012.07.016 ZHANG D M, CHI B L, ZHANG W, et al. Influence of fertilizer application levels on yield and WUE of dryland maize in different precipitation years[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(7): 84-90 doi: 10.3969/j.issn.1004-1389.2012.07.016 |