删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

红壤不同粒径团聚体对草甘膦农药降解动力学的影响

本站小编 Free考研考试/2022-01-01

辛龙川1,,
吴文雪1,
薛萐2,
付格娟3,
陈延华4,
王学霞4,
刘东生4,
杨晓梅1, 2,,
1.西北农林科技大学资源环境学院 杨凌 712100
2.西北农林科技大学水土保持研究所/黄土高原土壤侵蚀与旱地农业 国家重点实验室 杨凌 712100
3.西安市环境监测站 西安 710100
4.北京市农林科学院植物营养与资源研究所 北京 100097
基金项目: 国家自然科学基金项目41877072
陕西省自然科学基金项目2019JQ-639

详细信息
作者简介:辛龙川, 主要研究方向为土壤污染物与微生物互馈作用。E-mail: xinlongchuan@163.com
通讯作者:杨晓梅, 主要研究方向为农田污染物迁移机理与模型模拟、污染物环境风险评估、土壤侵蚀与污染、土壤质量评估与可持续发展。E-mail: xiaomei.yang@nwafu.edu.cn
中图分类号:X53

计量

文章访问数:134
HTML全文浏览量:12
PDF下载量:260
被引次数:0
出版历程

收稿日期:2020-08-21
录用日期:2021-01-01
刊出日期:2021-05-01

Effects of aggregate size on kinetics of glyphosate degradation in red soil

XIN Longchuan1,,
WU Wenxue1,
XUE Sha2,
FU Gejuan3,
CHEN Yanhua4,
WANG Xuexia4,
LIU Dongsheng4,
YANG Xiaomei1, 2,,
1. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
2. Institute of Soil and Water Conservation, Northwest A & F University/The State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Yangling 712100, China
3. Xi'an Environmental Monitoring Station, Xi'an 710100, China
4. Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
Funds: the National Natural Science Foundation of China41877072
the Natural Science Foundation of ShaanxiProvince2019JQ-639

More Information
Corresponding author:YANG Xiaomei, E-mail: xiaomei.yang@nwafu.edu.cn


摘要
HTML全文
(3)(4)
参考文献(46)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:草甘膦农药的大量喷施,使其在环境特别是土壤中的残留-累积风险日益突出,从团聚体粒径角度研究红壤不同粒径团聚体中草甘膦的降解动力学及其相互作用特征仍鲜有报道。基于此,本研究通过干筛筛分、室内控制培养、液质联用定量分析相结合等探究草甘膦降解残留,并进一步分析团聚体理化性质与草甘膦降解的关系。结果表明:1)不同粒径团聚体中,草甘膦残留量随降解时间不断减小,且粒径之间降解动力学差异不显著。降解半衰期为15.8~20.6 d,粒径最小的团聚体(< 0.25 mm)中草甘膦的降解半衰期最长,为20.6 d。草甘膦在土壤中的主要降解产物氨甲基磷酸(AMPA)的含量随着降解时间的增加而增加,且在第5 d达到峰值,而后不断减小;不同粒径团聚体间AMPA含量差异显著(P < 0.05)。2)相关分析及主成分分析发现,草甘膦残留量与红壤团聚体中速效磷含量呈显著正相关(P < 0.05),而其降解产物AMPA含量与团聚体中酸性磷酸酶活性及N-乙酰氨基-β-葡萄糖苷酶活性呈显著正相关(P < 0.05)。团聚体粒径与草甘膦残留量间没有显著相关性,但与AMPA含量显著正相关(P < 0.05)。此外,草甘膦降解过程中,团聚体中有机质含量及β-葡萄糖苷酶、N-乙酰氨基-β-葡萄糖苷酶、酸性磷酸酶活性与团聚体粒径为显著负相关关系(P < 0.05)。由此表明:红壤不同粒径团聚体影响草甘膦降解速率,粒径最小的团聚体(< 0.25 mm)中草甘膦农药的降解速率最慢,但试验结束时,各粒径红壤团聚体中的草甘膦和AMPA含量均较高,可能会影响土壤健康及生态环境安全;此外,草甘膦降解与土壤磷素密切相关,后续研究需探讨磷亏缺或丰盈条件下,草甘膦农药的土壤环境特征,为后续农田草甘膦环境风险评估提供依据。
关键词:土壤团聚体/
草甘膦/
降解动力学/
土壤磷/
红壤
Abstract:With intensive glyphosate application, its residues and consequent risks of soil health and ecological environment safety have received greater attention. The degradation kinetics of glyphosate in red soil aggregates with different sizes, as well as the interaction between physical and chemical properties of soil aggregates and the degradation of glyphosate, have rarely been studied. Thus, in this study, the degradation characteristics of glyphosate in red soil aggregates with different sizes were observed under laboratory conditions by particle pre-sieving, incubation in a controlled climatic chamber, and residue analysis via liquid chromatography-tandem mass spectrometry. The physical and chemical properties of the soil aggregates, such as contents of organic matter, total phosphorus, and available phosphorus, were tested according to the national approved methods and standards. The relationships between the physical and chemical properties of the aggregates and the degradation of glyphosate were further analyzed and compared in the same observation day. The results showed that 1) the glyphosate content decreased in the different aggregate particles during the observation period, following the single first-order kinetic degradation model. However, no significant differences were observed among different aggregate sizes. The half-life time of glyphosate in the different red soil aggregates ranged from 15.8 to 20.6 d, with a longer half-life time in the smallest aggregates (< 0.25 mm, 20.6 d). The aminomethylphosphonic acid (AMPA) content, the main metabolite of glyphosate, increased immediately and peaked on the 5th day after glyphosate application, but no differences were found among different aggregates. However, the AMPA content changed and declined significantly in different aggregates after the 5th observation day (P < 0.05). The contents of organic matter, total nitrogen, total phosphorus, and available phosphorus in different aggregates varied greatly, especially the available phosphorus content, which decreased with glyphosate degradation. 2) Correlation analysis and principal component analysis of glyphosate, aggregate size, and their properties showed that the residual glyphosate was significantly positively correlated with the content of available phosphorus (P < 0.05), and the AMPA content was significantly positively correlated with the activities of acid phosphatase and N-acetylamino-β-glucosidase (P < 0.05). There were no significant relationships between the aggregate size and the residuals of glyphosate, but a significant positive correlation was observed between the aggregate size and the AMPA content (P < 0.05). Furthermore, during the whole period of glyphosate degradation, the organic matter content, acid phosphatase, N-acetylamino-β-glucosidase, and β-glucosidase showed a significant negative relationship with the soil aggregate size (P < 0.05). In conclusion, the characteristics of the red soil aggregates affect the degradation kinetics of glyphosate, as well as the persistence of AMPA, especially the residuals in the smallest aggregates (< 0.25 mm). The contents of glyphosate and AMPA in the red soil aggregates were still high after 30 days, which may affect soil health. Glyphosate degradation was also closely related to phosphorus in the soil. Therefore, the fate of glyphosate under conditions of phosphorus deficiency or abundant soil should be explored to provide detailed information on glyphosate risk assessment in red soil.
Key words:Soil aggregates/
Glyphosate/
Degradation kinetics/
Soil phosphorus/
Red soil

HTML全文


图1红壤不同粒径团聚体中草甘膦(A)和氨甲基磷酸(AMPA, B)的残留量变化
Figure1.Glyphosate (A) and aminomethylphosphonic acid (AMPA, B) residues in red soil aggregates with different sizes


下载: 全尺寸图片幻灯片


图2喷施草甘膦后不同时间红壤不同粒径团聚体中β-葡萄糖苷酶(BG)、N-乙酰氨基-β-葡萄糖苷酶(NAG)、酸性磷酸酶(ACP)活性变化及其变化率
Figure2.β-glucosidase (BG), N-acetylamino-β-glucosidase (NAG), acid phosphatase (ACP) activities and their change rates in red soil aggregates with different sizes at different days after application of glyphosat


下载: 全尺寸图片幻灯片


图3各粒径团聚体主成分得分(a)以及草甘膦残留量与团聚体性质的主成分分析(b)
Gly: 草甘膦残留量; OM: 有机质含量; AP: 速效磷含量; BG: β-葡萄糖苷酶活性; NAG: N-乙酰氨基-β-葡萄糖苷酶活性; ACP: 酸性磷酸酶活性。
Figure3.Principal component scores of aggregate sizes (a) and principal component analysis of glyphosate residue and aggregate properties (b)
Gly: glyphosate residue; OM: organic matter content; AP: available phosphorus content; BG: β-glucosidase activity; NAG: N-acetylamino-β-glucosidase activity; ACP: acid phosphatase activity.


下载: 全尺寸图片幻灯片

表1试验用红壤不同粒径团聚体的基本性质
Table1.Properties of aggregates with different sizes of the tested red soil
土壤性质Soil property粒径Size (mm)
< 2 (X)1~2 (Ⅱ)0.25~1 (Ⅲ)< 0.25 (Ⅳ)
pH5.29±0.025.03±0.014.91±0.004.89±0.00
有机质Organic matter (g?kg?1)16.56±0.4815.43±0.0816.97±0.1416.60±0.42
全氮Total nitrogen (g?kg?1)0.99±0.011.02±0.011.21±0.011.20±0.03
全磷Total phosphorus (g?kg?1)0.70±0.000.76±0.030.76±0.010.76±0.00
速效磷Available phosphorus (g?kg?1)0.14±0.000.14±0.000.14±0.000.14±0.00


下载: 导出CSV
表2红壤不同粒径团聚体中草甘膦降解动力学方程
Table2.Glyphosate degradation kinetic equations in red soil aggregates with different sizes
团聚体粒径Aggregate size (mm)动力学方程Kinetics equation半衰期Half-life (d)R2
< 2Ct=13.56e?0.037t18.5±3.50.73
1~2Ct=14.41e?0.044t15.8±2.80.73
0.25~1Ct=14.14e?0.039t17.7±3.60.62
< 0.25Ct=13.50e?0.034t20.6±4.00.65


下载: 导出CSV
表3喷施草甘膦后不同时间红壤不同粒径团聚体的性质
Table3.Soil properties of red soil aggregates with different sizes at different days after application of glyphosat?g?kg?1
土壤性质Soil property团聚体粒径Aggregate size (mm)喷施后天数Days after application (d)
013571430
有机质Organic matter< 216.73±0.52b17.05±0.56b16.92±0.28b16.89±0.24b17.30±0.59b17.27±0.45b16.88±0.94ab
1~216.30±0.16b15.84±0.43b16.27±0.38b16.33±0.21b16.31±0.37b16.28±0.36b15.20±0.57c
0.25~117.56±0.40ab16.62±0.16ab16.37±0.80b17.34±0.18b16.31±0.81b17.16±0.59b16.38±0.40b
< 0.2518.55±0.17a18.25±0.59a18.04±0.76a19.41±0.50a18.62±0.66a18.09±0.62a17.58±0.69ac
全氮Totalnitrogen< 21.05±0.13b1.00±0.09b1.00±0.08b1.06±0.05b1.15±0.04ab0.97±0.05b1.08±0.03b
1~20.92±0.02b0.93±0.05b1.14±0.05a1.11±0.03ab1.20±0.06b1.01±0.05b1.04±0.07b
0.25~10.95±0.02b0.93±0.08b1.09±0.03ab1.10±0.05ab1.06±0.10b1.08±0.04ab1.10±0.04b
< 0.251.01±0.05a1.21±0.08a1.18±0.05a1.19±0.10a1.13±0.02ab1.12±0.02a1.11±0.03a
全磷Total phosphorus< 20.77±0.02a0.78±0.01a0.76±0.01a0.73±0.01a0.78±0.02a0.74±0.02a0.75±0.03a
1~20.77±0.03a0.77±0.03a0.75±0.02a0.76±0.01a0.77±0.02a0.78±0.02a0.74±0.02a
0.25~10.75±0.01a0.78±0.01a0.78±0.02a0.76±0.01a0.76±0.01a0.79±0.01a0.74±0.02a
< 0.250.76±0.02a0.76±0.02a0.74±0.02a0.77±0.00a0.75±0.02a0.76±0.02a0.70±0.00a
速效磷Availablephosphorus< 20.14±0.01a0.15±0.00a0.13±0.00a0.12±0.00a0.14±0.01a0.13±0.01a0.13±0.01a
1~20.14±0.00a0.15±0.00a0.13±0.01a0.12±0.00a0.14±0.00a0.13±0.01a0.13±0.01a
0.25~10.14±0.01a0.14±0.00a0.13±0.00a0.13±0.00a0.13±0.01a0.14±0.00a0.13±0.00a
< 0.250.15±0.00a0.13±0.00a0.13±0.00a0.12±0.00a0.14±0.01a0.14±0.01a0.13±0.01a
不同小写字母表示同一指标同一时间不同粒径间差异在P < 0.05水平显著。Different lowercase letters indicate significant differences among different aggregate sizes for the same index at the same time at P < 0.05 level.


下载: 导出CSV
表4团聚体粒径与草甘膦及氨甲基磷酸(AMPA)含量的相关性分析
Table4.Correlation analysis among aggregate properties with glyphosate and aminomethylphosphonic acid (AMPA) contents
相关性Correlation团聚体粒径Aggregate size草甘膦Glyphosate氨甲基磷酸AMPA有机质Organic matter速效磷Available phosphorusBG活性BG activityNAG活性NAG activity
草甘膦Glyphosate0.020
氨甲基磷酸AMPA0.131*?0.443**
有机质Organic matter?0.268*?0.140?0.028
速效磷Available phosphorus?0.0180.412**?0.523**?0.068
BG活性BG activity?0.357**0.0090.1730.366**?0.369**
NAG活性NAG activity?0.231*?0.2050.335**0.281*?0.463**0.695**
BG: β-葡萄糖苷酶; NAG: N-乙酰氨基-β-葡萄糖苷酶; ACP: 酸性磷酸酶。*和**分别表示显著性水平为P < 0.05和P < 0.01。BG: β-glucosidase; NAG: N-acetylamino-β-glucosidase; ACP: acid phosphatase. * and ** indicate significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(46)
[1]顾安乐, 柏亚罗. 水稻用农药市场概况、产品开发及重点品种(Ⅱ)[J]. 现代农药, 2018, 17(6): 1-5 doi: 10.3969/j.issn.1671-5284.2018.06.001
GU A L, BAI Y L. The market profile, product development and key products of the rice pesticide[J]. Modern Agrochemicals, 2018, 17(6): 1-5 doi: 10.3969/j.issn.1671-5284.2018.06.001
[2]杨益军, 张波, 吴江. 全球(中国)草甘膦行业(市场)发展状况及2020年展望[J]. 农药市场信息, 2020, (4): 31-32
YANG Y J, ZHANG B, WU J. Global (China) glyphosate industry (market) development status and 2020 outlook[J]. Pesticide Market News, 2020, (4): 31-32
[3]ALONSO L L, DEMETRIO P M, ETCHEGOYEN M A, et al. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina[J]. Science of The Total Environment, 2018, 645: 89-96 doi: 10.1016/j.scitotenv.2018.07.134
[4]PRIMOST J E, MARINO D J G, APARICIO V C, et al. Glyphosate and AMPA, "pseudo-persistent" pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina[J]. Environmental Pollution, 2017, 229: 771-779 doi: 10.1016/j.envpol.2017.06.006
[5]OKADA E, ALLINSON M, BARRAL M P, et al. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia[J]. Water Research, 2020, 168: 115139 doi: 10.1016/j.watres.2019.115139
[6]魏琛, 宋丽婧, 杨卫萍, 等. 贵阳市地表水中草甘膦农药残留研究[J]. 环境科学与技术, 2016, 39(3): 126-130 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201603023.htm
WEI C, SONG L J, YANG W P, et al. Research on glyphosate pesticide residue in surface water in Guiyang[J]. Environmental Science & Technology, 2016, 39(3): 126-130 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201603023.htm
[7]CARLES L, GARDON H, JOSEPH L, et al. Meta-analysis of glyphosate contamination in surface waters and dissipation by biofilms[J]. Environment International, 2019, 124: 284-293 doi: 10.1016/j.envint.2018.12.064
[8]BORGGAARD O K, GIMSING A L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review[J]. Pest Management Science, 2008, 64(4): 441-456 doi: 10.1002/ps.1512
[9]MAMY L, BARRIUSO E, GABRIELLE B. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops[J]. Pest Management Science, 2005, 61(9): 905-916 doi: 10.1002/ps.1108
[10]胡继业, 赵殿英, 宁君, 等. 气相色谱-氮磷检测器测定草甘膦在土壤和苹果中的残留量[J]. 农药学学报, 2007, 9(3): 285-290 doi: 10.3321/j.issn:1008-7303.2007.03.015
HU J Y, ZHAO D Y, NING J, et al. Determination of glyphosate residues in soil and apple by capillary gas chromatography with nitrogen-phosphorus detection[J]. Chinese Journal of Pesticide Science, 2007, 9(3): 285-290 doi: 10.3321/j.issn:1008-7303.2007.03.015
[11]YANG X M, WANG F, BENTO C P M, et al. Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions[J]. Science of The Total Environment, 2015, 530/531: 87-95 doi: 10.1016/j.scitotenv.2015.05.082
[12]汪立高, 杨仁斌, 魏凤. 土壤中残留草甘膦检测方法及其消解动态研究[J]. 湖南农业科学, 2011, (23): 85-88 doi: 10.3969/j.issn.1006-060X.2011.23.026
WANG L G, YANG R B, WEI F. Detection method and degradation dynamics of isopropylamine salt of glyphosate in soil[J]. Hunan Agricultural Sciences, 2011, (23): 85-88 doi: 10.3969/j.issn.1006-060X.2011.23.026
[13]谢怡, 陈杰, 黄祥, 等. 降解菌ESG4对草甘膦污染土壤的生物修复研究[J]. 环境影响评价, 2018, 40(5): 84-87 https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS201805024.htm
XIE Y, CHEN J, HUANG X, et al. Research on bioremediation of glyphosate contaminated soil by Mycobacterium sp. ESG4[J]. Environmental Impact Assessment, 2018, 40(5): 84-87 https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS201805024.htm
[14]OBOJSKA A, TERNAN N G, LEJCZAK B, et al. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20[J]. Applied and Environmental Microbiology, 2002, 68(4): 2081-2084 doi: 10.1128/AEM.68.4.2081-2084.2002
[15]尚轶, 沈慧敏, 杨顺义, 等. 草甘膦降解菌的分离及其降解效能研究[J]. 湖北农业科学, 2011, 50(9): 1770-1772 doi: 10.3969/j.issn.0439-8114.2011.09.014
SHANG Y, SHEN H M, YANG S Y, et al. Screening and isolation of bacteria degrading herbicide glyphosate and its degradation efficiency[J]. Hubei Agricultural Sciences, 2011, 50(9): 1770-1772 doi: 10.3969/j.issn.0439-8114.2011.09.014
[16]石成春, 郭养浩, 王大奈, 等. 草甘膦曲霉生物降解的动力学研究[J]. 中国环境科学, 2005, 25(3): 361-365 doi: 10.3321/j.issn:1000-6923.2005.03.024
SHI C C, GUO Y H, WANG D N, et al. Studies on the kinetics of the biodegradation of glyphosate by Aspegillus[J]. China Environmental Science, 2005, 25(3): 361-365 doi: 10.3321/j.issn:1000-6923.2005.03.024
[17]汤鸣强, 尤民生. 抗草甘膦酵母菌ZM-1的分离鉴定及其生长降解特性[J]. 微生物学通报, 2010, 37(9): 1402-1409 https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201009025.htm
TANG M Q, YOU M S. Isolation and identification of a glyphosate-resistant yeasty strain (ZM-1) and its optimal growth and degradation traits[J]. Microbiology China, 2010, 37(9): 1402-1409 https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201009025.htm
[18]潘吉秀, 夏天翔, 姜林, 等. 工业污染土壤中不同粒径下的三种典型有机污染物分布规律研究[J]. 土壤通报, 2014, 45(2): 462-468 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201402035.htm
PAN J X, XIA T X, JIANG L, et al. Distribution of organic pollutants in different size soil particles from industrial sites[J]. Chinese Journal of Soil Science, 2014, 45(2): 462-468 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201402035.htm
[19]黄玉芬, 刘忠珍, 魏岚, 等. 土壤不同粒径有机无机复合体对丁草胺的吸附特性[J]. 土壤学报, 2017, 54(2): 400-409 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702011.htm
HUANG Y F, LIU Z Z, WEI L, et al. Effect of soil organo-inorganic compounds different in particle size on butachlor sorption[J]. Acta Pedologica Sinica, 2017, 54(2): 400-409 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702011.htm
[20]BENTO C P M, GOOSSENS D, REZAEI M, et al. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil[J]. Environmental Pollution, 2017, 220: 1079-1089 doi: 10.1016/j.envpol.2016.11.033
[21]YANG X M, WANG F, BENTO C P M, et al. Short-term transport of glyphosate with erosion in Chinese loess soil-A flume experiment[J]. Science of The Total Environment, 2015, 512/513: 406-414 doi: 10.1016/j.scitotenv.2015.01.071
[22]张菁菁, 温蓓, 单孝全. 中国典型土壤不同粒径级份对六氯苯的吸附行为研究[C]//持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集. 北京: 中国化学会, 中国环境科学学会, 2008: 83-85
ZHANG J J, WEN B, SHAN X Q. Adsorption behavior of hexachlorobenzene on different particle size fractions of typical soils in China[C]//Proceedings of the Persistent Organic Pollutants Forum 2008 and the Third National Symposium on Persistent Organic Pollutants. Beijing: Chinese Chemical Society, Chinese Society for Environmental Sciences, 2008: 83-85
[23]ZONG Y T, XIAO Q, LU S G. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China)[J]. Environmental Science and Pollution Research, 2016, 23(14): 14600-14607 doi: 10.1007/s11356-016-6652-y
[24]龚仓, 徐殿斗, 成杭新, 等. 典型热带林地土壤团聚体颗粒中重金属的分布特征及其环境意义[J]. 环境科学, 2013, 34(3): 1094-1100 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201303042.htm
GONG C, XU D D, CHENG H X, et al. Distribution characteristics and environmental significance of heavy metals in soil particle size fractions from tropical forests in China[J]. Environmental Science, 2013, 34(3): 1094-1100 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201303042.htm
[25]FAN J L, DING W X, ZIADI N. Thirty-year manuring and fertilization effects on heavy metals in black soil and soil aggregates in northeastern China[J]. Communications in Soil Science and Plant Analysis, 2013, 44(7): 1224-1241 doi: 10.1080/00103624.2012.756002
[26]李勋光. 农药在土壤中的分布——DDT、BHC量与土粒粒径、有机质量之间的关系[J]. 土壤学报, 1993, 30(1): 88-93 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199301010.htm
LI X G. Distribution of pesticides in soils-relationship among contents of DDT and BHC, size of soil particle and content of organic matter[J]. Acta Pedologica Sinica, 1993, 30(1): 88-93 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199301010.htm
[27]张胜田, 赵斌, 王风贺, 等. 不同粒径土壤对氯丹的吸附性能及其急性毒性[J]. 环境工程学报, 2017, 11(6): 3839-3845 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201706073.htm
ZHANG S T, ZHAO B, WANG F H, et al. Effects of soil particles on their adsorption performance of chloredane and their acute toxicity[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3839-3845 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201706073.htm
[28]孙立思, 王娜, 孔德洋, 等. 土壤理化性质对草甘膦残留检测的影响[J]. 生态与农村环境学报, 2017, 33(9): 860-864 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201709016.htm
SUN L S, WANG N, KONG D Y, et al. Influence of soil physical and chemical properties on detection of glyphosate residue[J]. Journal of Ecology and Rural Environment, 2017, 33(9): 860-864 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201709016.htm
[29]BENTO C P M, YANG X M, GORT G, et al. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness[J]. Science of The Total Environment, 2016, 572: 301-311 doi: 10.1016/j.scitotenv.2016.07.215
[30]PAUDEL P, NEGUSSE A, JAISI D P. Birnessite-catalyzed degradation of glyphosate: A mechanistic study aided by kinetics batch studies and NMR spectroscopy[J]. Soil Science Society of America Journal, 2015, 79(3): 815-825 doi: 10.2136/sssaj2014.10.0394
[31]BERGSTR?M L, B?RJESSON E, STENSTR?M J. Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil[J]. Journal of Environmental Quality, 2011, 40(1): 98-108 doi: 10.2134/jeq2010.0179
[32]LANCT?T C, ROBERTSON C, NAVARRO-MARTíN L, et al. Effects of the glyphosate-based herbicide Roundup WeatherMax? on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands[J]. Aquatic Toxicology, 2013, 140/141: 48-57 doi: 10.1016/j.aquatox.2013.05.012
[33]LITZ N T, WEIGERT A, KRAUSE B, et al. Comparative studies on the retardation and reduction of glyphosate during subsurface passage[J]. Water Research, 2011, 45(10): 3047-3054 doi: 10.1016/j.watres.2011.02.015
[34]陈望舒. 草甘膦对土壤生态的影响和毒理研究[D]. 扬州: 扬州大学, 2019: 87-88
CHEN W S. Research on the effects of glyphosate on soil ecology and toxicology[D]. Yangzhou: Yangzhou University, 2019: 87-88
[35]毛美红, 俞婷婷, 傅柳方, 等. 草甘膦对毛竹笋用林土壤理化性质的影响分析[J]. 竹子研究汇刊, 2011, 30(3): 29-32 doi: 10.3969/j.issn.1000-6567.2011.03.006
MAO M H, YU T T, FU L F, et al. The influence of glyphosate on soil physicochemical properties of the shoot-oriented Moso bamboo forests[J]. Journal of Bamboo Research, 2011, 30(3): 29-32 doi: 10.3969/j.issn.1000-6567.2011.03.006
[36]林德喜, 洪长福, 黄龙发. 杉木幼林地喷施草甘膦后土壤的变化[J]. 土壤, 1998, (2): 100-102 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA199802009.htm
LIN D X, HONG C F, HUANG L F. Soil changes after spraying glyphosate on young Chinese fir woodland[J]. Soils, 1998, (2): 100-102 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA199802009.htm
[37]周垂帆, 林静雯, 李莹, 等. 磷与草甘膦在酸性土壤中吸附解吸交互作用机制[J]. 农业环境科学学报, 2016, 35(12): 2367-2376 doi: 10.11654/jaes.2016-0862
ZHOU C F, LIN J W, LI Y, et al. Competitive adsorption and desorption of glyphosate and phosphate on acid soil[J]. Journal of Agro-Environment Science, 2016, 35(12): 2367-2376 doi: 10.11654/jaes.2016-0862
[38]刘合明, 杨志新, 刘树庆. 不同粒径土壤活性有机碳测定方法的探讨[J]. 生态环境, 2008, 17(5): 2046-2049 doi: 10.3969/j.issn.1674-5906.2008.05.063
LIU H M, YANG Z X, LIU S Q. Methods for determining labile orange matter in different sized soil particles of different soils[J]. Ecology and Environment, 2008, 17(5): 2046-2049 doi: 10.3969/j.issn.1674-5906.2008.05.063
[39]马瑞萍, 刘雷, 安韶山, 等. 黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J]. 中国生态农业学报, 2013, 21(3): 324-332 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201303009.htm
MA R P, LIU L, AN S S, et al. Soil organic carbon and its fractions in aggregates under different plant communities in the hill-gully region of the loess plateau[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 324-332 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201303009.htm
[40]黄荣珍, 朱丽琴, 黄国敏, 等. 不同整治方式下红壤坡耕地土壤团聚体有机碳的变化[J]. 南昌工程学院学报, 2018, 37(6): 57-62 doi: 10.3969/j.issn.1006-4869.2018.06.010
HUANG R Z, ZHU L Q, HUANG G M, et al. Soil organic carbon change in soil aggregates after different farming practices on slope field in red soil area[J]. Journal of Nanchang Institute of Technology, 2018, 37(6): 57-62 doi: 10.3969/j.issn.1006-4869.2018.06.010
[41]鲁晶, 杨学春. 草甘膦对环境的影响研究进展[J]. 安徽农学通报, 2017, 23(8): 71-75 doi: 10.3969/j.issn.1007-7731.2017.08.032
LU J, YANG X C. Research progress on environmental impact of glyphosate[J]. Anhui Agricultural Science Bulletin, 2017, 23(8): 71-75 doi: 10.3969/j.issn.1007-7731.2017.08.032
[42]FANIN N, MOORHEAD D, BERTRAND I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient[J]. Biogeochemistry, 2016, 129(1/2): 21-36 doi: 10.1007/s10533-016-0217-5
[43]DENG L, PENG C H, HUANG C B, et al. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China[J]. Geoderma, 2019, 353: 188-200 doi: 10.1016/j.geoderma.2019.06.037
[44]崔玉侠. 草甘膦与Cu的复合污染及其对土壤酶与微生物碳/氮的影响[D]. 重庆: 西南大学, 2009: 35-38
CUI Y X. Study of combined pollution between glyphosate and Cu and its influence on the soil enzyme and microorganism carbon/nitrogen[D]. Chongqing: Southwest University, 2009: 35-38
[45]呼蕾, 和文祥, 王旭东, 等. 草甘膦的土壤酶效应研究[J]. 农业环境科学学报, 2009, 28(4): 680-685 doi: 10.3321/j.issn:1672-2043.2009.04.008
HU L, HE W X, WANG X D, et al. Effect of glyphosate on soil enzyme[J]. Journal of Agro-Environment Science, 2009, 28(4): 680-685 doi: 10.3321/j.issn:1672-2043.2009.04.008
[46]邓晓, 武春媛, 李怡, 等. 土壤微生物种群与酶活性对草铵膦和草甘膦胁迫响应的差异[J]. 农药, 2019, 58(8): 580-583 https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ201908011.htm
DENG X, WU C Y, LI Y, et al. Differences in the stress responses of soil microbial populations and enzyme activities to glufosinate-ammonium and glyphosate[J]. Agrochemicals, 2019, 58(8): 580-583 https://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ201908011.htm

相关话题/土壤 环境 环境科学 污染 农业