删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

区域景观中生境特异性对昆虫多样性的影响——以西双版纳为例

本站小编 Free考研考试/2022-01-01

张翔1,,
卢志兴1,
王庆1,
高舒桐1,
唐春英2,
李巧2,
陈又清1,,
1.中国林业科学研究院资源昆虫研究所 昆明 650224
2.西南林业大学 昆明 650224
基金项目:生态环境部生物多样性调查、观测和评估项目(2019—2023年)资助

详细信息
作者简介:张翔, 研究方向为昆虫生态学。E-mail: m18213456905@163.com
通讯作者:陈又清, 主要从事昆虫生态学研究。E-mail: cyqcaf@126.com
中图分类号:Q968.1

计量

文章访问数:225
HTML全文浏览量:89
PDF下载量:283
被引次数:0
出版历程

收稿日期:2020-08-20
录用日期:2021-01-27
刊出日期:2021-05-01

Habitat-specific influences on insect diversity in regional landscapes: A case study of Xishuangbanna

ZHANG Xiang1,,
LU Zhixing1,
WANG Qing1,
GAO Shutong1,
TANG Chunying2,
LI Qiao2,
CHEN Youqing1,,
1. Research Institute of Resources Insect, Chines Academy of Forestry, Kunming 650224, China
2. Southwest Forestry University, Kunming 650224, China
Funds:This study was supported by the Biodiversity Survey, Observation and Assessment Program of the Ministry of Ecology and Environment,China (2019?2023)

More Information
Corresponding author:CHEN Youqing, E-mail: cyqcaf@126.com


摘要
HTML全文
(3)(4)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:生境特异性(habitat-specific)在维持生物多样性上发挥着重要作用。本研究旨在了解在区域景观中,不同类型生境对不同类群昆虫多样性的贡献及群落结构差异,从大尺度上探讨昆虫多样性分布格局和维持机制。于2019年8—9月,在西双版纳地区利用样线调查法,调查了保护区、次生林、人工林和农田4种生境中蝴蝶、蝽和甲虫的物种数、特有物种数,分析了昆虫群落的生境特异性指数、群落结构相似性及物种丰富度与生态因子的关系。共采集昆虫2588头,其中蝴蝶94种(744头),蝽197种(1094头),甲虫129种(750头),保护区的昆虫物种数和特有物种数均高于其余类型生境。保护区昆虫群落的生境特异性指数实测值高于期望值,而其余类型生境昆虫群落的生境特异性指数实测值均低于期望值;不同类型生境间,3个类群的昆虫群落汇总的生境特异性指数不存在显著差异(F3,57=2.054),甲虫生境特异性指数差异显著(F3,55=3.478),蝴蝶(F3,38=1.504)和蝽类(F3,53=1.153)生境特异性指数差异不显著。群落结构相似性分析显示,保护区和农田的3个类群昆虫群落汇总的群落结构差异显著;次生林和人工林的蝴蝶群落结构差异显著,保护区和次生林的蝽类群落结构差异显著,甲虫昆虫群落结构差异不显著。本研究还发现,只有生境类型对昆虫群落的物种丰富度产生的影响极显著(P < 0.01),而其他生态因子的影响不显著。在大尺度区域景观中,保护区对昆虫群落的多样性影响最大,生境类型与昆虫群落的物种丰富度密切相关,保护较好的天然林是维持区域昆虫群落分布格局和多样性的重要机制。
关键词:区域景观/
昆虫群落生境特异性/
昆虫多样性/
群落结构/
西双版纳
Abstract:Habitat-specific plays an important role in the maintenance of biodiversity. This study aimed to understand the influence of habitat type on the diversity of different insect groups and the differences in community structure across the regional landscape. This study also explored the distribution patterns and maintenance mechanisms of insect diversity on a large scale. From August to September 2019, the sample line survey method was used in the Xishuangbanna region to estimate the number of species and endemic species of butterflies, true bugs, and beetles in four different habitat types (reserve, secondary forest, artificial forest, and farmland) and to analyze the habitat specificity index of the insect communities, the community structure similarity, and the relationships between species richness and the ecological factors. A total of 2588 insects were collected, including 94 butterfly species (744 heads), 197 bug species (1094 heads), and 129 beetle species (750 heads). The number of insect species and endemic species in the reserve was higher than those in the other habitats, and the observed habitat specificity index of the insect community was higher than the expected value in the reserve. The observed habitat specificity index values for the other habitat types were lower than the expected values. There was no significant difference in the habitat specificity index of the insect communities in different habitat types (F3, 57=2.054), but there was a significant difference in the habitat specificity index of beetles (F3, 55=3.478). The habitat specificity index of butterflies (F3, 38=1.504) and true bugs (F3, 53=1.153) did not differ. Analysis of the community structure similarity showed that the insect community structure of the three groups significantly differed between the reserve and farmland. There was a significant difference in the community structure of butterflies between secondary forests and artificial forests (P=0.037), and there was a significant difference in the community structure of true bugs between the reserve and secondary forests (P=0.029). There was no difference in the insect community structure of beetles (P=0.507), and only habitat type had a significant effect on the species richness of the insect community. The other ecological factors did not have a significant effect. In large-scale regional landscapes, the reserve had the greatest impact on diversity, and the habitat types were closely related to the species richness of the insect communities. Well-protected natural forests are important for maintaining the distribution and diversity of insect communities in regional landscapes.
Key words:Regional landscape/
Insect community habitat-specific/
Insect diversity/
Community structure/
Xishuangbanna

HTML全文


图1西双版纳各个保护区及不同类型生境昆虫采集样线分布示意图
Figure1.Schematic diagram of the distribution of various reserves and insect sampling lines of different habitat types in Xishuangbanna


下载: 全尺寸图片幻灯片


图2不同类型生境中蝴蝶、蝽和甲虫的组合(a)和单一类群(b: 蝴蝶; c: 蝽; d: 甲虫)的昆虫群落生境特异性指数实测值和期望值的特异性(平均值和95%置信区间)
R: 保护区; SF: 次生林; AF: 人工林; F: 农田。
Figure2.Observed and expected values of insect community habitat-specific index (mean and 95% CI) of the assemblages (a) and single groups of butterflies (b), true bugs (b) and beetles (d) in different habitat types
R: reserve; SF: secondary forest; AF: artificial forest; F: farmland.


下载: 全尺寸图片幻灯片


图3不同类型生境中蝴蝶、蝽、甲虫组合(a)和单一类群(b, c, d)的群落结构
Figure3.Community structures of assemblages (a) and single groups of butterflies (b), true bugs (c) and beetles (d) in different habitat types


下载: 全尺寸图片幻灯片

表1西双版纳不同类型生境昆虫采集样线数量
Table1.Number of insect sampling lines in different habitat types in Xishuangbanna
类群Group县County保护区Reserve次生林Secondary forest人工林Artificial forest农田Farmland合计Total
总类群Total taxa景洪Jinghong11616740
勐海Menghai111041540
勐腊Mengla14618240
合计Total36223824120
蝴蝶Butterflies景洪Jinghong10515636
勐海Menghai101031437
勐腊Mengla12516235
合计Total32203422108
蝽True bugs景洪Jinghong10614737
勐海Menghai111031437
勐腊Mengla10618236
合计Total31223523110
甲虫Beetles景洪Jinghong10515540
勐海Menghai101041438
勐腊Mengla11615234
合计Total31213421112


下载: 导出CSV
表2不同生境类型蝴蝶、蝽、甲虫特有物种及物种数量及比例
Table2.Numbers and proportions of endemic species and species of butterflies, true bugs, beetles in different habitat types
昆虫类群Insect group保护区Reserve次生林Secondary forest人工林Artificial forest农田Farmland
数量Number比例Proportion (%)数量Number比例Proportion (%)数量Number比例Proportion (%)数量Number比例Proportion (%)
特有物种数Number of endemic species蝴蝶Butterflies177.253.31810.053.5
蝽True bugs5121.73019.72916.12517.5
甲虫Beetles3414.5149.22011.1149.8
总物种数Total species10243.44932.26737.24430.8
物种多度Species abundance18521.66114.79410.75111.6
物种数Number of species蝴蝶Butterflies5824.73321.76133.93323.1
蝽True bugs10143.06945.47038.96344.1
甲虫Beetles7632.35032.94927.24732.9
合计Total235152180143


下载: 导出CSV
表3不同类型生境间蝴蝶、蝽、甲虫组合和单一类群的群落结构差异显著性(ANOSIM Global R)
Table3.Difference between different habitat types (ANOSIM Global R) in community structure of butterflies, true bugs and beetles assemblages and single groups
昆虫类型Insect groupR-SFR-AFR-FSF-AFSF-FAF-F
蝴蝶Butterflies0.0700.0450.0840.128*?0.0120.088
蝽True bugs0.091*0.0030.0740.032?0.003?0.009
甲虫Beetles?0.0240.0280.012?0.031?0.085?0.066
合并Assemblage0.0370.0490.081*0.040?0.0560.062
表中数据为不同类型生境间昆虫群落结构两两比较的统计值(ANOSIM Global R); R、SF、AF和F分别表示保护区、次生林、人工林和农田生境类型。*: 存在显著差异。Data in the table is the statistical value (ANOSIM Global R) of the comparison of insect community structure between two habitat types. R, SF, AF and F are habitat types of reserve, secondary forest, artificial forest and farmland, respectively. * means significant difference.


下载: 导出CSV
表4不同类型生境中环境因子对昆虫物种丰富度的影响
Table4.Effects of environmental factors in different habitat types on insect species richness
来源Origin自由度Degree of freedom卡方Chi-squarePP Value
回归Regression968.63< 0.01
年均温Mean annual temperature10.110.745
极端低温Extreme minimum temperature13.330.068
海拔Altitude12.130.144
植物均匀度指数Evenness index of plant10.320.571
植物香农威纳指数Shannon Wiener index of plant10.020.879
生境同质性指数Habitat homogeneity index10.020.881
生境类型Habitat type358.80< 0.01


下载: 导出CSV

参考文献(52)
[1]HANSEN M C, POTAPOV P V, MOORE R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160): 850-853 doi: 10.1126/science.1244693
[2]BROSE U, HILLEBRAND H. Biodiversity and ecosystem functioning in dynamic landscapes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1694): 20150267 doi: 10.1098/rstb.2015.0267
[3]BUTCHART S H M, WALPOLE M, COLLEN B, et al. Global biodiversity: indicators of recent declines[J]. Science, 2010, 328(5982): 1164-1168 doi: 10.1126/science.1187512
[4]RICKLEFS R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2004, 7(1): 1-15 doi: 10.1046/j.1461-0248.2003.00554.x
[5]JETZ W, THOMAS G H, JOY J B, et al. The global diversity of birds in space and time[J]. Nature, 2012, 491(7424): 444-448 doi: 10.1038/nature11631
[6]MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858 doi: 10.1038/35002501
[7]DAVID L ORME C, DAVIES R G, BURGESS M, et al. Global hotspots of species richness are not congruent with endemism or threat[J]. Nature, 2005, 436(7053): 1016-1019 doi: 10.1038/nature03850
[8]BENNETT A F, RADFORD J Q, HASLEM A. Properties of land mosaics: Implications for nature conservation in agricultural environments[J]. Biological Conservation, 2006, 133(2): 250-264 doi: 10.1016/j.biocon.2006.06.008
[9]MEEUS J H A. The transformation of agricultural landscapes in western Europe[J]. Science of the Total Environment, 1993, 129(1/2): 171-190 http://www.sciencedirect.com/science/article/pii/0048969793901697
[10]STOATE C, BOATMAN N D, BORRALHO R J, et al. Ecological impacts of arable intensification in Europe[J]. Journal of Environmental Management, 2001, 63(4): 337-365 doi: 10.1006/jema.2001.0473
[11]BASSET Y, CIZEK L, CUENOUD P, et al. Arthropod diversity in a tropical forest[J]. Science, 2012, 338(6113): 1481-1484 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Science&atitle=Data%20from%3A%20Arthropod%20diversity%20in%20a%20tropical%20forest
[12]MISOF B, LIU S L, MEUSEMANN K, et al. Phylogenomics resolves the timing and pattern of insect evolution[J]. Science, 2014, 346(6210): 763-767 doi: 10.1126/science.1257570
[13]NEMéSIO A, SILVA D P, NABOUT J C, et al. Effects of climate change and habitat loss on a forest-dependent bee species in a tropical fragmented landscape[J]. Insect Conservation and Diversity, 2016, 9(2): 149-160 doi: 10.1111/icad.12154
[14]WINDER L, ALEXANDER C J, HOLLAND J M, et al. Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey[J]. Journal of Animal Ecology, 2005, 74(3): 443-454 doi: 10.1111/j.1365-2656.2005.00939.x
[15]洪雪萌, 戈昕宇, 李俊兰. 赛罕乌拉自然保护区蝶类多样性及其影响因素[J]. 生物多样性, 2018, 26(6): 590-600 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201806007.htm
HONG X M, GE X Y, LI J L. Butterfly diversity and its influencing factors in Saihanwula Nature Reserve[J]. Biodiversity Science, 2018, 26(6): 590-600 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201806007.htm
[16]李巧, 陈又清, 陈彦林. 紫胶林-农田复合生态系统蝽类昆虫群落多样性[J]. 云南大学学报: 自然科学版, 2009, 31(2): 208-216 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ200902019.htm
LI Q, CHEN Y Q, CHEN Y L. Diversity of heteropteran communities in lac plantation-farmland ecosystem[J]. Journal of Yunnan University: Natural Sciences Edition, 2009, 31(2): 208-216 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ200902019.htm
[17]HIRAO T, MURAKAMI M, KUBOTA Y. Species abundance distributions of moth and beetle assemblages in a cool-temperate deciduous forest[J]. Insect Conservation and Diversity, 2013, 6(4): 494-501 doi: 10.1111/icad.12006
[18]FILGUEIRAS B K C, MELO D H A, ANDERSEN A N, et al. Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest[J]. Ecological Indicators, 2019, 98: 523-530 doi: 10.1016/j.ecolind.2018.11.036
[19]朱纪元, 李景科, 程赛赛, 等. 小兴安岭阔叶红松林局地尺度地表鞘翅目成虫群落结构[J]. 东北林业大学学报, 2016, 44(12): 57-63 doi: 10.3969/j.issn.1000-5382.2016.12.012
ZHU J Y, LI J K, CHENG S S, et al. Community structure of adult Coleoptera on local scale in A mixed broadleaved Korean pine forest in the Xiaoxing'an mountains[J]. Journal of Northeast Forestry University, 2016, 44(12): 57-63 doi: 10.3969/j.issn.1000-5382.2016.12.012
[20]FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 2011, 14(2): 101-112 doi: 10.1111/j.1461-0248.2010.01559.x
[21]陈又清, 李巧, 王莹, 等. 普洱市亚热带季风常绿阔叶林区蝽类昆虫多样性[J]. 西北林学院学报, 2010, 25(3): 137-142 https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201003028.htm
CHEN Y Q, LI Q, WANG Y, et al. Diversity of true bugs in subtropical monsoon evergreen broadleaved forest in Pu'er City, Yunnan[J]. Journal of Northwest Forestry University, 2010, 25(3): 137-142 https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201003028.htm
[22]GESSé F, MONLEóN-GETINO T, GOULA M. Biodiversity analysis of true bug assemblages (Hemiptera, Heteroptera) in four habitats in the garraf natural park (Barcelona, Spain)[J]. Journal of Insect Science, 2014, 14(1): 283 http://europepmc.org/articles/PMC5657950/
[23]戈昕宇. 赛罕乌拉自然保护区蝽类昆虫群落多样性研究[D]. 呼和浩特: 内蒙古大学, 2019
GE X Y. A study on the species diversity of true bugs community in Saihanwula Nature Reserve[D]. Hohhot: Inner Mongolia University, 2019
[24]BIRKHOFER K, GOSSNER M M, DIEK?TTER T, et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities[J]. The Journal of Animal Ecology, 2017, 86(3): 511-520 doi: 10.1111/1365-2656.12641
[25]SWART R C, SAMWAYS M J, ROETS F. Latitude, paleo-history and forest size matter for Afromontane canopy beetle diversity in a world context[J]. Biodiversity and Conservation, 2021, 30(3): 659-672 doi: 10.1007/s10531-020-02108-0
[26]郝淑莲, 薛琪琪, 冯丹丹, 等. 山西南部山地蝴蝶多样性与生态位差异比较研究[J]. 生态与农村环境学报, 2019, 35(10): 1314-1321 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910012.htm
HAO S L, XUE Q Q, FENG D D, et al. Comparative study on butterfly diversity and niche difference in mountainous region of southern Shanxi Province[J]. Journal of Ecology and Rural Environment, 2019, 35(10): 1314-1321 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910012.htm
[27]MIAO B G, PENG Y Q, YANG D R, et al. Climate and land-use interactively shape butterfly diversity in tropical rainforest and savanna ecosystems of southwestern China[J]. Insect Science, 2020. DOI: 10.1111/1744-7917.12824
[28]ANT?O L H, MCGILL B, MAGURRAN A E, et al. Β-diversity scaling patterns are consistent across metrics and taxa[J]. Ecography, 2019, 42(5): 1012-1023 doi: 10.1111/ecog.04117
[29]朱华, 王洪, 李保贵, 等. 西双版纳森林植被研究[J]. 植物科学学报, 2015, 33(5): 641-726 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201103002.htm
ZHU H, WANG H, LI B G, et al. Studies on the forest vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5): 641-726 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201103002.htm
[30]刘晓娜, 封志明, 姜鲁光, 等. 西双版纳土地利用/土地覆被变化时空格局分析[J]. 资源科学, 2014, 36(2): 233-244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201402003.htm
LIU X N, FENG Z M, JIANG L G, et al. Spatial-temporal pattern analysis of land use and land cover change in Xishuangbanna[J]. Resources Science, 2014, 36(2): 233-244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201402003.htm
[31]杜加强, 舒俭民, 王跃辉, 等. 青藏高原MODIS NDVI与GIMMS NDVI的对比[J]. 应用生态学报, 2014, 25(2): 533-544 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402031.htm
DU J Q, SHU J M, WANG Y H, et al. Comparison of GIMMS and MODIS normalized vegetation index composite data for Qinghai-Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 533-544 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402031.htm
[32]刘晓娜, 封志明, 姜鲁光, 等. 西双版纳橡胶林地的遥感识别与数字制图[J]. 资源科学, 2012, 34(9): 1769-1780 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201209021.htm
LIU X N, FENG Z M, JIANG L G, et al. Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping[J]. Resources Science, 2012, 34(9): 1769-1780 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201209021.htm
[33]周尧. 中国蝶类志修订本上下册[M]. 郑州: 河南科学技术出版社, 2000
ZHOU Y. Monograph of Chinese Butterflies (Revised Edition) (Two volumes)[M]. Zhengzhou: Henan Scientific and Technological Publishing House, 2000
[34]云南省林业厅, 中国科学院动物研究所. 云南森林昆虫[M]. 昆明: 云南科技出版社, 1987
Forest Department of Yunnan Province; Institute of Zoology, Chinese Academy of Sciences. Forest Insects of Yunnan[M]. Kunming: Yunnan Science and Technology Press, 1987
[35]萧采瑜. 中国蝽类昆虫鉴定手册(半翅目异翅亚目)第一册[M]. 北京: 科学出版社, 1977
XIAO C Y. Identification Handbook of Chinese True Bugs (Volume Ⅰ)[M]. Beijing: Science Press, 1997
[36]萧采瑜. 中国蝽类昆虫鉴定手册(半翅目异翅亚目)第二册[M]. 北京: 科学出版社, 1981
XIAO C Y. Identification Handbook of Chinese True Bugs (Volume Ⅱ)[M]. Beijing: Science Press, 1981
[37]黄复生. 海南森林昆虫[M]. 北京: 科学出版社, 2002
HUANG F S. Forest Insects of Hainan[M]. Beijing: Science Press, 2002
[38]HALVORSEN R, EDVARDSEN A. The concept of habitat specificity revisited[J]. Landscape Ecology, 2009, 24(7): 851-861 doi: 10.1007/s10980-009-9363-7
[39]ANDERSON M J, WILLIS T J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology[J]. Ecology, 2003, 84(2): 511-525 doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
[40]BALAKRISHNAN S, SRINIVASAN M, MOHANRAJ J. Diversity of some insect fauna in different coastal habitats of Tamil Nadu, southeast Coast of India[J]. Journal of Asia-Pacific Biodiversity, 2014, 7(4): 408-414 doi: 10.1016/j.japb.2014.10.010
[41]MAJEED W, RANA N, QAMAR S U R, et al. Diversity of foliage insects around different canal territories: a case study of Dingroo and Kamal Pur canal, Faisalabad, Pakistan[J]. GSC Biological and Pharmaceutical Sciences, 2019, 6(1): 7-15 doi: 10.30574/gscbps.2019.6.1.0161
[42]RAMZAN U, MAJEED W, RANA N, et al. Occurrence of different insect species with emphasis on their abundance and diversity in different habitats of Faisalabad, Pakistan[J]. International Journal of Tropical Insect Science, 2020. DOI: 10.1007/s42690-020-00314-5.
[43]BARTON P S, CUNNINGHAM S A, MANNING A D, et al. The spatial scaling of beta diversity[J]. Global Ecology and Biogeography, 2013, 22(6): 639-647 doi: 10.1111/geb.12031
[44]DRISCOLL D A, BANKS S C, BARTON P S, et al. Conceptual domain of the matrix in fragmented landscapes[J]. Trends in Ecology & Evolution, 2013, 28(10): 605-613 http://europepmc.org/abstract/med/23883740
[45]PüTTKER T, DE ARRUDA BUENO A, PRADO P I, et al. Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss[J]. Oikos, 2015, 124(2): 206-215 doi: 10.1111/oik.01018
[46]LIU C, GUéNARD B, BLANCHARD B, et al. Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation[J]. Ecological Monographs, 2016, 86(2): 215-227 doi: 10.1890/15-1464.1
[47]REBERG-HORTON S C, MUELLER J P, MELLAGE S J, et al. Influence of field margin type on weed species richness and abundance in conventional crop fields[J]. Renewable Agriculture and Food Systems, 2011, 26(2): 127-136 doi: 10.1017/S1742170510000451
[48]K?R?SI á, BATáRY P, OROSZ A, et al. Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary[J]. Insect Conservation and Diversity, 2012, 5(1): 57-66 doi: 10.1111/j.1752-4598.2011.00153.x
[49]VU L V. Diversity and similarity of butterfly communities in five different habitat types at Tam Dao National Park, Vietnam[J]. Journal of Zoology, 2009, 277(1): 15-22 doi: 10.1111/j.1469-7998.2008.00498.x
[50]VU L V, QUANG VU C. Diversity pattern of butterfly communities (Lepidoptera, Papilionoidae) in different habitat types in a tropical rain forest of southern Vietnam[J]. ISRN Zoology, 2011, 2011: 1-8 http://downloads.hindawi.com/journals/isrn/2011/818545.xml
[51]?CKINGER E, VAN DYCK H. Landscape structure shapes habitat finding ability in a butterfly[J]. PLoS One, 2012, 7(8): e41517 DOI: 10.1371/journal.pone.0041517
[52]HENDRICKX F, MAELFAIT J P, DESENDER K, et al. Pervasive effects of dispersal limitation on within- and among-community species richness in agricultural landscapes[J]. Global Ecology and Biogeography, 2009, 18(5): 607-616 doi: 10.1111/j.1466-8238.2009.00473.x

相关话题/昆虫 结构 农田 比例 生态