Wang-MüllerQiyan2, 3,,,
WillerHelga2,
FuchsJacques2
1.Research Institute of Organic Agriculture (FiBL), Vienna A-1010, Austria
2.Research Institute of Organic Agriculture (FiBL), Frick CH-5070, Switzerland
3.Swiss Chinese Herbal Medicine and Functional Food Innovation Center (SwissHerbs), Zürich CH-8008, Switzerland
详细信息 中图分类号:S345;[X171.3]
计量
文章访问数:797
HTML全文浏览量:26
PDF下载量:865
被引次数:0
出版历程
收稿日期:2020-06-19
录用日期:2020-07-20
刊出日期:2021-03-01
Innovation in agroecological and organic farming systems
Niggli Urs1,,Wang-Müller Qiyan2, 3,,,
Willer Helga2,
Fuchs Jacques2
1. Research Institute of Organic Agriculture(FiBL), Vienna A-1010, Austria
2. Research Institute of Organic Agriculture(FiBL), Frick CH-5070, Switzerland
3. Swiss Chinese Herbal Medicine and Functional Food Innovation Center(SwissHerbs), Zürich CH-8008, Switzerland
More Information
Author Bio:Urs Niggli, E-mail: urs.niggli@fibl.org
Corresponding author:Qiyan Wang-Müller, E-mail: qiyan.wang-mueller@swissherbs.org
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:现代农业系统在明显提高产量、保证粮食安全的同时,也对人类健康和地球的可持续性产生了影响。在持续不断的严重环境破坏和自然资源毁坏的背景下,建立可持续的农业生产方式至关重要。生态农业和有机农业是减少生态可持续性和生产力及社会可持续之间权衡关系的重要方法。这两种农业方法都属生态集约化范畴,均具有减少环境污染的巨大潜力;然而,生态农业和有机农业常导致产量降低。虽然产量降低带来的损失可以通过改变人们的饮食习惯来弥补(如减少食物浪费、减少食用精饲料喂养的肉类),但是,由于全球的发展趋势与之相反,因此本文探讨了通过科学研究寻求新的解决方案前景来提高低投入农业系统作物产量的可能性。为权衡生产力与可持续发展的关系,使生态农业和有机农业有助于粮食安全,我们对未来研究提出5点建议:1)农场和田地的景观设计与复合种植模式、2)数字化技术的应用、3)以农田低投入为目标的作物育种、4)农业废弃物的高质量循环利用和5)非化学作物保护。
关键词:生态农业/
生产力/
有机农业/
系统导向性研究
Abstract:In light of major ongoing environmental damage and the destruction of natural resources, developing a truly sustainable mode of agricultural production is of great importance. Among different ways to reduce trade-offs between ecological sustainability and productivity, we present the approaches taken by agro-ecological and organic farmers. Both fall within the narrative of ecological intensification. According to finding of many previous scientific meta-analyses, both have a great potential to reduce environmental pollution. However, these very positive effects unfortunately result in lower yields. These could be compensated for by changing people's eating habits (e.g. less food waste, less meat consumption from concentrate-fed livestock). However, since global developments and trends are moving in exactly the opposite direction, this paper examines the possibilities of improving the yields of low-input farming systems through scientific research and the outlook for finding new productive solutions. Here we outline the significant potential in the redesign and differentiation of farms and fields including landscapes, in digitalization, the promotion of low-input breeding programs, high quality recycling of organic matter, and non-chemical crop protection.
Key words:Agroecology/
Productivity/
Organic farming/
System-oriented research
HTML全文
Figure1.Different concepts of sustainable food production. The concepts differ regarding the relationship between productivity and ecological footprint. The size of the circle symbolizes the productivity and the intensity of the green color the excellence in ecology and environment (schematically). Organic agriculture spreads over all three concepts, depending on the intensity and the production sector.
下载: 全尺寸图片幻灯片
参考文献
ALEXANDRATOS N, BRUINSMA J. 2012. World agriculture towards 2030/2050: the 2012 revision[R]. FAO, Rome |
ALTIERI M A, FARRELL J G, HECHT S B, et al. 1996. Agroecology: the Science of Sustainable Agriculture[M]. 2nd ed. Westview Press. Boulder, USA |
ANTONIOU N, MONLAU F, SAMBUSITI C, et al. 2019. Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery[J]. Journal of Cleaner Production, 209: 505-514 doi: 10.1016/j.jclepro.2018.10.055 |
ARMENGOT L, BARBIERI P, ANDRES C, et al. 2016. Cacao agroforestry systems have higher return on labor compared to full-sun monocultures[J]. Agronomy for Sustainable Development, 36(4): 70 doi: 10.1007/s13593-016-0406-6 |
AZIM K, SOUDI B, BOUKHARI S, et al. 2018. Composting parameters and compost quality: a literature review[J]. Organic agriculture, 8(2): 141-158 doi: 10.1007/s13165-017-0180-z |
BEKCHANOV M, MIRZABAEV A. 2018. Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health[J]. Journal of Cleaner Production, 202: 1107-1119 doi: 10.1016/j.jclepro.2018.08.186 |
BONANOMI G, LORITO M, VINALE F, et al. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression[J]. Annual Review of Phytopathology, 56: 1-20 doi: 10.1146/annurev-phyto-080615-100046 |
BORRELLO M, CARACCIOLO F, LOMBARDI A, et al. 2017. Consumers' perspective on circular economy strategy for reducing food waste[J]. Sustainability, 9(1): 141 doi: 10.3390/su9010141 |
BURNEY J A, DAVIS S J, LOBELL D B. 2010. Greenhouse gas mitigation by agricultural intensification[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(26): 12052-12057 doi: 10.1073/pnas.0914216107 |
CHAPAGAIN T, PUDASAINI R, GHIMIRE B, et al. 2018. Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal[J]. Field Crops Research, 227: 91-101 doi: 10.1016/j.fcr.2018.07.016 |
DE SCHUTTER O. 2010. Report submitted by the Special Rapporteur on the right of food, Oliver de Schutter[R/OL]. (2020-12-17). https://www2.ohchr.org/english/issues/food/docs/a-hrc-16-49.pdf |
European Commission. 2019. A European Green Deal[EB/OL]. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en |
FAO. 2018. FAO's Work on Agroecology-A Pathway to Achieving the SDGs[R/OL]. http://www.fao.org/3/i9021en/I9021EN.pdf |
FILHO F H I, HELDENS W B, KONG Z D, et al. 2020. Drones: Innovative technology for use in precision pest management[J]. Journal of Economic Entomology, 113(1): 1-25 doi: 10.1093/jee/toz268 |
FUCHS J F, BERNER A, MAYER J, et al. 2014. Concept for quality management to secure the benefits of compost use for soil and plants[J]. Acta Horticulture, 1018: 603-609 http://smartsearch.nstl.gov.cn/paper_detail.html?id=0faa3d1721a0cb180f34a837b0c54a02 |
FUCHS J. 2010. Interactions between beneficial and harmful microorganisms: from the composting process to compost application[M]//INSAM H, FRANKE-WHITTLE I, GOBERNA M, eds. Microbes at Work: From Wastes to Resources. Berlin Heidelberg: Springer-Verlag, 213-229 |
GARNETT T, APPLEBY M C, BALMFORD A, et al. 2013. Sustainable intensification in agriculture: Premises and policies[J]. Science, 341(6141): 33-34 doi: 10.1126/science.1234485 |
GLIESSMAN S R. 2006. Agroecology: the Ecology of Sustainable Food Systems[M]. 3rd ed. CRC Press, Taylor & Francis Group. London & New York |
HLPE, 2019. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition[R]. Rome |
JUN H, XIANG H. 2011. Development of circular economy is a fundamental way to achieve agriculture sustainable development in China[J]. Energy Procedia, 5: 1530-1534 doi: 10.1016/j.egypro.2011.03.262 |
KOCH E, HERZ A, KLEESPIES R G, et al. 2019. Statusbericht Biologsicher Pflanzenschutz 2018[R]. Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Biologischen Pflanzenschutz, Quedlinburg |
LA VIA CAMPESINA. 2018. Report of the 7th Conference[R/OL]. https://viacampesina.org/en |
MASULLO A. 2017. Organic wastes management in a circular economy approach: Rebuilding the link between urban and rural areas[J]. Ecological Engineering, 101: 84-90 doi: 10.1016/j.ecoleng.2017.01.005 |
MEEMKEN E-M, QAIM M. 2018. Organic agriculture, food security, and the environment[J]. Annual Review of Resource Economics, 10: 39-63 doi: 10.1146/annurev-resource-100517-023252 |
MüLLER A, SCHADER C, SCIALABBA N E H, et al. 2017. Strategies for feeding the world more sustainably with organic agriculture[J]. Nature Communications, 8: 1290 doi: 10.1038/s41467-017-01410-w |
NIGGLI U. 2015. Incorporating agroecology into organic research-an ongoing challenge[J]. Sustainable Agriculture Research, 4(3): 149-157 doi: 10.5539/sar.v4n3p149 |
NOBLE R, COVENTRY E. 2005. Suppression of soil-borne plant diseases with composts: A review[J]. Biocontrol Science and Technology, 15: 3-20 doi: 10.1080/09583150400015904 |
OECD. 2003. Glossary of Statistical Terms[R/OL]. https://stats.oecd.org/glossary/detail.asp?ID=81 |
PARMENTIER S. 2014. Scaling-up Agroecological Approaches: What, Why and How?[R]. Oxfam-Solidarity, Belgium |
PAWELCZYK A. 2005. EU policy and legislation on recycling of organic waste to agriculture[J]. International Society for Animal Hygiene, 1: 64-71 |
PERGOLA M, PERSIANI A, PALESE A M, et al. 2018. Composting: The way for a sustainable agriculture[J]. Applied Soil Ecology, 123: 744-750 doi: 10.1016/j.apsoil.2017.10.016 |
PRETTY J, BENTON T G, BHARUCHA Z P, et al. 2018. Global assessment for agricultural system redesign for sustainable intensification[J]. Nature Sustainability, 1(8): 441-446 doi: 10.1038/s41893-018-0114-0 |
ROSSET P M, SOSA B M, ROQUE JAIME A M, et al. 2011. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty[J]. The Journal of PEASANT STUDIES, 38(1): 161-191 doi: 10.1080/03066150.2010.538584 |
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. 2019. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution: 3(3): 430-439 http://www.ncbi.nlm.nih.gov/pubmed/30718852 |
SCHADER C, MULLER A, SCIALABBA N E, et al. 2015. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability[J]. Journal of the Royal Society Interface, 12(113): 1-12 http://pubmedcentralcanada.ca/pmcc/articles/PMC4707862/ |
SEUFERT V, RAMANKUTTY N. 2017. Many shades of gray—The context-dependent performance of organic agriculture[J]. Science Advances, 3(3): e1602638 doi: 10.1126/sciadv.1602638 |
STEFFEN W, RICHARDSON K, ROCKSTR?M J, et al. 2015. Planetary boundaries: Guiding human development on a changing planet[J]. Science, 347(6223): 1259855 doi: 10.1126/science.1259855 |
TISCHLER W. 1965. Agrar?kologie[M]. Jena, Germany: Gustav Fischer Verlag, 499 |
TITS M, ELSEN A, BRIES J, et al. 2014. Short-term and long-term effects of vegetable, fruit and garden waste compost applications in an arable crop rotation in Flanders[J]. Plant and Soil, 376: 43-59 doi: 10.1007/s11104-012-1318-0 |
TITTONELL P. 2014. Ecological intensification of agriculture—sustainable by nature[J]. Current Opinion in Environmental Sustainability, 8: 53-61 doi: 10.1016/j.cosust.2014.08.006 |
TOOP T A, WARD S, OLDFIELD T, et al. 2017. AgroCycle—developing a circular economy in agriculture[J]. Energy Procedia, 123: 76-80 doi: 10.1016/j.egypro.2017.07.269 |
TWN, SOCLA. 2015. Agroecology: Key Concepts, Principles and Practices[R/OL]. SOCLA, Berkeley, USA. https://foodfirst.org/agroecology-key-concepts-principles-and-practices/ |
WEITHMANN N, M?LLER J N, L?DER M G J, et al. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 4(4): eaap8060 doi: 10.1126/sciadv.aap8060 |
WEZEL A, BELLON S, DORé T, et al. 2009. Agroecology as a science, a movement and a practice. A review[J]. Agronomy for Sustainable Development, 29(4): 503-515 doi: 10.1051/agro/2009004 |
WILLER H, SCHLATTER B, TRÁVNÍČEK J, et al. 2020. The World of Organic Agriculture Statistics and Emerging Trends 2020[M/OL]. https://www.fibl.org/fileadmin/documents/shop/5011-organic-world-2020.pdf |