删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

2000—2015年滦河流域植被净初级生产力时空分布特征及其驱动因子分析

本站小编 Free考研考试/2022-01-01

刘婧1,,
汤峰2,
张贵军1,,,
张蓬涛1
1.河北农业大学国土资源学院/河北省农田生态环境重点实验室 保定 071001
2.中国地质大学(北京)土地科学技术学院 北京 100083
基金项目: 河北省社会科学基金项目HB19YJ020

详细信息
作者简介:刘婧, 主要研究方向为土地评价与可持续利用。E-mail: liujingahcz@163.com
通讯作者:张贵军, 主要研究方向为土地评价与可持续利用。E-mail: 2569401081@qq.com
中图分类号:Q948

计量

文章访问数:147
HTML全文浏览量:1
PDF下载量:210
被引次数:0
出版历程

收稿日期:2020-08-28
录用日期:2020-11-13
刊出日期:2021-04-01

Spatio-temporal distribution of net primary productivity and its driving factors in the Luanhe River Basin from 2000 to 2015

LIU Jing1,,
TANG Feng2,
ZHANG Guijun1,,,
ZHANG Pengtao1
1. College of Land and Resources, Hebei Agricultural University/Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
2. College of Land Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China
Funds: the Social Science Fund of Hebei ProvinceHB19YJ020

More Information
Corresponding author:ZHANG Guijun, E-mail: 2569401081@qq.com


摘要
HTML全文
(8)(4)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:植被净初级生产力(NPP)可以反映植被生长状况,是表征地区生态质量的重要指标。本文以滦河流域为研究区,调查采集植被NPP、气象、土地利用结构及变化等多时空数据,利用Sen趋势、Hurst指数及残差分析等多种方法,综合考虑自然环境和人为利用的影响,对2000—2015年植被NPP的时空变化特征、未来演变趋势及驱动因子进行分析和研究,并定量识别不同区域内的主导驱动因子,旨在为该流域的生态环境治理工作提供依据。研究结果表明:1)2000—2015年,滦河流域植被NPP年均值为455.04 g(C)·m-2·a-1,整体呈波动上升趋势,显著增加区占流域总面积的32.94%,且未来同向变化趋势略强于反向变化趋势;2)该流域植被NPP空间差异较为显著,表现为东南高西北低的格局,受地形影响较大,流域中游的低山丘陵区为植被NPP高值区;3)驱动机制上,流域植被NPP变化与温度和降水均为正相关关系,水热耦合共同作用于植被NPP的积累,人类活动则是通过改变土地利用强度或生态建设工程等影响植被NPP的变化,且在不同地形区域内,植被NPP变化的主导驱动因子不同,整体上以气候和人类活动共同正向促进作用为主,但在平原区以单因子的反向抑制作用为主。
Abstract:Net primary productivity (NPP) is an important indicator of regional ecological quality and can reflect the growth status of vegetation. We selected the Luanhe River Basin as the study area, and used trend analysis, Hurst index, and residual trend analysis to examine the spatio-temporal distribution of NPP and investigated the effects of climate change, topographic factors, and human activities. This study analyzed NPP based on meteorological data, land use maps, and remote sensing data MOD17A3 from 2000 to 2015 and aimed to provide a basis for the ecological environmental governance of the river basin. The results showed that: 1) The average annual NPP was 455.04 g(C)·m-2·a-1, and the inter-annual variability showed overall growth from 2000 to 2015. Of the total basin area, 32.94% had a significant increase in NPP, whereas 6.98% had a significant decrease. The Hurst index analysis indicated that most NPP changes were in the same direction. 2) There were regional NPP differences in the Luanhe River Basin; the multi-year NPP average was lowest in the low hilly area, intermediate in the plain country, and highest in the middle mountain region. The maximum NPP was in Chengde and Lulong Counties in the Beijing-Tianjin-Hebei water conservation ecological function reserve, with characteristically superior natural environmental conditions. 3) The watershed NPP was positively correlated with the annual average precipitation and the annual average temperature, indicating that temperature was the main climatic factor affecting NPP in the Luanhe River Basin. The accumulation of vegetation NPP was affected by the combined effects of temperature and precipitation. Human activities affected the vegetation NPP by changing the land use intensity, ecological construction, and improving the environment, with positive and negative effects on NPP. Among the different terrain areas, the dominant factors affecting vegetation NPP varied. Overall, the prevailing reasons for NPP increases were climatic factors and human activities; only 1.74% of the regional climate and anthropogenic activities contributed to NPP reduction. The driving characteristics were similar in the low hilly area and the middle and high mountain areas. However, in the low-altitude plain areas, climatic factors or human activity alone led to more significant NPP reductions, accounting for 51.63% of the area. Taken together, this study showed that spatial distribution of NPP was determined by climatic and topographic characteristics, and climate change and human activities strongly affected vegetation NPP.

HTML全文


图1滦河流域地理位置
Figure1.Location of the Luanhe River Basin


下载: 全尺寸图片幻灯片


图2滦河流域2000—2015年平均植被NPP的分布
Figure2.Spatial distribution of 16-year average vegetation NPP of the Luanhe River Basin in 2000-2015


下载: 全尺寸图片幻灯片


图3滦河流域2000—2015年植被NPP变化趋势(a)及变化显著性(b)
Figure3.Variation trend (a) and significance (b) of vegetation NPP in the Luanhe River Basin from 2000 to 2015


下载: 全尺寸图片幻灯片


图4滦河流域植被NPP变异系数(a)及未来变化趋势(b)
Figure4.Coefficient of variation (a) and the future trend (b) of vegetation NPP in the Luanhe River Basin


下载: 全尺寸图片幻灯片


图52000—2015年滦河流域植被NPP与温度的相关系数(a)和偏相关系数(b)及与降水的相关系数(c)和偏相关系数(d)
Figure5.Correction coefficients and partial correction coefficients between vegetation NPP and temperature (a, b) and precipitation (c, d) in the Luanhe River Basin during 2000-2015


下载: 全尺寸图片幻灯片


图6滦河流域高程及坡度对植被NPP的影响
Figure6.Effects of elevation and slope on the NPP of vegetation in the Luanhe River Basin


下载: 全尺寸图片幻灯片


图7滦河流域2000—2015年植被NPP残差值及变化趋势
Figure7.Distribution of NPP residual value and variation trend from 2000 to 2015 in the Luanhe River Basin during 2000-2015


下载: 全尺寸图片幻灯片


图8滦河流域植被NPP变化驱动因子分区
Figure8.Zoning of the driving factors of vegetation NPP change in the Luanhe River Basin


下载: 全尺寸图片幻灯片

表1滦河流域不同土地利用类型的人类影响强度系数
Table1.Human impact intensity coefficients of different land use types in the Luanhe River Basin
强度等级
Intensity of utilization
土地利用类型
land use type
特征
Characteristic
系数
Coefficient
未利用/极少利用
Unused/rarely used
未利用地
Unused land
表层自然覆被未被改变且未被利用
Surface natural coverings are not altered and not utilized.
1
一般利用
General used
林地
Forest land
表层自然覆被未被改变且未被或很少被利用
Surface natural coverings are not altered and rarely utilized.
2
水域
Water area
部分表层自然覆被改变且被利用
Part of the surface layer is naturally altered and utilized.
3
草地
Meadowland
表层自然覆被未被改变或被改变种植多年生植物
Surface natural coverings are unaltered or altered to plant perennials.
4
改造/开发利用
Transformation/exploitation
耕地
Farmland
表层自然覆被改变且种植短期作物
Surface natural coverings are altered into short-term crop land.
5
建设用地
Construction land
表层自然覆被完全改变且较难或无法恢复
Surface natural coverings are completely changed and difficult to be recovered.
6


下载: 导出CSV
表2滦河流域不同地形下的NPP比较
Table2.Comparison of NPP for different terrains in Luanhe River Basin
项目
Item
地形和高程?Terrain and elevation 坡度?Slope
平原
Plain
丘陵
Hills
低山
Low mountain
中山
Medium mountain
高山
High mountain
平原
Plain
微斜坡
Micro slope
缓斜坡
Gentle slope
斜坡
Inclined slope
陡坡
Steep slope
峭坡
Cliffs slope
0~200 m 200~ 500 m 500~ 1000 m 1000~ 1500 m > 1500 m 0°~0.5° 0.5°~2° °2~5° 5°~15° 15°~35° 35°~55°
平均NPP
Average NPP [g(C)·m-2·a-1]
483.26 466.12 507.73 388.75 407.48 440.98 398.89 429.79 463.07 504.14 496.54
变化趋势
Change trend [g(C)·m-2·a-1]
-3.64 3.94 7.17 3.53 3.20 -1.26 1.53 3.11 5.46 7.06 7.76
未来变化趋势
Future change trend [g(C)·m-2·a-1]
0.55 0.51 0.52 0.53 0.52 0.46 0.48 0.5 0.52 0.51 0.51


下载: 导出CSV
表3滦河流域2000—2015年土地利用强度变化及导致的植被NPP变化
Table3.Area sequence of land use intensity change and vegetation NPP change in the Luanhe River Basin during 2000-2015
土地利用强度变化
Land use intensity change
面积变化
Area change (×104 hm2)
变化率
Rate of change (%)
NPP残差变化量
NPP residual change [g(C)·a-1]
单位面积NPP残差变化量
NPP residual change per unit area [104 g(C)·a-1·m-2]
-3 0.60 0.11 62.82 1.05
-2 0.92 0.17 -178.53 -1.94
-1 0.87 0.16 103.16 1.19
1 2.70 0.49 -439.77 -1.63
2 0.64 0.12 -13.46 -0.21
3 1.40 0.25 37.51 0.27
4 0.81 0.15 -9.53 -0.12
面积变化小于0.01×104 hm2的未在表格中表示。Areas with a change less than 0.01×104 hm2 are not represented in the table.


下载: 导出CSV
表4滦河流域不同区域驱动因子对植被NPP变化的影响
Table4.Influence of driving factor in different areas on vegetation NPP changes of the Luanhe River Basin
驱动因素
Driving factor
全域
Global scope
平原区
Plain area
低山丘陵区
Low hilly area
中高山区
Middle-high mountain area
面积
Area
(×104hm2)
比例
Proportion (%)
面积
Area (×104hm2)
比例
Proportion
(%)
面积
Area (×104hm2)
比例
Proportion (%)
面积
Area
(×104hm2)
比例
Proportion
(%)
气候和人类共同正向驱动
Positive driving of climate and human
193.90 35.79 7.76 1.43 86.49 15.96 99.65 18.39
气候的正向驱动
Positive drive of climate positive
69.89 12.90 4.31 0.80 48.84 9.02 16.74 3.09
人类活动的正向驱动
Positive drive of human
80.18 14.80 5.61 1.04 55.57 10.26 19.00 3.51
气候和人类共同反向驱动
Negative drive of climate and human
9.43 1.74 6.30 1.16 0.80 0.15 2.33 0.43
气候的反向驱动
Negative drive of climate
31.83 5.88 17.80 3.29 6.44 1.19 7.59 1.40
人类活动的反向驱动
Negative drive of human
16.91 3.12 7.79 1.44 2.96 0.55 6.16 1.14


下载: 导出CSV

参考文献(32)
[1]卢伟, 范文义, 田甜. 不同步长尺度下BEPS碳循环模型的协同应用[J]. 应用生态学报, 2016, 27(9): 2771-2778 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201609006.htm
LU W, FAN W Y, TIAN T. Collaborative application of BEPS at different time steps[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2771-2778 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201609006.htm
[2]冯险峰, 孙庆龄, 林斌. 区域及全球尺度的NPP过程模型和NPP对全球变化的响应[J]. 生态环境学报, 2014, 23(3): 496-503 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201403020.htm
FENG X F, SUN Q L, LIN B. NPP process models applied in regional and global scales and responses of NPP to the global change[J]. Ecology and Environmental Sciences, 2014, 23(3): 496-503 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201403020.htm
[3]蒋冲, 王飞, 穆兴民, 等. 气候变化对渭河流域自然植被净初级生产力的影响研究(Ⅱ)——渭河流域自然植被净初级生产力的研究[J]. 干旱区资源与环境, 2013, 27(5): 53-57 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201305009.htm
JIANG C, WANG F, MU X M, et al. Effect of climate change on net primary productivity (NPP) of natural vegetation in Wei river basin (Ⅱ). NPP of natural vegetation in Wei river basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(5): 53-57 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201305009.htm
[4]袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541-550 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405002.htm
YUAN W P, CAI W W, LIU D, et al. Satellite-based vegetation production models of terrestrial ecosystem: An overview[J]. Advances in Earth Science, 2014, 29(5): 541-550 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405002.htm
[5]周磊, 李刚, 贾德伟, 等. 基于光能利用率模型的河南省冬小麦单产估算研究[J]. 中国农业资源与区划, 2017, 38(6): 108-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201706015.htm
ZHOU L, LI G, JIA D W, et al. Yield estimation of winter wheat in Henan province based on the vegetation photosynthesis model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(6): 108-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201706015.htm
[6]平晓莹, 马俊, 刘淼, 等. 基于VPM模型的长白山自然保护区植被总初级生产力动态变化[J]. 应用生态学报, 2019, 30(5): 1589-1598 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201905022.htm
PING X L, MA J, LIU M, et al. Dynamics of gross primary productivity with VPM model in Changbai Mountain Natural Reserve, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1589-1598 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201905022.htm
[7]赵苗苗, 刘熠, 杨吉林, 等. 基于HASM的中国植被NPP时空变化特征及其与气候的关系[J]. 生态环境学报, 2019, 28(2): 215-225 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201902001.htm
ZHAO M M, LIU Y, YANG J L, et al. Spatio-temporal patterns of NPP and its relations to climate in China based on HASM[J]. Ecology and Environmental Sciences, 2019, 28(2): 215-225 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201902001.htm
[8]杨会巾, 李小玉, 刘丽娟, 等. 基于耦合模型的干旱区植被净初级生产力估算[J]. 应用生态学报, 2016, 27(6): 1750-1758 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606006.htm
YANG H J, LI X Y, LIU L J, et al. Estimation of net primary productivity in arid region based on coupling model[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1750-1758 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606006.htm
[9]CHEN J M, JU W M, CIAIS P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink[J]. Nature Communications, 2019, 10(1): 4259 doi: 10.1038/s41467-019-12257-8
[10]PAYNE N J, CAMERON D A, LEBLANC J D, et al. Carbon storage and net primary productivity in Canadian boreal mixed wood stands[J]. Journal of Forestry Research, 2019, 30(5): 1667-1678 doi: 10.1007/s11676-019-00886-0
[11]LAL R. Carbon cycling in global drylands[J]. Current Climate Change Reports, 2019, 5(3): 221-232 doi: 10.1007/s40641-019-00132-z
[12]LEES K J, QUAIFE T, ARTZ R R E, et al. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years[J]. Journal of Environmental Management, 2019, 246: 594-604 doi: 10.1016/j.jenvman.2019.03.040
[13]仲晓春, 陈雯, 刘涛, 等. 2001~2010年中国植被NPP的时空变化及其与气候的关系[J]. 中国农业资源与区划, 2016, 37(9): 16-22 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201609004.htm
ZHONG X C, CHEN W, LIU T, et al. Spatial and temporal change of vegetation net primary productivity and its relationship with climate from 2001 to 2010 in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 16-22 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201609004.htm
[14]姬盼盼, 高敏华, 杨晓东. 中国西北部干旱区NPP驱动力分析——以新疆伊犁河谷和天山山脉部分区域为例[J]. 生态学报, 2019, 39(8): 2995-3006 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201908035.htm
JI P P, GAO M H, YANG X D. Analysis of NPP driving force in an arid region of Northwest China: A case study in Yili Valley and parts of Tianshan Mountains, Xinjiang, China[J]. Acta Ecologica Sinica, 2019, 39(8): 2995-3006 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201908035.htm
[15]赵晓, 周文佐, 田罗, 等. 土地利用变化对三峡库区重庆段植被净初级生产力的影响[J]. 生态学报, 2018, 38(21): 7658-7668 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201821015.htm
ZHAO X, ZHOU W Z, TIAN L, et al. Effects of land-use changes on vegetation net primary productivity in the Three Gorges Reservoir Area of Chongqing[J]. Acta Ecologica Sinica, 2018, 38(21): 7658-7668 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201821015.htm
[16]乔旭宁, 顾羊羊, 邹长新, 等. 基于夜间灯光数据的太湖流域城镇扩张对净初级生产力的影响研究[J]. 生态学报, 2018, 38(16): 5883-5893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201816027.htm
QIAO X N, GU Y Y, ZOU C X, et al. The impact of urban expansion on net primary productivity in the Taihu Lake basin based on nighttime light images[J]. Acta Ecologica Sinica, 2018, 38(16): 5883-5893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201816027.htm
[17]王芳, 汪左, 张运. 2000-2015年安徽省植被净初级生产力时空分布特征及其驱动因素[J]. 生态学报, 2018, 38(8): 2754-2767 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201808014.htm
WANG F, WANG Z, ZHANG Y. Spatio-temporal variations in vegetation Net Primary Productivity and their driving factors in Anhui Province from 2000 to 2015[J]. Acta Ecologica Sinica, 2018, 38(8): 2754-2767 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201808014.htm
[18]王钊, 李登科. 2000-2015年陕西植被净初级生产力时空分布特征及其驱动因素[J]. 应用生态学报, 2018, 29(6): 1876-1884 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201806019.htm
WANG Z, LI D K. Spatial-temporal distribution of vegetation net primary productivity and its driving factors from 2000 to 2015 in Shaanxi, China[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1876-1884 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201806019.htm
[19]陈强, 陈云浩, 王萌杰, 等. 2001-2010年黄河流域生态系统植被净第一性生产力变化及气候因素驱动分析[J]. 应用生态学报, 2014, 25(10): 2811-2818 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201410007.htm
CHEN Q, CHEN Y H, WANG M J, et al. Change of vegetation net primary productivity in Yellow River watersheds from 2001 to 2010 and its climatic driving factors analysis[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2811-2818 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201410007.htm
[20]杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响[J]. 生态学报, 2018, 38(13): 4789-4799 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201813024.htm
DU M J, ZHENG J H, REN X, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(13): 4789-4799 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201813024.htm
[21]陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例[J]. 地理学报, 2016, 71(1): 35-48 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201601003.htm
CHEN X L, ZENG Y N. Spatial and temporal variability of the net primary production (NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China: A case study in Hunan Province[J]. Acta Geographica Sinica, 2016, 71(1): 35-48 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201601003.htm
[22]安妮, 宁小莉, 海全胜, 等. 基于MODIS数据的近15年浑善达克沙地植被净初级生产力时空分布研究[J]. 干旱区资源与环境, 2020, 34(4): 168-175 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004027.htm
AN N, NING X L, HAI Q S, et al. Optical model for estimating the spatial and temporal distribution of vegetation net primary productivity in HunShandake Sandyland in recent 15 years[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 168-175 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004027.htm
[23]张芳, 熊黑钢, 冯娟, 等. 基于遥感的新疆人工绿洲扩张中植被净初级生产力动态变化[J]. 农业工程学报, 2017, 33(12): 194-200 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201712025.htm
Zhang F, Xiong H G, Feng J, et al. Dynamic change of net primary productivity during process of new artificial oasis expansion in Xinjiang based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12): 194-200 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201712025.htm
[24]刘刚, 孙睿, 肖志强, 等. 2001-2014年中国植被净初级生产力时空变化及其与气象因素的关系[J]. 生态学报, 2017, 37(15): 4936-4945 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201715002.htm
LIU G, SUN R, XIAO Z Q, et al. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014[J]. Acta Ecologica Sinica, 2017, 37(15): 4936-4945 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201715002.htm
[25]左丽媛, 高江波, 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4): 686-694 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202004006.htm
ZUO L Y, GAO J B. Quantitative attribution analysis of NPP in Karst peak cluster depression based on geographical detector[J]. Ecology and Environmental Sciences, 2020, 29(4): 686-694 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202004006.htm
[26]孙锐, 陈少辉, 苏红波. 2000-2016年黄土高原不同土地覆盖类型植被NDVI时空变化[J]. 地理科学进展, 2019, 38(8): 1248-1258 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201908013.htm
SUN R, CHEN S H, SU H B. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016[J]. Progress in Geography, 2019, 38(8): 1248-1258 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201908013.htm
[27]徐勇, 孙晓一, 汤青. 陆地表层人类活动强度: 概念、方法及应用[J]. 地理学报, 2015, 70(7): 1068-1079 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201507005.htm
XU Y, SUN X Y, TANG Q. Human activity intensity of land surface: Concept, method and application in China[J]. Acta Geographica Sinica, 2015, 70(7): 1068-1079 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201507005.htm
[28]盛晓雯, 曹银贵, 周伟, 等. 京津冀地区土地利用变化对生态系统服务价值的影响[J]. 中国农业资源与区划, 2018, 39(6): 79-86 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201806012.htm
SHENG X W, CAO Y G, ZHOU W, et al. Impact of land use change on ecosystem service value in Beijing-Tianjin-Hebei Region[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(6): 79-86 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201806012.htm
[29]郭灵辉, 郝成元, 吴绍洪, 等. 内蒙古草地NPP变化特征及其对气候变化敏感性的CENTURY模拟研究[J]. 地理研究, 2016, 35(2): 271-284 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201602007.htm
GUO L H, HAO C Y, WU S H, et al. Analysis of changes in net primary productivity and its susceptibility to climate change of Inner Mongolian grasslands using the CENTURY model[J]. Geographical Research, 2016, 35(2): 271-284 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201602007.htm
[30]李登科, 王钊. 基于MOD17A3的中国陆地植被NPP变化特征分析[J]. 生态环境学报, 2018, 27(3): 397-405 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201803001.htm
LI D K, WANG Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data[J]. Ecology and Environmental Sciences, 2018, 27(3): 397-405 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201803001.htm
[31]李肖, 袁金国, 孟丹. 河北省2005-2014年植被NPP时空演变及其与气候因子的关系[J]. 水土保持研究, 2018, 25(6): 109-114 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201806016.htm
LI X, YUAN J G, MENG D. Spatiotemporal distribution of vegetation net primary productivity and its relationship with climate factors in Hebei Province from 2005 to 2014[J]. Research of Soil and Water Conservation, 2018, 25(6): 109-114 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201806016.htm
[32]刘婵, 刘冰, 赵文智, 等. 黑河流域植被水分利用效率时空分异及其对降水和气温的响应[J]. 生态学报, 2020, 40(3): 888-899 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202003014.htm
LIU C, LIU B, ZHAO W Z, et al. Temporal and spatial variability of water use efficiency of vegetation and its response to precipitation and temperature in Heihe River Basin[J]. Acta Ecologica Sinica, 2020, 40(3): 888-899 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202003014.htm

相关话题/生态 图片 人类 自然 资源