删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

低碳绩效测度与动态效应研究——以山东省种植业为例

本站小编 Free考研考试/2022-01-01

杨滨键1, 2,,
孙红雨3,,
1.贵州民族大学商学院 贵阳 550025
2.东北林业大学经济管理学院 哈尔滨 150040
3.贵州大学经济学院 贵阳 550025
基金项目: 国家自然科学基金项目71573036
国家社会科学基金重点项目17AZD012

详细信息
作者简介:杨滨键, 研究领域为农业经济学、资源环境经济学、碳会计。E-mail: yangbj919@163.com
通讯作者:研究领域为国际合作理论与政治、生态经济学。E-mail: 287033449@qq.com
中图分类号:F323.22

计量

文章访问数:183
HTML全文浏览量:11
PDF下载量:196
被引次数:0
出版历程

收稿日期:2020-04-13
录用日期:2020-12-10
刊出日期:2021-03-01

Low carbon performance measurement and dynamic effects: A case study of the planting industry in Shandong Province

YANG Binjian1, 2,,
SUN Hongyu3,,
1. Business School of Guizhou Minzu University, Guiyang 550025, China
2. College of Economics and Management, Northeast Forestry University, Harbin 150040, China
3. Economics School of Guizhou University, Guiyang 550025, China
Funds: the National Natural Science Foundation of China71573036
the National Social Science Foundation of China17AZD012

More Information
Corresponding author:SUN Hongyu, E-mail: 287033449@qq.com


摘要
HTML全文
(2)(8)
参考文献(14)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:温室效应的加剧已经严重影响到人类社会的生存与发展,根据IPCC数据显示,农业温室气体占全球人为排放的13.5%,鉴于山东省农业在我国的重要地位,本文以在农业产值中占比最高的种植业为样本,对山东省低碳绩效展开研究,为山东省种植业低碳发展之路提供参考。本文在测算山东省种植业碳排放量、碳汇量、碳排放强度以及碳排放边际减排成本的基础上,运用DEA-Malmquist模型测算了种植业低碳绩效水平,接着研究了低碳驱动与约束对山东省种植业低碳绩效的动态影响效应。通过研究发现,2000年到2018年山东省种植业碳排放总量和碳汇总量年均增幅分别为0.26%和1.74%,而碳排放强度和减排成本年均降低6.12%和2.10%。低碳绩效指数增长较慢,年均增长速度为3.00%,其主要驱动来源于技术进步。低碳约束目标与低碳驱动手段是种植业低碳绩效变动的直接原因,种植业碳排放强度对种植业低碳绩效具有一定的抑制作用,低碳驱动手段对种植业低碳绩效具有正向促进作用,且低碳驱动手段对种植业的低碳绩效贡献更大。进而提出了制定种植业低碳法律法规与提升财政支持有效性的低碳发展建议。
关键词:减排成本/
低碳绩效/
驱动与约束/
山东/
种植业
Abstract:Increased greenhouse effects have seriously affected the survival and development of human society. Data from the Intergovernmental Panel on Climate Change (IPCC) indicates that agricultural greenhouse gases account for 13.5% of global anthropogenic emissions. This study investigated the planting industry in Shandong Province, China, which accounts for the highest proportion of agricultural output, to provide policy recommendations that should help the planting industry in the province follow a low-carbon development path. This study measured carbon emission, carbon sinks, carbon emission intensity, and the marginal cost of carbon emission reduction; used the DEA Malmquist model to measure the low-carbon performance level; and investigated the dynamic effects of low-carbon driving and constraint on the low-carbon performance of the planting industry in Shandong Province. The results showed that from 2000 to 2018, the carbon emission and carbon sink of planting industry in Shandong Province increased 0.26% and 1.71% averagely every year, while carbon emission intensity and marginal cost of carbon emission reduction decreased 3.12% and 2.10%, respectively. The low-carbon performance index increased slowly with an annual increasing rate of 3.00%, which mainly was driven by the efficiency of technology change. The low-carbon constraint goals and low-carbon drivers were the direct reasons of low-carbon performance change of the planting industry. The carbon emission intensity and low-carbon constraint goals had negative and passive effects on the low-carbon performance of plant industry, respectively. The low-carbon constraint goals played a more important role in the low-carbon performance of plant industry of Shandong Province. The findings of this study suggest that low-carbon development can be achieved by formulating low-carbon laws and regulations and improving the effectiveness of financial support.
Key words:Cost of emission reduction/
Low-carbon performance/
Drive and constraint/
Shandong Province/
Planting industry

HTML全文


图1山东省种植业低碳绩效PVAR模型解释变量的AR根图
Figure1.AR root graph of explanatory variable of PVAR model for low-carbon performance of planting industry in Shandong Province


下载: 全尺寸图片幻灯片


图2山东省种植业低碳绩效(ML)对净碳汇效应(a)、碳排放强度(b)和低碳驱动手段(c)的脉冲响应
Figure2.Impulse response of low-carbon performance of planting industry (ML) of Shandong Province to the shocks of net carbon sink effect (a), carbon emission intensity (b) and low-carbon driving means (c)


下载: 全尺寸图片幻灯片

表1农业种植业不同类型碳源的碳排放系数[9]
Table1.Carbon emission coefficients of different carbon sources of planting industry of agriculture[9]
碳源
Carbon source
碳排放系数
Carbon emission coefficient
农药 Pesticides 4.9341 kg (C)·kg-1
农膜 Agricultural film 5.1800 kg (C)·kg-1
化肥 Chemical fertilizer 0.8956 kg (C)·kg-1
农业灌溉 Agricultural irrigation 266.4800 kg (C)·hm-2
农业翻耕 Agricultural ploughing 312.6000 kg (C)·hm-2
农用柴油 Agricultural diesel oil 0.5927 kg (C)·kg-1


下载: 导出CSV
表2种植业农作物含水量、经济系数与碳吸收率[12]
Table2.Water contents, economic coefficients and carbon absorption rates of crops[12]
农作物
Crop
含水量
Water
content
经济系数
Economic coefficient
碳吸收率
Carbon
absorption rate
小麦 Wheat 0.12 0.40 0.485
稻谷 Unhusked rice 0.12 0.45 0.414
玉米 Corn 0.13 0.40 0.471
谷子 Millet 0.12 0.42 0.450
高粱 Sorghum 0.12 0.35 0.450
薯类 Tubers 0.70 0.70 0.423
棉花 Cotton 0.08 0.10 0.450
花生 Peanut 0.10 0.43 0.450
油菜籽 Rapeseed 0.10 0.25 0.450
烟叶 Tobacco 0.85 0.55 0.450
蔬菜 Vegetables 0.90 0.60 0.450


下载: 导出CSV
表32000—2018年山东省种植业碳排放、碳汇、碳排放强度与碳排放边际减排成本
Table3.Carbon emission, carbon sink, carbon emission intensity and marginal carbon emission reduction cost of Shandong Province in 2000-2018
年份
Year
碳汇总量
Total carbon sink
(×104 t)
碳排放总量
Total carbon emissions
(×104 t)
碳排放强度
Carbon emission intensity
[kg×(104¥)-1]
碳排放边际减排成本
Marginal cost of carbon emission reduction
(¥×t-1)
20005446.461119.56758.598.62
20015455.561140.32749.038.33
20025102.541167.59764.397.59
20035143.651165.36740.107.25
20045587.271183.21656.466.86
20056163.101235.12615.196.57
20066630.011282.74586.796.20
20076728.391288.77539.845.62
20087091.251257.94440.745.91
20097415.331253.79410.905.86
20107506.081266.37357.685.86
20117705.211265.16339.775.79
20127399.181250.48317.925.48
20136969.861236.14276.805.50
20147161.821217.69257.515.39
20157064.991205.43243.325.34
20166847.591186.14229.615.44
20177169.861180.50268.105.80
20187095.171146.39245.055.54
种植业碳排放强度=种植业碳排放量/种植业产值。Carbon emission intensity of planting industry = carbon emission of planting industry / output value of planting industry.


下载: 导出CSV
表42001—2018年山东省种植业低碳绩效动态特征
Table4.Dynamic characteristics of low-carbon performance of planting industry in Shandong Province from 2001 to 2018
年份
Year
effchtechchpechsechML
20011.0010.9821.0001.0010.983
20021.0000.9681.0001.0000.968
20031.0001.0321.0001.0001.032
20041.0001.0561.0001.0001.056
20051.0001.0541.0001.0001.054
20061.0001.0271.0001.0001.027
20071.0001.0741.0001.0001.074
20080.9991.0591.0000.9991.057
20091.0001.0480.9991.0011.048
20101.0011.0831.0011.0011.085
20110.9981.0240.9981.0001.022
20121.0001.0111.0010.9991.011
20131.0001.0541.0001.0001.054
20141.0011.0361.0001.0011.038
20151.0001.0261.0001.0001.026
20161.0001.0121.0001.0001.012
20171.0000.9621.0001.0000.962
20181.0001.0391.0001.0001.039
均值Mean1.0001.0301.0001.0001.030
Effch: 技术效率; techch: 技术变化效率; pech: 纯技术效率; sech: 规模效率; ML: 种植业低碳绩效。Effch: technical efficiency; techch: efficiency of technological change; pech: pure technical efficiency; sech: scale efficiency; ML: low-carbon performance of planting industry.


下载: 导出CSV
表5山东省种植业低碳绩效与解释变量面板单位根检验
Table5.Panel unit root test of low-carbon performance and explanatory variables in Shandong Province
变量
Variable
LLC-检验 LLC-testADF-检验 ADF-testPP-检验 PP-test平稳性
Stationarity
统计量
Statistic
P统计量
Statistic
P统计量
Statistic
P
ML0.53680.704312.01340.999810.17381.0000非平稳Nonstationary
DML-20.44650.0000280.74200.0000424.01400.0000平稳Stable
PFQD-3.30010.000516.12900.99609.83001.0000非平稳Nonstationary
DPFQD-4.94170.000057.98530.0063140.01600.0000平稳Stable
ZHXY-18.57590.000036.07320.371829.69280.6788非平稳Nonstationary
DZHXY-28.75450.000086.52020.0000143.43700.0000平稳Stable
CZZC-4.97370.000031.77950.576917.81570.9899非平稳Nonstationary
DCZZC-7.94130.0000114.61900.0000229.30800.0000平稳Stable
ML: 种植业低碳绩效; DML: 种植业低碳绩效一阶差分; PFQD: 碳排放强度; DPFQD: 碳排放强度一阶差分; ZHXY: 净碳汇; DZHXY: 净碳汇一阶差分; CZZC: 财政支农力度; DCZZC: 财政支农力度一阶差分。ML: low-carbon performance of planting industry; DML: first order difference analysis of low-carbon performance of planting industry; PFQD: carbon emission intensity; DPFQD: first order difference of carbon emission intensity; ZHXY: net carbon sink; DZHXY: first order difference of net carbon sink; CZZC: financial support for agriculture; DCZZC: first order difference of financial support for agriculture.


下载: 导出CSV
表6山东省种植业低碳绩效PVAR模型的GMM参数估计表
Table6.GMM parameter estimation table of PVAR model for low-carbon performance of planting industry in Shandong Province
MLPFQDZHXYCZZC
L.ML-0.1226(0.0492)**-0.2578(0.0823)***-0.0565(0.2828)3.4689(0.6014)***
L.PFQD-0.0936(0.0798)**1.0632(0.1430)***1.9397(0.4841)***-8.3289(1.0770)***
L.ZHXY0.0054(0.0079)**0.0158(0.0113)0.0504(0.0231)**-0.0141(0.0656)
L.CZZC0.0202(0.0079)**-0.0330(0.0139)**-0.0100(0.0513)-0.3716(0.0768)***
括号内数据为标准误差。ML: 种植业低碳绩效; PFQD: 碳排放强度; ZHXY: 净碳汇; CZZC: 财政支农力度; “L.”表示变量滞后1期。*、**和***分别表示在P < 10%、P < 5%和P < 1%水平显著。Data in the bracket is standard error; ML: low-carbon performance of planting industry; PFQD: carbon emission intensity; ZHXY: net carbon sink; CZZC: financial support for agriculture. “L.” indicates that the variable lags one period. *, **, and *** mean significant at the levels of P < 10%, P < 5%, and P < 1%, respectively.


下载: 导出CSV
表7山东省种植业低碳绩效的格兰杰因果关系检验结果
Table7.Granger causality test on low-carbon performance of planting industry in Shandong Province
原假设 Original hypothesisChi2P结果 Result
PFQD不是ML的格兰杰成因
PFQD is not the Granger cause of ML
4.3750.041拒绝**
Refuse**
ML不是PFQD的格兰杰成因
ML is not the Granger cause of PFQD
9.8180.002拒绝***
Refuse***
ZHXY不是ML的格兰杰成因
ZHXY is not the Granger cause of ML
5.4680.020拒绝**
Refuse**
ML不是ZHXY的格兰杰成因
ML is not the Granger cause of ZHXY
0.0400.842接受
Accept
CZZC不是ML的格兰杰成因
CZZC is not the Granger cause of ML
6.5460.011拒绝**
Refuse**
ML不是CZZC的格兰杰成因
ML is not the Granger cause of CZZC
33.2680.000拒绝***
Refuse***
ML: 种植业低碳绩效; PFQD: 碳排放强度; ZHXY: 净碳汇; CZZC: 财政支农力度。***、**和*分别表示在P < 1%、P < 5%和P < 10%水平显著。ML: low-carbon performance of planting industry; PFQD: carbon emission intensity; ZHXY: net carbon sink; CZZC: financial support for agriculture. ***, ** and * mean significance at P < 1%, P < 5% and P < 10% levels, respectively.


下载: 导出CSV
表8山东省种植业低碳绩效方差分解分析
Table8.Variance decomposition analysis of low-carbon performance of planting industry in Shandong Province
时期
Period
种植业低碳绩效 ML 碳排放强度
PFQD
净碳汇
ZHXY
财政支农力度
CZZC
1 1.0000 0.0000 0.0000 0.0000
2 0.7815 0.0334 0.0099 0.0530
3 0.6984 0.0322 0.0164 0.0845
4 0.6812 0.0395 0.0161 0.0833
5 0.6712 0.0389 0.0180 0.0825
6 0.6624 0.0387 0.0178 0.0814
7 0.6585 0.0394 0.0177 0.0809
8 0.6570 0.0399 0.0177 0.0808
9 0.6564 0.0400 0.0178 0.0807
10 0.6559 0.0400 0.0177 0.0807
11 0.6557 0.0400 0.0177 0.0807
12 0.6555 0.0400 0.0177 0.0808
13 0.6555 0.0400 0.0177 0.0808
14 0.6554 0.0400 0.0177 0.0807
15 0.6553 0.0400 0.0177 0.0807
16 0.6552 0.0400 0.0177 0.0807
ML: low-carbon performance of planting industry; PFQD: carbon intensity; ZHXY: net carbon sink; CZZC: financial support for agriculture.


下载: 导出CSV

参考文献(14)
[1]董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273 doi: 10.3321/j.issn:1002-6819.2008.10.055
DONG H M, LI Y E, TAO X P, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the CSAE, 2008, 24(10): 269-273 doi: 10.3321/j.issn:1002-6819.2008.10.055
[2]董明涛. 我国低碳农业发展效率的评价模型及其应用[J]. 资源开发与市场, 2016, 32(8): 944-948 doi: 10.3969/j.issn.1005-8141.2016.08.010
DONG M T. Evaluation model of low carbon agricultural development efficiency and its application in China[J]. Resource Development & Market, 2016, 32(8): 944-948 doi: 10.3969/j.issn.1005-8141.2016.08.010
[3]NSIAH C, FAYISSA B. Trends in agricultural production efficiency and their implications for food security in Sub-saharan African countries[J]. African Development Review, 2019, 31(1): 28-42 doi: 10.1111/1467-8268.12361
[4]吴贤荣, 张俊飚, 朱烨, 等. 中国省域低碳农业绩效评估及边际减排成本分析[J]. 中国人口·资源与环境, 2014, 24(10): 57-63 doi: 10.3969/j.issn.1002-2104.2014.10.009
WU X R, ZHANG J B, ZHU Y, et al. Performance evaluation and marginal emission reduction cost analysis of China's provincial low carbon agriculture[J]. China's Population, Resources and Environment, 2014, 24(10): 57-63 doi: 10.3969/j.issn.1002-2104.2014.10.009
[5]胡颖梅, 江玉国, 范莉莉. 论政府低碳规制体系构建[J]. 企业经济, 2016, (4): 41-46 https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201604009.htm
HU Y M, JIANG Y G, FAN L L. On the construction of government's low carbon regulation system[J]. Enterprise Economy, 2016, (4): 41-46 https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201604009.htm
[6]宋蕾. 低碳规制的"效率困境"内生性因素分析——基于"认知-态度-行为"模型的调研[J]. 社会科学, 2012, (9): 34-40 https://www.cnki.com.cn/Article/CJFDTOTAL-SHKX201209006.htm
SONG L. Efficiency dilemma of governmental regulations in low-carbon governance[J]. Journal of Social Sciences, 2012, (9): 34-40 https://www.cnki.com.cn/Article/CJFDTOTAL-SHKX201209006.htm
[7]尚杰, 杨滨键. 种植业碳源、碳汇测算与净碳汇影响因素动态分析: 山东例证[J]. 改革, 2019, (6): 123-134 https://www.cnki.com.cn/Article/CJFDTOTAL-REFO201906012.htm
SHANG J, YANG B J. Estimation of carbon source and carbon sequestration in planting industry and dynamic analysis of influencing factors of net carbon sequestration: A case study of Shandong Province[J]. Reform, 2019, (6): 123-134 https://www.cnki.com.cn/Article/CJFDTOTAL-REFO201906012.htm
[8]杨滨键, 田景仁, 孙红雨. 农业生产碳足迹影响因素研究——基于SVAR模型[J]. 生态经济, 2019, 35(8): 120-127 https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201908022.htm
YANG B J, TIAN J R, SUN H Y. Study on the factors influencing the carbon footprint of agricultural production based on the SVAR model[J]. Ecological Economy, 2019, 35(8): 120-127 https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201908022.htm
[9]IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. (2012-12-01). http://www.ipcc-nggip.iges.or.jp/public/2006gl/
[10]谢鸿宇, 陈贤生, 林凯荣, 等. 基于碳循环的化石能源及电力生态足迹[J]. 生态学报, 2008, 28(4): 1729-1735 doi: 10.3321/j.issn:1000-0933.2008.04.044
XIE H Y, CHEN X S, LIN K R, et al. The ecological footprint analysis of fossil energy and electricity[J]. Acta Ecologica Sinica, 2008, 28(4): 1729-1735 doi: 10.3321/j.issn:1000-0933.2008.04.044
[11]韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 612-619 doi: 10.3321/j.issn:1000-0933.2008.02.020
HAN B, WANG X K, LU F, et al. Carbon sequestration status and potential of farmland soil ecosystem in China[J]. Acta Ecologica Sinica, 2008, 28(2): 612-619 doi: 10.3321/j.issn:1000-0933.2008.02.020
[12]李克让. 土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 北京: 气象出版社, 2002
LI K R. Land Use Change and Net Greenhouse Gas Emissions and Terrestrial Ecosystem Carbon Cycle[M]. Beijing: Meteorological Publishing House, 2002
[13]WANG K, XIAN Y J, LEE C Y, et al. On selecting directions for directional distance functions in a non-parametric framework: A review[J]. Annals of Operations Research, 2019, 278(1/2): 43-76 doi: 10.1007/s10479-017-2423-5
[14]鲁涛, 周晶. 基于投入要素生产效率变化的Malmquist指数分解方法[J]. 统计与决策, 2010, (17): 20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201017006.htm
LU T, ZHOU J. Malmquist index decomposition method based on input factor productivity change[J]. Statistics and Decision, 2010, (17): 20-22 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201017006.htm

相关话题/农业 财政 检验 生态 技术