马玉玲2,
钱晓燕1,
王智巧1,
陈雅丽1,
翁莉萍1,,,
李永涛1, 3
1.农业农村部环境保护科研监测所/农产品质量安全环境因子控制重点实验室 天津 300191
2.天津大学地球系统科学学院 天津 300072
3.华南农业大学资源环境学院 广州 510642
基金项目: 国家重点研发计划项目2016YFD0800102
国家自然科学基金项目41701262
详细信息
作者简介:马杰, 主要研究方向为土壤污染修复。E-mail:majie@caas.cn
通讯作者:翁莉萍, 主要研究方向为土壤界面过程。E-mail:wengliping@caas.cn
中图分类号:X13计量
文章访问数:297
HTML全文浏览量:10
PDF下载量:747
被引次数:0
出版历程
收稿日期:2020-06-17
录用日期:2020-09-07
刊出日期:2021-01-01
Phosphorus adsorption onto ferrihydrite and predicting colloidal phosphorus transport
MA Jie1,,MA Yuling2,
QIAN Xiaoyan1,
WANG Zhiqiao1,
CHEN Yali1,
WENG Liping1,,,
LI Yongtao1, 3
1. Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs/Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Tianjin 300191, China
2. School of Earth System Science, Tianjin University, Tianjin 300072, China
3. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Funds: the National Key Research and Development Program of China2016YFD0800102
the National Natural Science Foundation of China41701262
More Information
Corresponding author:WENG Liping, E-mail:wengliping@caas.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土壤中流失的磷进入水体容易引起富营养化污染。目前对于铁矿物胶体结合态磷在土壤孔隙介质中的稳定性和迁移能力的认识还存在不足。本研究采用吸附试验,考察水铁矿对磷的吸附特征以及pH、离子强度和胡敏酸对磷在液相、水铁矿胶体和水铁矿固体上分布的影响;通过DLVO理论,预测水铁矿胶体结合态磷的稳定性和迁移能力。结果表明,假二级动力学模型(R2=0.964)更适合用于描述磷在水铁矿上的吸附过程,磷在水铁矿上的吸附受液膜扩散、内部扩散和化学吸附等过程控制。Freundlich模型(R2=0.970)对等温吸附的拟合效果好,说明水铁矿对磷的吸附为多层吸附过程。从Langmuir模型参数可知,水铁矿对磷的最大理论吸附量为22.55 mg?g-1。水铁矿对磷的吸附能力随pH的升高而降低,随离子强度的升高而升高。然而,低离子强度和高pH有利于反应体系中水铁矿胶体的释放。无论胡敏酸是否存在,在碱性且离子强度不高(1~10 mmol?L-1)的条件下,有约5%~20%的磷会与水铁矿胶体结合,且这些磷-水铁矿胶体之间的静电斥力较大。根据DLVO理论计算可知,这些带负电荷的胶体之间稳定性较好,在土壤中有一定迁移能力。在实际农业活动中,磷肥的过量施用可能会使大量的磷酸根离子吸附在铁矿物上,促进土壤孔隙水中形成稳定的、带负电的铁矿物胶体,这种磷-铁矿物复合胶体的迁移很可能成为磷迁移的另一种形式。本研究结果可为胶体促进下磷淋失风险评估提供理论和数据支撑。
关键词:土壤磷/
水铁矿/
吸附/
胶体态磷/
DLVO
Abstract:Losing soil phosphorus to aquatic environments often causes eutrophication; however, the stability and transport of colloidal phosphorus, especially amorphous iron colloid-bound phosphorus in porous soil, is poorly understood. In this study, adsorption experiments were conducted to investigate phosphorus adsorption onto ferrihydrite. The effects of pH, ionic strength, and humic acid (HA) on the dissolved phosphorus distribution and colloidal and solid ferrihydrite adsorbed phosphorus were explored. Ferrihydrite colloid-bound phosphorus stability was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to predict the transport of colloidal complexes. The results showed that the pseudo-second-order kinetic model (R2 = 0.964) best described the phosphorus onto ferrihydrite adsorption process. Adsorption was controlled by liquid film diffusion as well as internal diffusion, and chemisorption. The Freundlich model (R2 = 0.970) was a better fit for isothermal adsorption than the Langmuir model (R2 = 0.842), indicating that phosphorus onto ferrihydrite adsorption was multi-layer; however, the parameters of Langmuir model revealed that the maximum theoretical phosphorus onto ferrihydrite adsorption capacity was 22.55 mg?g-1. Phosphorus adsorption onto ferrihydrite decreased with increasing pH and decreasing ionic strength; low ionic strength and high pH were considered beneficial for releasing ferrihydrite colloids. Approximately 5%–20% phosphorus bound to ferrihydrite colloids in alkaline and low ionic strength conditions (1–10 mmol?L-1) regardless of HA, and the electrostatic repulsion between ferrihydrite-phosphorus colloids was notably. According to the DLVO theory, the colloids were stable and easily transported in the soil pores due to their negative surface charge. Negatively charged ferrihydrite colloids can transport long distances in negatively charged water-bearing media, such as soil or aquifer. In agricultural activities, excessive phosphate fertilizer application may cause large amounts of phosphate ion loading onto iron minerals and promote the formation of stable, negatively charged iron mineral colloids. Ferrihydrite-phosphorus colloid transport is likely to become another form of phosphorus leaching. Thus, this study investigated ferrihydrite-phosphorus colloid generation and stability in variable pH, ionic strength, and HA conditions, qualitatively predicted their transport, and assessed colloid-facilitated phosphorus loss risk. However, in complex soil systems, chelation and precipitation of co-existing ions may alter the fate of ferrihydrite-phosphorus colloids, which needs further investigation.
Key words:Soil phosphorus/
Ferrihydrite/
Adsorption/
Colloid phosphorus/
Derjguin-Landau-Verwey-Overbeek (DLVO)
HTML全文

图1磷在水铁矿上吸附的动力学(a)和吸附等温(b)模型
Figure1.Adsorption kinetics (a) and adsorption isotherm (b) models of phosphorus adsorption on ferrihydrite


图2不同pH和离子强度下水铁矿胶体zeta电位(a)、粒径(b)和质量(c)变化
Figure2.Changes in zeta potential (a), particle size (b), and mass (c) of ferrihydrite colloid under different pH and ionic strength


图3不同pH和离子强度下水铁矿吸附磷能力(a)及磷在水铁矿固相、胶体相和液相中的分布(b)
PL、PC和PS分别为液相磷、胶体相磷和固相吸附磷。
Figure3.Adsorption of phosphorus on ferrihydrite (a) and the distribution of phosphorus in solid, colloidal, and liquid phases of ferrihydrite (b) under different pH and ionic strength
PL, PC, and PS represent phosphorus fractions in solution, colloid, and solid, respectively.


图4不同pH和离子强度下吸附磷和HA之后的水铁矿胶体zeta电位(a)、粒径(b)和质量(c)变化
Figure4.Effect of humic acid on the zeta potential (a), particle size (b), and mass (c) of ferrihydrite colloid under different pH and ionic strength


图5不同pH和离子强度下胡敏酸对水铁矿吸附磷(a)及磷在水铁矿固相、胶体相和液相中分布(b)的影响
PL、PC和PS分别为液相磷、胶体相磷和固相吸附磷。
Figure5.Effect of humic acie on the adsorption of phosphorus on ferrihydrite (a) and the distribution of phosphorus in solid, colloidal, and liquid phases of ferrihydrite (b) under different pH and ionic strength
PL, PC, and PS represent phosphorus fractions in solution, colloid, and solid, respectively.


图6pH、离子强度和胡敏酸水铁矿胶体之间DLVO作用力的影响
Figure6.Effect of pH, ionic strength, and humic acid on DLVO force between ferrihydrite colloid

表1磷在水铁矿上吸附的动力学和吸附等温模型拟合参数
Table1.Fitting parameters for kinetics and adsorption isothermal models of phosphorus adsorption on ferrihydrite
模型 Model | 参数 Parameter | 数值 Value |
假一级动力学 Pseudo-first-order dynamics | k1(h-1) | 4.18 |
qe1(mg·g-1) | 8.85 | |
R2 | 0.945 | |
假二级动力学 Pseudo-second-order dynamics | k2[g·(mg·h)-1] | 0.74 |
qe2(mg·g-1) | 9.14 | |
R2 | 0.964 | |
Langmuir 吸附等温 Langmuir adsorption isotherm | b (L·mg-1) | 1.1 |
Qm(mg·g-1) | 22.55 | |
R2 | 0.842 | |
Freundilich 吸附等温 Freundilich adsorption isotherm | KF[(mg·g-1)?(L·mg-1)-n] | 11.7 |
n | 5.03 | |
R2 | 0.970 | |
qe1和qe2分别为假一级动力学模型和假二级动力学模型的平衡吸附量; k1和k2分别是假一级动力学模型和假二级动力学模型的速率常数; Qm表示单层最大吸附量; b为Langmuir模型吸附能相关常数; KF是吸附能力常数; n是Freundlich模型吸附能相关常数; R2为模型拟合的相关系数。qe1 and qe2 are the equilibrium adsorption quantity of the pseudo-first-order and pseudo-second-order kinetic models, respectively; k1 and k2 are the rate constants of the pseudo-first-order and pseudo-second-order kinetic models, respectively; Qm is the maximum monolayer absorption capacity; b is the constant of adsorption energy for Langmuir model; KF is the constant of adsorption capacity; n is the constant of adsorption energy for Freundlich model; R2 is the correlation coefficient for models. |

参考文献
[1] | HOLFORD I C R. Soil phosphorus:its measurement, and its uptake by plants[J]. Australian Journal of Soil Research, 1997, 35(2):227-240 doi: 10.1071/S96047 |
[2] | SATTARI S Z, BOUWMAN A F, GILLER K E, et al. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6348-6353 doi: 10.1073/pnas.1113675109 |
[3] | LI H, HUANG G, MENG Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1/2):157-167 http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s11104-011-0909-5&link_type=DOI |
[4] | VON WANDRUSZKA R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility[J]. Geochemical Transactions, 2006, 7(1):6 doi: 10.1186/1467-4866-7-6 |
[5] | 马玉玲, 马杰, 陈雅丽, 等.水铁矿及其胶体对砷的吸附与吸附形态[J].环境科学, 2018, 39(1):179-186 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801024.htm MA Y L, MA J, CHEN Y L, et al. Arsenic adsorption and its species on ferrihydrite and ferrihydrite colloid[J]. Environmental Science, 2018, 39(1):179-186 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801024.htm |
[6] | 崔蒙蒙, 刘锋, 黄天寅, 等.水铁矿吸附磷酸根的影响因素[J].环境工程学报, 2017, 11(4):2285-2290 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201704046.htm CUI M M, LIU F, HUANG T Y, et al. Influence factors of ferrihydrite adsorbing phosphate radical[J]. Chinese Journal of Environmental Engineering, 2017, 11(4):2285-2290 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201704046.htm |
[7] | ANTELO J, ARCE F, FIOL S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410:53-62 doi: 10.1016/j.chemgeo.2015.06.011 |
[8] | MA Y L, MA J, PENG H, et al. Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil:Farmland investigation and aging experiments[J]. Journal of Soils and Sediments, 2019, 19(12):3994-4004 doi: 10.1007/s11368-019-02354-y |
[9] | DAS S, HENDRY M J, ESSILFIE-DUGHAN J. Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions[J]. Applied Geochemistry, 2013, 28:185-193 doi: 10.1016/j.apgeochem.2012.10.026 |
[10] | SAJIH M, BRYAN N D, LIVENS F R, et al. Adsorption of radium and barium on goethite and ferrihydrite:A kinetic and surface complexation modelling study[J]. Geochimica et Cosmochimica Acta, 2014, 146:150-163 doi: 10.1016/j.gca.2014.10.008 |
[11] | MA J, GUO H M, WENG L P, et al. Distinct effect of humic acid on ferrihydrite colloid-facilitated transport of arsenic in saturated media at different pH[J]. Chemosphere, 2018, 212:794-801 doi: 10.1016/j.chemosphere.2018.08.131 |
[12] | SAXENA K, BRIGHU U, CHOUDHARY A. Coagulation of humic acid and kaolin at alkaline pH:Complex mechanisms and effect of fluctuating organics and turbidity[J]. Journal of Water Process Engineering, 2019, 31:100875 doi: 10.1016/j.jwpe.2019.100875 |
[13] | WANG D J, BRADFORD S A, HARVEY R W, et al. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid[J]. Journal of Hazardous Materials, 2012, 229/230:170-176 doi: 10.1016/j.jhazmat.2012.05.089 |
[14] | MA J, GUO H M, LEI M, et al. Enhanced transport of ferrihydrite colloid by chain-shaped humic acid colloid in saturated porous media[J]. Science of the Total Environment, 2018, 621:1581-1590 doi: 10.1016/j.scitotenv.2017.10.070 |
[15] | WENG L P, VAN RIEMSDIJK W H, HIEMSTRA T. Humic nanoparticles at the oxide-water interface:Interactions with phosphate ion adsorption[J]. Environmental Science & Technology, 2008, 42(23):8747-8752 |
[16] | KOSMULSKI M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature[J]. Advances in Colloid and Interface Science, 2009, 152(1/2):14-25 |
[17] | KOSMULSKI M. IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides[J]. Advances in Colloid and Interface Science, 2012, 171/172:77-86 doi: 10.1016/j.cis.2012.01.005 |
[18] | ANGELICO R, CEGLIE A, HE J Z, et al. Particle size, charge and colloidal stability of humic acids coprecipitated with ferrihydrite[J]. Chemosphere, 2014, 99:239-247 doi: 10.1016/j.chemosphere.2013.10.092 |
[19] | LIAO P, LI W L, WANG D J, et al. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions[J]. Water Research, 2017, 109:347-357 doi: 10.1016/j.watres.2016.11.069 |
[20] | 王智巧, 马杰, 陈雅丽, 等.不同环境条件下水铁矿和针铁矿纳米颗粒稳定性[J].环境科学, 2020, 41(5):2292-2300 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202005036.htm WANG Z Q, MA J, CHEN Y L, et al. Stability of ferrihydrite and goethite nanoparticles under different environmental conditions[J]. Environmental Science, 2020, 41(5):2292-2300 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202005036.htm |
[21] | BAKEN S, REGELINK I C, COMANS R N J, et al. Iron-rich colloids as carriers of phosphorus in streams:A field-flow fractionation study[J]. Water Research, 2016, 99:83-90 doi: 10.1016/j.watres.2016.04.060 |
[22] | MISSONG A, HOLZMANN S, BOL R, et al. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility[J]. Science of the Total Environment, 2018, 634:305-315 doi: 10.1016/j.scitotenv.2018.03.265 |
[23] | PANG L P, LAFOGLER M, KNORR B, et al. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media[J]. Science of the Total Environment, 2016, 550:60-68 doi: 10.1016/j.scitotenv.2016.01.075 |
[24] | VANDEVOORT A R, LIVI K J, ARAI Y. Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols[J]. Geoderma, 2013, 206:101-111 doi: 10.1016/j.geoderma.2013.04.024 |
[25] | 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2016 BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing:China Agriculture Press, 2016 |
[26] | 王慧.铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究[D].武汉: 华中农业大学, 2015 WANG H. Phosphate adsorption on iron oxides and iron oxides-humic acid complexes[D]. Wuhan: Huazhong Agricultural University, 2015 |
[27] | ANTELO J, ARCE F, AVENA M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1/2):12-19 |
[28] | 陈雯, 刘玲, 周建伟.三种氧化铁吸附水环境中砷的试验研究[J].环境科学与技术, 2009, 32(1):63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200901019.htm CHEN W, LIU L, ZHOU J W. Experimental study on adsorption of arsenic in aqueous system with three iron oxides[J]. Environmental Science & Technology, 2009, 32(1):63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200901019.htm |
[29] | KOOPAL L K. Mineral hydroxides:From homogeneous to heterogeneous modelling[J]. Electrochimica Acta, 1996, 41(14):2293-2305 doi: 10.1016/0013-4686(96)00059-X |
[30] | DENG Y X, LI Y T, LI X J, et al. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite[J]. Chemosphere, 2018, 199:617-624 doi: 10.1016/j.chemosphere.2018.02.018 |
[31] | 姜军, 徐仁扣.离子强度对三种可变电荷土壤表面电荷和Zeta电位的影响[J].土壤, 2015, 47(2):422-426 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201502034.htm JIANG J, XU R K. Effects of ionic strengths on surface charge and ζ potential of three variable charge soils[J]. Soil, 2015, 47(2):422-426 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201502034.htm |
[32] | PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:Role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17):6532-6549 http://www.ncbi.nlm.nih.gov/pubmed/20687602 |
[33] | CHITRAKAR R, TEZUKA S, SONODA A, et al. Phosphate adsorption on synthetic goethite and akaganeite[J]. Journal of Colloid and Interface Science, 2006, 298(2):602-608 |
[34] | 王慧, 易珊, 付庆灵, 等.铁氧化物-胡敏酸复合物对磷的吸附吸附[J].植物营养与肥料学报, 2012, 18(5):1144-1152 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201205014.htm WANG H, YI S, FU Q L, et al. Phosphorus adsorption of iron oxides-humic acid compounds[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5):1144-1152 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201205014.htm |
[35] | QIAN X Y, MA J, WENG L P, et al. Influence of agricultural organic inputs and their aging on the transport of ferrihydrite nanoparticles:From enhancement to inhibition[J]. Science of the Total Environment, 2020, 719:137440 http://www.researchgate.net/publication/339366783_Influence_of_agricultural_organic_inputs_and_their_aging_on_the_transport_of_ferrihydrite_nanoparticles_From_enhancement_to_inhibition |
[36] | WANG D J, JIN Y, JAISI D P. Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media[J]. Environmental Science & Technology, 2015, 49(14):8461-8470 http://www.ncbi.nlm.nih.gov/pubmed/26084013 |