王仕琴1,
陈肖如1, 2,
雷玉平1,
高鹏程3,
胡春胜1,,,
马林1
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.西北农林科技大学水土保持研究所 杨凌 712100
基金项目: 国家重点研发计划项目2016YFD0800102
国家重点研发计划项目2017YFD0800601
国家自然科学基金面上项目41530859
详细信息
作者简介:李晓欣, 主要研究方向为农田氮素循环及环境效应。E-mail:xiaoxin_li@sjziam.ac.cn
通讯作者:胡春胜, 主要从事农田生态系统碳氮水循环和土壤生态过程研究。E-mail:cshu@sjziam.ac.cn
中图分类号:S19计量
文章访问数:239
HTML全文浏览量:9
PDF下载量:161
被引次数:0
出版历程
收稿日期:2020-10-24
录用日期:2020-11-10
刊出日期:2021-01-01
Spatial distribution and changes of nitrate in the vadose zone and underground water in northern China
LI Xiaoxin1,,WANG Shiqin1,
CHEN Xiaoru1, 2,
LEI Yuping1,
GAO Pengcheng3,
HU Chunsheng1,,,
MA Lin1
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, China
Funds: the National Key R&D Program of China2016YFD0800102
the National Key R&D Program of China2017YFD0800601
the National Natural Science Foundation of China41530859
More Information
Corresponding author:HU Chunsheng, E-mail: cshu@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:我国农业生产过程造成的地下水硝酸盐污染问题备受关注,作为硝态氮累积和存储的重要场所和硝酸盐淋失进入地下水的主要通道,包气带土壤中硝酸盐存储分布特征与地下水硝酸盐污染密切相关。本文以北方典型黑土、潮土和褐土区农田为研究对象,建立了北方地下水硝酸盐监测网(东北、华北、西北),通过对不同区域地下水的采样和测定,比较了地下水硝酸盐污染的区域差异,结合历史数据对地下水硝酸盐时空变化进行了分析。进一步选择华北平原作为厚包气带的代表区域,实地取样分析了包气带硝态氮累积存储和分布特征。结果表明:东北黑土区地下水硝酸盐超标率最高,达39.6%;其次为华北潮土区,超标率为19.3%;西北褐土区的地下水硝态氮超标率最低,为14.9%。随时间推移,华北平原区域尺度浅层地下水硝酸盐超标率有增长趋势,2016—2018年403个采样点地下水超标率为18.9%,高于1998年的11.8%。华北平原区域厚包气带硝酸盐存贮总量可达1854万t,粮食种植对区域包气带硝酸盐累积存储的平均贡献率为78.3%;包气带0~6 m是华北平原区硝酸盐存储的主要土层,这部分存储的硝态氮对地下水构成了潜在的威胁。
关键词:面源污染/
区域尺度/
地下水/
包气带/
硝酸盐存储
Abstract:Nitrate leaching from Chinese farmland causes non-point source pollution and is an increasingly serious issue. The vadose zone is an important place for nitrate nitrogen accumulation and storage and a common way for nitrate to leach into the groundwater. Nitrate spatial-temporal changes in the underground water and vadose zones were analyzed in this study. Farmlands in black soil, fluvo-aquic soil, and cinnamon soil in northern China were investigated by monitoring underground water nitrate and water level changes to determine the underground water nitrate contents. The results showed that the black soil region (Northeast China) had the highest groundwater nitrate content with excess standard rate of 39.6%, followed by the fluvo-aquic soil region (North China) (19.3%); the cinnamon soil region (Northwest China) had the lowest rate (14.9%). In the North China Plain, the excess standard rates of nitrate in shallow underground water trended upward over the years; the groundwater nitrate excess standard rate was 11.8% in 1998 and 18.9% from 2016 to 2018. The underground water nitrate excess standard rate was higher in vegetable-planting areas than in grain crop-planting areas. Soil nitrate was distributed and accumulated in the vadose zone before being leached into the underground water. Nitrate accumulation increased with vadose zone thickness; the total nitrate-N storage in the North China Plain deep vadose zone was up to 18.54 million tons. Nitrate accumulated mainly at a depth of 0–6 m, and crop production contributed, on average, 78.3% toward the regional vadose zone nitrate storage.
Key words:Non-point source pollution/
Regional scale/
Ground water/
Vadose zone/
Nitrate storage
HTML全文
图1中国北方地下水硝酸盐监测网点分布
Figure1.Distribution of groundwater nitrate monitoring sites in northern China
下载: 全尺寸图片幻灯片
图2不同区域地下水硝酸盐浓度(a:黑土; b:潮土; c:褐土)
Figure2.Groundwater nitrate concentration at the regional scale (a: black soil; b: fluvo-aquic soil; c: cinnamon soil)
下载: 全尺寸图片幻灯片
图31998年(a)和2016—2018年(b)华北平原(潮土区)不同地貌类型地下水硝酸盐浓度统计特征值变化
Figure3.Changes of nitrate concentration in groundwater of different geomorphic types in the North China Plain (fluvo-aquic soil) in 1998 (a) and 2016-2018 (b)
下载: 全尺寸图片幻灯片
图4华北平原区域尺度包气带硝酸盐的累积存储分布
a:基本粮田包气带土壤硝态氮累积存储分布; b:菜地包气带土壤硝态氮累积存储分布; c:华北平原区浅层地下水埋深空间分布。
Figure4.Soil nitrate accumulation of vadose zone at the regional scale in the North China Plain
a: spatial distribution of soil nitrate accumulation in vadose zone of grain field; b: spatial distribution of soil nitrate accumulation in vadose zone of vegetable field; c: spatial distribution of groundwater table.
下载: 全尺寸图片幻灯片
图5华北平原不同农田类型对区域硝态氮累积的贡献率(a:粮田; b:菜地)
Figure5.Spatial distribution of nitrate contribution rate of different farmland types in the North China Plain (a: grain field; b: vegetable field)
下载: 全尺寸图片幻灯片
表1采样时间与数据收集
Table1.Groundwater sampling and history data collection
土壤类型 Soil type | 采样时间(年-月) Date of sampling (year-month) | 采集样品数 Number of samples | 历史数据数量(年份) Number of history data (year) |
华北潮土Fluvo-aquic soil | 2016-12, 2018-03, 2019-06 | 463 | 221(1998), 172(2005) |
东北黑土Black soil | 2018-07 | 159 | 13(2013) |
西北褐土Cinnamon soil | 2017-03, 2017-10, 2020-06 | 254 | 232(2001) |
下载: 导出CSV
表2华北平原不同地下水埋深区域包气带土壤硝态氮存储量
Table2.NO3--N storage of vadose zone under different groundwater table depths in the North China Plain
地下水埋深 Groundwater table depth (m) | 区域面积 Area (km2) | 粮田?Grain field | 菜地?Vegetable field | |||
种植面积 Planting area (km2) | 硝态氮存储量 Nitrate nitrogen storage (×104 t N) | 种植面积 Planting Area (km2) | 硝态氮存储量 Nitrate nitrogen storage (×104 t N) | |||
2 | 12 712 | 5212 | 55 | 801 | 21 | |
3 | 75 451 | 31 186 | 351 | 4753 | 100 | |
6 | 77 501 | 39 332 | 494 | 9300 | 119 | |
10 | 21 870 | 8967 | 143 | 2078 | 43 | |
16 | 29 114 | 9317 | 197 | 3203 | 58 | |
25 | 20 776 | 6025 | 129 | 1309 | 39 | |
40 | 11 618 | 3486 | 76 | 662 | 19 | |
50 | 957 | 287 | 8 | 55 | 2 |
下载: 导出CSV
参考文献
[1] | 巨晓棠, 刘学军, 张福锁.冬小麦/夏玉米轮作中NO3--N在土壤剖面的累积及移动[J].土壤学报, 2003, 40(4):538-546 doi: 10.3321/j.issn:0564-3929.2003.04.008 JU X T, LIU X J, ZHANG F S. Accumulation and movement of NO3--N in soil profile in winter wheat-summer maize rotation system[J]. Acta Pedologica Sinica. 2003, 40(4):538-546 doi: 10.3321/j.issn:0564-3929.2003.04.008 |
[2] | 同延安, 石维, 吕殿青, 等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报, 2005, 11(4):435-441 doi: 10.3321/j.issn:1008-505X.2005.04.002 TONG Y A, SHI W, LV D Q, et al. Relationship between soil texture and nitrate distribution and accumulation in three types of soil profile in Shaanxi[J]. Plant Nutrition and Fertilizer Science, 2005, 11(4):435-441 doi: 10.3321/j.issn:1008-505X.2005.04.002 |
[3] | 李勇, 赵军, YANG J Y, 等.黑龙江省县域黑土农田土壤氮残留估算[J].农业工程学报, 2011, 27(8):120-125 doi: 10.3969/j.issn.1002-6819.2011.08.020 LI Y, ZHAO J, YANG J Y, et al. Residual soil nitrogen estimation of black soil farmland at county scale in Heilongjiang Province[J]. Transactions of the CSAE, 2011, 27(8):120-125 doi: 10.3969/j.issn.1002-6819.2011.08.020 |
[4] | JU X T, KOU C L, ZHANG F S, et al. Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2006, 143(1):117-125 doi: 10.1016/j.envpol.2005.11.005 |
[5] | ZHOU J Y, GU B J, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6:25088 doi: 10.1038/srep25088 |
[6] | LI Y, LIU H J, HUANG G H, et al. Nitrate nitrogen accumulation and leaching pattern at a winter wheat:Summer maize cropping field in the North China Plain[J]. Environmental Earth Sciences, 2016, 75(2):118 doi: 10.1007/s12665-015-4867-8 |
[7] | 刘宏斌, 张云贵, 李志宏, 等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报, 2005, 42(3):411-418 doi: 10.3321/j.issn:0564-3929.2005.03.010 LIU H B, ZHANG Y G, LI Z H, et al. Nitrate contamination of deep groundwater in rural Plain areas of Beijing[J]. Acta Pedologica Sinica, 2005, 42(3):411-418 doi: 10.3321/j.issn:0564-3929.2005.03.010 |
[8] | ZHENG W B, WANG S Q, TAN K D, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707:136168 doi: 10.1016/j.scitotenv.2019.136168 |
[9] | 中国农业科学院农田灌溉研究所地下肥水组.肥水开采利用调查总结[J].灌溉科技, 1973, (2):29-35 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197302006.htm Underground Water and Fertilizer Group, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences. Investigation of exploitation and utilization of fertility water[J]. Journal of Irrigation and Drainage, 1973, (2):29-35 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197302006.htm |
[10] | 雷文进, 肖振华, 蔡凤岐, 等.江苏省徐州地区肥水的地理分布[J].土壤, 1974, (2):56-63 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA197402001.htm LEI W J, XIAO Z H, CAI F Q, et al. Geographical distribution of fertility water in Xuzhou, Jiangsu Province[J]. Soils, 1974, (2):56-63 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA197402001.htm |
[11] | 河南省地质局水文队.河南省地下肥水普查初步总结[J].灌溉排水学报, 1974, (4):5-8 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197404002.htm Hydrological Team of Henan Geological Bureau. Preliminary summary of underground fertility water survey in Henan Province[J]. Journal of Irrigation and Drainage, 1974, (4):5-8 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197404002.htm |
[12] | 彭祥林, 彭琳, 白志坚, 等.关中地区地下肥水资源分区评价[J].土壤, 1978, (1):21-27 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA197801005.htm PENG X L, PENG L, BAI Z J, et al. Evaluation of underground fertility water resources in Guanzhong Region[J]. Soils, 1978, (1):21-27 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA197801005.htm |
[13] | 孟宪玺, 刘桂琴, 夏玉梅, 等.吉林省的肥水资源和利用问题[J].吉林农业科学, 1980, (3):21-28 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK198003002.htm MENG X X, LIU G Q, XIA Y M, et al. Resources and utilization of the fertility water in Jilin Province[J]. Journal of Northeast Agricultural Sciences, 1980, (3):21-28 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK198003002.htm |
[14] | 河南省地理研究所肥水组.关于肥水分布规律认识的一点发展[J].灌溉排水学报, 1974, (4):21-23 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197404004.htm Feishui Formation, Henan Institute of Geography. An understanding of the distribution underground fertility water[J]. Journal of Irrigation and Drainage, 1974, (4):21-23 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197404004.htm |
[15] | 彭祥林, 彭琳.利用地下肥水资源, 促进农业更大增产[J].化学通报, 1976, (3):27-29 https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB197603009.htm PENG X L, PENG L. Utilize underground fertility water resources, promotes the agriculture production[J]. Chemistry, 1976, (3):27-29 https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB197603009.htm |
[16] | 中国农业科学院农田灌溉研究所肥水室温县赵堡基点, 温县赵堡公社.肥水灌溉在小麦高稳低中的作用——北平皋大队利用肥水的调查[J].灌溉科技, 1977, (1):44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197701008.htm Research site of Zhaobao, Wen County, Fertility Water Laboratory of Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Zhaobao Commune of Wen County. Effects of the fertility water irrigation on wheat yield-investigation on utilization of fertility water in Beipinggao Production Team[J]. Journal of Irrigation and Drainage, 1977, (1):44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS197701008.htm |
[17] | 彭琳, 彭祥林.地下肥水的增产效果和合理利用[J].土壤肥料, 1980, (6):35 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL198006014.htm PENG L, PENG X L. Utilization of underground fertility water on increasing yield[J]. Soil and Fertilizer Sciences in China, 1980, (6):35 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL198006014.htm |
[18] | 田后谋.肥水水质的评价指标[J].地下水, 1986, (4):8-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198604003.htm TIAN H M. Evaluation index on the quality of fertility water[J]. Ground Water, 1986, (4):8-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198604003.htm |
[19] | 张维理, 田哲旭, 张宁, 等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012 ZHANG W L, TIAN Z X, ZHANG N, et al. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in north China[J]. Plant Nutrition and Fertilizer Sciences, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012 |
[20] | ZHANG W L, TIAN Z X, ZHANG N, et al. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems & Environment, 1996, 59(3):223-231 http://europepmc.org/abstract/AGR/IND20619405 |
[21] | 刘宏斌, 雷宝坤, 张云贵, 等.北京市顺义区地下水硝态氮污染的现状与评价[J].植物营养与肥料学报, 2001, 7(4):385-390 doi: 10.3321/j.issn:1008-505X.2001.04.005 LIU H B, LEI B K, ZHANG Y G, et al. Investigation and evaluation on nitrate pollution in groundwater of Shunyi District[J]. Plant Nutrition and Fertilizer Science, 2001, 7(4):385-390 doi: 10.3321/j.issn:1008-505X.2001.04.005 |
[22] | 刘宏斌, 李志宏, 张云贵, 等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006, 43(3):405-413 doi: 10.3321/j.issn:0564-3929.2006.03.008 LIU H B, LI Z H, ZHANG Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing Plain[J]. Acta Pedologica Sinica, 2006, 43(3):405-413 doi: 10.3321/j.issn:0564-3929.2006.03.008 |
[23] | 赵同科, 张成军, 杜连凤, 等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报, 2007, 26(2):779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072 ZHAO T K, ZHANG C J, DU L F, et al. Investigation on nitrate concentration in groundwater in seven provinces (city) surrounding the Bo-Hai Sea[J]. Journal of Agro-Environment Science, 2007, 26(2):779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072 |
[24] | 茹淑华, 张国印, 孙世友, 等.河北省地下水硝酸盐污染总体状况及时空变异规律[J].农业资源与环境学报, 2013, 30(5):48-52 doi: 10.3969/j.issn.1005-4944.2013.05.011 RU S H, ZHANG G Y, SUN S Y, et al. Status of the contamination and spatial-temporal variations of nitrate in groundwater of Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2013, 30(5):48-52 doi: 10.3969/j.issn.1005-4944.2013.05.011 |
[25] | 郭战玲, 沈阿林, 寇长林, 等.河南省地下水硝态氮污染调查与监测[J].农业环境与发展, 2008, 25(5):125-128 doi: 10.3969/j.issn.1005-4944.2008.05.034 GUO Z L, SHEN A L, KOU C L, et al. Investigation and monitoring on nitrate pollution in groundwater of Henan Province[J]. Agro-Environment and Development, 2008, 25(5):125-128 doi: 10.3969/j.issn.1005-4944.2008.05.034 |
[26] | 高新昊, 江丽华, 刘兆辉, 等.山东省农村地区地下水硝酸盐污染现状调查与评价[J].中国农业气象, 2011, 32(1):89-93 doi: 10.3969/j.issn.1000-6362.2011.01.016 GAO X H, JIANG L H, LIU Z H, et al. Investigation and evaluation on nitrate contamination status of groundwater in rural areas of Shandong Province[J]. Chinese Journal of Agrometeorology, 2011, 32(1):89-93 doi: 10.3969/j.issn.1000-6362.2011.01.016 |
[27] | 李文娟, 赵同科, 张成军, 等.北京市集约化农区地下水硝酸盐含量变化分析[J].农业环境科学学报, 2013, 32(7):1445-1450 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201307025.htm LI W J, ZHAO T K, ZHANG C J, et al. Nitrate contamination of groundwater under intensive agricultural regions of Beijing[J]. Journal of Agro-Environment Science, 2013, 32(7):1445-1450 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201307025.htm |
[28] | CHEN J Y, TANG C Y, SAKURA Y, et al. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain[J]. Hydrogeology Journal, 2005, 13(3):481-492 doi: 10.1007/s10040-004-0321-9 |
[29] | 李立娜.吉林玉米带典型区域地下水硝态氮污染状况调查分析[D].长春: 吉林农业大学, 2006 LI L N. Jilin corn belt typical regions groundwater nitrate-nitrogen pollution condition diagnosis[D]. Changchun: Jilin Agricultural University, 2006 |
[30] | YANG R, LIU W J. Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis, Northwest China[J]. Environmental Earth Sciences, 2010, 61(1):123-129 doi: 10.1007/s12665-009-0327-7 |
[31] | 李晓欣, 胡春胜, 雷雨平, 等.应用Geoprobe对河北栾城土壤硝态氮含量进行计算[J].土壤通报, 2006, 37(5):906-908 doi: 10.3321/j.issn:0564-3945.2006.05.017 LI X X, HU C S, LEI Y P, et al. Calculation for the accumulation of nitratenitrogen in a Luancheng soil by Geoprobe[J]. Chinese Journal of Soil Science, 2006, 37(5):906-908 doi: 10.3321/j.issn:0564-3945.2006.05.017 |
[32] | YUAN H J, QIN S P, DONG W X, et al. Denitrification rate and controlling factors for accumulated nitrate in the deep subsoil of intensive farmlands:A case study in the North China Plain[J]. Pedosphere, 2019, 29(4):516-526 doi: 10.1016/S1002-0160(17)60472-7 |
[33] | WANG S Q, WEI S C, LIANG H Y, et al. Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain:A future groundwater quality threat[J]. Journal of Hydrology, 2019, 576:28-40 doi: 10.1016/j.jhydrol.2019.06.012 |
[34] | ASCOTT M J, GOODDY D C, WANG L, et al. Global patterns of nitrate storage in the vadose zone[J]. Nature Communications, 2017, 8:1416 doi: 10.1038/s41467-017-01321-w |
[35] | WICK K, HEUMESSER C, SCHMID E. Groundwater nitrate contamination:Factors and indicators[J]. Journal of Environmental Management, 2012, 111:178-186 http://europepmc.org/articles/PMC3482663/ |
[36] | CHEN J, WU H, QIAN H. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, Northwest China[J]. Exposure and Health, 2016, 8(3):349-359 doi: 10.1007/s12403-016-0208-8 |
[37] | KIRCHMANN H, JOHNSTON A E J, BERGSTR?M L F. Possibilities for reducing nitrate leaching from agricultural land[J]. A Journal of the Human Environment, 2002, 31(5):404-408 doi: 10.1579/0044-7447-31.5.404 |
[38] | MAEDA M, ZHAO B Z, OZAKI Y, et al. Nitrate leaching in an Andisol treated with different types of fertilizers[J]. Environmental Pollution, 2003, 121(3): 477-487 |
[39] | 国务院.国务院关于印发水污染防治行动计划的通知[EB/OL]. (2015-04-16). http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm The State Council. "Ten-Point Water Plan"[EB/OL]. (2015-04-16). http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm |
[40] | DONG Q, DANG T H, GUO S L, et al. Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau[J]. Agricultural Water Management, 2019, 213:803-808 doi: 10.1016/j.agwat.2018.09.026 |
[41] | ZHENG W B, WANG S Q, SPRENGER M, et al. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain[J]. Journal of Hydrology, 2019, 576:466-477 doi: 10.1016/j.jhydrol.2019.06.071 |
[42] | LI F, MIAO Y, ZHANG F, et al. In-season optical sensing improves nitrogen-use efficiency for winter wheat[J]. Soil Science Society of America Journal, 2009, 73(5):1566-1574 doi: 10.2136/sssaj2008.0150 |
[43] | JU X T, LIU X J, ZHANG F S, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China[J]. Ambio:A Journal of the Human Environment, 2004, 33(6):300-305 doi: 10.1579/0044-7447-33.6.300 |
[44] | CHADWICK D, JIA W, TONG Y A, et al. Improving manure nutrient management towards sustainable agricultural intensification in China[J]. Agriculture, Ecosystems & Environment, 2015, 209:34-46 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=103403766&site=ehost-live |
[45] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 doi: 10.1073/pnas.0813417106 |
[46] | MATHIEU O, LEVEQUE J, HéNAULT C, et al. Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques[J]. Soil Biology and Biochemistry, 2006, 38(5):941-951 doi: 10.1016/j.soilbio.2005.08.010 |
[47] | CHEN S M, WANG F H, ZHANG Y M, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3):980-992 doi: 10.1111/1462-2920.14027 |
[48] | QIN S P, HU C S, CLOUGH T J, et al. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0-2 m soil profile[J]. Soil Biology and Biochemistry, 2017, 106:1-8 doi: 10.1016/j.soilbio.2016.12.001 |