符慧娟1,
李星月1,
朱从桦3,
李其勇1,
张鸿2,,
1.四川省农业科学院植物保护研究所/农业部西南作物有害生物综合治理重点实验室 成都 610066
2.四川省农业科学院 成都 610066
3.四川省农业科学院作物研究所 成都 610066
基金项目: 四川省财政创新能力提升工程专项2016GYSH-013
公益性行业(农业)科研专项经费201503127
四川省农业科学院前沿学科研究基金2019QYXK027
成都市科技计划项目019-GH02-00083-HZ
详细信息
作者简介:易军, 主要从事水稻栽培生理研究。E-mail:donnyj123@163.com
通讯作者:张鸿, 主要从事作物栽培与绿色生产技术研究。E-mail:zhh503@163.com
中图分类号:S471计量
文章访问数:179
HTML全文浏览量:11
PDF下载量:130
被引次数:0
出版历程
收稿日期:2020-04-20
录用日期:2020-08-13
刊出日期:2020-12-01
The effects of chemical pesticide reduction on the occurrence of diseases, pests, weeds and rice yield
YI Jun1,,FU Huijuan1,
LI Xingyue1,
ZHU Conghua3,
LI Qiyong1,
ZHANG Hong2,,
1. Institute of Plant Protection, Sichuan Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
2. Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
3. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
Funds: the Special Fund for Financial Innovation Ability Promotion of Sichuan Province2016GYSH-013
the Special Fund for Agro-scientific Research in the Public Interest of China201503127
the Research Fund for Frontier Subjects of Sichuan Academy of Agricultural Sciences2019QYXK027
the Science and Technology Program of Chengdu019-GH02-00083-HZ
More Information
Corresponding author:ZHANG Hong, E-mail:zhh503@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为研究化学农药减量下不同栽培管理措施对水稻田间病虫草害发生及水稻干物质生产及产量的影响,进一步明确减少化学农药施用与水稻产量的关系,采用裂区试验设计,主区因素为2种杂草防治方式[浅旋耕作+常规除草剂用量(浅耕)、深耕耕作+减少30%除草剂用量(深耕)],副区因素为2种病虫防治方式[常规病虫害药剂用量(常规防治)、植物激活蛋白+减少30%病虫害药剂用量(喷施激活蛋白)],副副区因素为秧苗处理方式(未带药移栽、带药移栽),分析测定了田间病虫草害发生、水稻干物质积累与转运、产量及构成因素等指标。结果表明:深耕下,分蘖期和灌浆期田间杂草株数和鲜重较浅耕显著降低,螟虫引起的植株白穗率也明显较浅耕低。浅耕方式下水稻植株带药移栽或喷施激活蛋白后叶瘟病发生情况明显降低。在水稻干物质生产方面,病虫防治方式和杂草防治方式显著或极显著影响茎鞘干物质积累,且显著或极显著影响茎鞘干物质输出量、输出率和转化率;杂草方式、秧苗处理和病虫防治3种方式的互作显著影响茎鞘干物质输出率和转化率;喷施激活蛋白后,齐穗期水稻植株的茎鞘干物质量增加4.0%~19.4%;深耕下,成熟期水稻植株的茎鞘干物质量平均增加7.1%,但在齐穗至成熟阶段的茎鞘干物质输出和转化相对较小。相关性分析表明水稻产量与分蘖期和灌浆期杂草发生情况和叶瘟发生呈显著或极显著负相关。此外,在深耕、带药移栽或喷施植物激活蛋白方式下,减少30%的病虫草害药剂用量后水稻产量没有显著变化。表明通过深耕、带药移栽或喷施植物激活蛋白等病虫草害防治方式,能有效减少水稻的化学农药用量,实现水稻稳产增效。
Abstract:A split-field test was conducted to explore how chemical pesticide reduction affects rice yield. Two weed control methods (shallow rotary tillage with conventional herbicide amounts and deep tillage with 30% less herbicide; main factor), two disease and pest control methods (conventional insecticide and fungicide amounts and plant activator protein application with 30% less insecticide and fungicide; sub-plot factor), and two seedling treatment methods (transplanting with and without pesticides; split-split plot factor) were used to investigate rice diseases, pests, weeds, and dry matter production. The results showed that deep tillage significantly decreased the weed numbers and weight compared to the shallow rotary tillage, and the white panicle rate (caused by the borer) was also significantly lowered. Rice plant leaf blast was significantly reduced by using conventional shallow rotary tillage after transplantation with pesticides or the spraying of plant activator protein. Both the weed control methods and the disease and pest control methods had significant effects on the stem sheath dry matter accumulation, and stem sheath dry matter transformation. The interactions between the weed control methods, disease and pest control methods, and seedling treatment methods significantly affected the stem sheath exportation and dry matter transformation. After the plant activator protein application, the stem sheath dry matter increased by 4.0% to 19.4% at the full heading stage. When deep tillage was used, the stem sheath dry matter increased by an average of 7.1%. However, the stem sheath exportation and dry matter transformation decreased from the full heading to maturity stages. Correlation analysis showed that the rice yield was significantly negatively correlated with weeds (tillering and grain-filling stages) and leaf blast (tillering stage). No effect on the rice yield was observed when strategies such as deep tillage, transplantation with pesticides, or the spraying of plant activator protein were employed with 30% less pesticide. These results suggest that the chemical pesticide amount could be reduced during planting by using control methods such as deep tillage, transplantation with pesticides, or the spraying of plant activator protein, and that the rice yield would remain stable.
HTML全文

图1不同防治方式下稻田病虫害发生情况
T1-T8处理描述见表 1。不同小写字母表示在同一病虫害指标下不同防治方式处理间在P < 0.05水平差异显著。
Figure1.Occurrence of pest and disease in the rice field under different control methods
The meanings of T1-T8 are shown in the table 1. Different lowercase letters indicate significant differences at P < 0.05 level among different control methods for the same index of disease or pest.

表1不同处理病虫草害防治栽培管理方式
Table1.Control methods of disease, pest and weed in rice field of different treatments
处理 Treatment | 杂草防治方式 Weed control (W) | 病虫害防治方式 Disease and pest control (D) | 秧苗处理 Seedling treatment (S) |
T1(W1D1S1) | 浅旋+常规除草剂用量 Shallow rotary tillage with conventional amount of herbicides (W1) | 常规防治病虫药剂用量 Conventional amounts of insecticides and fungicides (D1) | 未带药移栽 Transplanting without pesticides (S1) |
T2(W1D1S2) | 浅旋+常规除草剂用量 Shallow rotary tillage with conventional amount of herbicides (W1) | 常规防治病虫药剂用量 Conventional amounts of insecticides and fungicides (D1) | 带药移栽 Transplanting with pesticides (S2) |
T3(W1D2S1) | 浅旋+常规除草剂用量 Shallow rotary tillage with conventional amount of herbicides (W1) | 70%常规防治病虫药剂用量+激活蛋白 Plant activator protein application with 30% reduction of insecticides and fungicides (D2) | 未带药移栽 Transplanting without pesticides (S1) |
T4(W1D2S2) | 浅旋+常规除草剂用量 Shallow rotary tillage with conventional amount of herbicides (W1) | 70%常规防治病虫药剂用量+激活蛋白 Plant activator protein application with 30% reduction of insecticides and fungicides (D2) | 带药移栽 Transplanting with pesticides (S2) |
T5(W2D1S1) | 深耕+70%常规除草剂用量 Deep tillage with 30% reduction of herbicides (W2) | 常规防治病虫药剂用量 Conventional amounts of insecticides and fungicides (D1) | 未带药移栽 Transplanting without pesticides (S1) |
T6(W2D1S2) | 深耕+70%常规除草剂用量 Deep tillage with 30% reduction of herbicides (W2) | 常规防治病虫药剂用量 Conventional amounts of insecticides and fungicides (D1) | 带药移栽 Transplanting with pesticides (S2) |
T7(W2D2S1) | 深耕+70%常规除草剂用量 Deep tillage with 30% reduction of herbicides (W2) | 70%常规防治病虫药剂用量+激活蛋白 Plant activator protein application with 30% reduction of insecticides and fungicides (D2) | 未带药移栽 Transplanting without pesticides (S1) |
T8(W2D2S2) | 深耕+70%常规除草剂用量 Deep tillage with 30% reduction of herbicides (W2) | 70%常规防治病虫药剂用量+激活蛋白 Plant activator protein application with 30% reduction of insecticides and fungicides (D2) | 带药移栽 Transplanting with pesticides (S2) |

表2不同防治方式对田间杂草株数和鲜重的影响
Table2.Effects of different control methods on plant number and fresh weight of weeds in rice field
时期 Stage | 处理 Treatment | 杂草株数Weed number (plants·m-2) | 杂草鲜重Weed fresh weight (g·m-2) | ||||||
莎草科 Cyperaceae | 阔叶 Broadleaf | 禾本科 Gramineae | 莎草科 Cyperaceae | 阔叶 Broadleaf | 禾本科 Gramineae | ||||
分蘖期 Tillering stage | T1 | 38.4±8.5a | 66.6±11.5a | 14.9±3.8ab | 51.5±11.2a | 31.6±4.6ab | 14.5±1.7a | ||
T2 | 19.6±3.7ab | 64.4±12.5a | 18.1±3.9a | 25.3±4.1bc | 47.1±7.8a | 12.5±3.5ab | |||
T3 | 13.0±3.8b | 46.4±11.0ab | 8.0±2.0bc | 16.2±3.5bc | 27.5±4.1abc | 6.1±1.4bc | |||
T4 | 12.6±2.1b | 39.9±9.5ab | 8.7±2.2abc | 28.9±5.5ab | 19.2±3.2bcd | 4.9±1.1bc | |||
T5 | 5.8±1.8b | 12.5±3.5b | 0.0±0.0c | 2.3±1.6c | 2.2±0.3d | 0.0±0.0c | |||
T6 | 5.2±1.2b | 10.3±1.9b | 0.0±0.0c | 3.2±2.6c | 2.1±0.3d | 0.0±0.0c | |||
T7 | 6.4±1.0b | 24.8±3.9b | 0.9±0.1c | 6.2±1.3bc | 6.1±2.0cd | 0.4±0.1c | |||
T8 | 8.0±2.0b | 23.5±2.6b | 0.9±0.2c | 6.4±1.7bc | 7.1±0.1cd | 0.2±0.0c | |||
F值 F value | 杂草防治 Weed control (W) | 15.4* | 16.7* | 25.3** | 22.5** | 22.8** | 23.3** | ||
病虫防治 Disease and pest control (D) | 3.8 | 0.3 | 2.3 | 1.2 | 1.0 | 3.9 | |||
秧苗处理 Seedling treatment (S) | 1.5 | 0.1 | 0.2 | 0.3 | 0.1 | 0.2 | |||
W×D | 5.8* | 3.8 | 3.6 | 3.1 | 3.3 | 4.6* | |||
W×S | 1.9 | 0.0 | 0.2 | 0.4 | 0.1 | 0.1 | |||
D×S | 1.9 | 0.0 | 0.1 | 3.0 | 1.0 | 0.0 | |||
W×D×S | 1.2 | 0.0 | 0.1 | 3.3 | 1.2 | 0.0 | |||
灌浆期 Grain- filling stage | T1 | 10.2±2.1ab | 11.1±1.8a | 0.0 | 308.3±45.5abc | 149.5±13.4 a | 0.0 | ||
T2 | 12.9±0.8a | 10.2±1.7ab | 0.0 | 569.2±73.0ab | 110.8±10.1 a | 0.0 | |||
T3 | 7.6±1.6ab | 11.1±1.9a | 0.0 | 635.3±85.8a | 79.9±16.8 b | 0.0 | |||
T4 | 7.1±1.8ab | 8.9±1.8ab | 0.0 | 421.7±58.8abc | 67.2±7.2 b | 0.0 | |||
T5 | 3.1±1.5b | 1.3±0.3b | 0.0 | 99.2±21.6c | 0.6±0.0 c | 0.0 | |||
T6 | 2.7±0.3b | 2.7±0.3b | 0.0 | 64.3±15.0c | 4.2±0.7 c | 0.0 | |||
T7 | 5.3±1.0ab | 4.0±1.0ab | 0.0 | 149.7±27.1abc | 1.8±0.2 c | 0.0 | |||
T8 | 4.4±1.3ab | 6.2±0.8ab | 0.0 | 177.5±18.1abc | 8.2±1.5 c | 0.0 | |||
F值 F value | 杂草防治 Weed control (W) | 5.3* | 4.9* | — | 10.8** | 6.1* | — | ||
病虫防治 Disease and pest control (D) | 0.2 | 0.2 | — | 0.6 | 0.5 | — | |||
秧苗处理 Seedling treatment (S) | 0.0 | 0.0 | — | 0.0 | 0.1 | — | |||
W×D | 1.7 | 0.4 | — | 0.0 | 0.6 | — | |||
W×S | 0.1 | 0.3 | — | 0.0 | 0.1 | — | |||
D×S | 0.1 | 0.0 | — | 0.9 | 0.0 | — | |||
W×D×S | 0.1 | 0.0 | — | 1.5 | 0.0 | — | |||
T1-T8处理描述见表 1。同列不同小写字母表示同一生育期不同防治方式处理间在P < 0.05水平差异显著。*和**分别表示在P < 0.05和P < 0.01水平差异显著。The meanings of T1-T8 are shown in the table 1. Different lowercase letters indicate significant differences at P < 0.05 level among different control methods at the same growth stage. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively. |

表3不同防治方式对水稻干物质积累的影响
Table3.Effects of different control methods on dry matter accumulation of rice ?
处理 Treatment | 齐穗期Full heading stage | 成熟期Maturity stage | |||||||
叶 Leaf | 茎鞘 Stem-sheath | 穗 Panicle | 叶 Leaf | 茎鞘 Stem-sheath | 穗 Panicle | ||||
T1 | 2.38±0.23a | 7.20±0.65ab | 2.27±0.39a | 1.29± 0.14a | 4.50±0.11ab | 8.99±0.16a | |||
T2 | 2.06±0.42a | 6.50±0.93b | 2.30±0.76a | 1.28±0.24a | 4.12±0.45b | 8.67±0.67a | |||
T3 | 2.29±0.43a | 8.59±1.82a | 2.23±0.35a | 1.36±0.14a | 4.44±0.24ab | 8.40±1.24a | |||
T4 | 2.25±0.34a | 6.92±0.21ab | 2.78±0.99a | 1.26±0.03a | 4.45±0.74ab | 8.28±0.98a | |||
T5 | 2.45±0.43a | 6.73±1.32ab | 2.70±0.82a | 1.42±0.20a | 4.66±0.53ab | 9.01±0.78a | |||
T6 | 2.14±0.22a | 6.35±0.86b | 2.01±0.46a | 1.34±0.29a | 4.96±0.14a | 8.38±0.65a | |||
T7 | 2.18±0.49a | 6.99±1.04ab | 2.22±0.93a | 1.33±0.13a | 4.68±0.40ab | 8.65±0.11a | |||
T8 | 2.43±0.06a | 7.47±0.46ab | 1.90±0.28a | 1.28±0.14a | 4.40±0.46ab | 7.91±0.21a | |||
F值 F value | 杂草防治 Weed control (W) | 0.4 | 1.4 | 0.7 | 0.2 | 219.5** | 0.2 | ||
病虫防治 Disease and pest control (D) | 0.2 | 9.5* | 0.0 | 0.1 | 0.2 | 2.2 | |||
秧苗处理 Seedling treatment (S) | 0.6 | 2.2 | 0.1 | 1.1 | 0.2 | 2.1 | |||
W×D | 0.1 | 0.2 | 1.7 | 0.3 | 1.7 | 0.0 | |||
W×S | 0.3 | 2.6 | 2.0 | 0.0 | 0.2 | 0.5 | |||
D×S | 2.4 | 0.0 | 0.6 | 0.1 | 0.0 | 0.0 | |||
W×D×S | 0.3 | 1.4 | 0.0 | 0.2 | 1.4 | 0.1 | |||
T1-T8处理描述见表 1。同列不同小写字母表示不同防治方式处理间在P < 0.05水平差异显著。*和**分别表示在P < 0.05和P < 0.01水平差异显著。The meanings of T1-T8 are shown in the table 1. Different lowercases letters indicate significant differences at P < 0.05 level among different control methods. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively. |

表4不同防治方式对水稻叶和茎鞘干物质输出和转化的影响
Table4.Effects of different control methods on dry matter exportation and transformation of rice leaf and stem-sheath
处理 Treatment | 叶Leaf | 茎鞘Stem-sheath | ||||||
输出量 Exportation amount (t·hm-2) | 输出率 Exportation rate (%) | 转化率 Transformation rate (%) | 输出量 Exportation amount (t·hm-2) | 输出率 Exportation rate (%) | 转化率 Transformation rate (%) | |||
T1 | 1.1±0.1a | 45.7±3.2a | 16.2±2.4a | 2.7±0.5b | 37.2±4.1ab | 40.4±9.6bc | ||
T2 | 0.8±0.3a | 37.5±6.7a | 12.2±3.6a | 2.4±0.5bc | 36.4±3.0ab | 37.4±7.7bc | ||
T3 | 0.9±0.3a | 39.8±6.3a | 14.9±3.7a | 4.2±1.6a | 47.2±8.5a | 65.9±16.9a | ||
T4 | 1.0±0.3a | 43.3±7.2a | 18.3±3.0a | 2.5±0.6bc | 35.9±6.3ab | 45.7±13.7b | ||
T5 | 1.0±0.2a | 41.9±2.4a | 16.4±4.0a | 2.1±0.8bc | 29.9±4.8bc | 32.7±12.8bc | ||
T6 | 0.8±0.1a | 38.1±8.2a | 12.8±2.5a | 1.4±0.8c | 21.0±3.5c | 21.6±5.6c | ||
T7 | 0.8±0.4a | 37.6±8.9a | 13.8±3.1a | 2.3±0.6bc | 32.6±4.6bc | 37.1±4.6bc | ||
T8 | 1.2±0.2a | 47.3±7.3a | 19.2±3.6a | 3.1±0.3ab | 41.1±4.5ab | 51.0±5.3ab | ||
F值 F value | 杂草防治 Weed control (W) | 0.2 | 0.1 | 0.0 | 249.3** | 20.8* | 21.5* | |
病虫防治 Disease and pest control (D) | 0.2 | 0.1 | 1.2 | 22.9** | 11.3* | 30.2** | ||
秧苗处理 Seedling treatment (S) | 0.3 | 0.0 | 0.0 | 2.2 | 1.3 | 1.3 | ||
W×D | 0.1 | 0.1 | 0.0 | 0.3 | 2.0 | 0.0 | ||
W×S | 1.1 | 1.5 | 0.2 | 2.5 | 1.1 | 2.2 | ||
D×S | 8.8* | 8.8* | 7.8* | 0.0 | 0.4 | 0.2 | ||
W×D×S | 0.3 | 0.1 | 0.1 | 4.6 | 6.1* | 5.7* | ||
T1-T8处理描述见表 1。同列不同小写字母表示不同防治方式处理间在P < 0.05水平差异显著。*和**分别表示在P < 0.05和P < 0.01水平差异显著。The meanings of T1-T8 are shown in the table 1. Different lowercase letters indicate significant differences at P < 0.05 level among different control methods. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively. |

表5不同防治方式对水稻产量和产量构成的影响
Table5.Effects of different control methods on yield and yield components of rice
处理 Treatment | 有效穗数 No. of effective panicle (×104·hm-2) | 每穗粒数 No. of grains per panicle | 结实率 Seed-setting rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t·hm-2) | |
T1 | 243.8±28.2abc | 162.5±10.9a | 79.5±4.4a | 29.1±0.4a | 8.8±0.8a | |
T2 | 234.9±16.6c | 156.8±11.4 b | 80.3±3.2a | 29.2±0.2a | 8.6±1.3a | |
T3 | 235.5±33.5c | 157.8±7.6ab | 81.8±3.3a | 29.1±0.3a | 8.9±0.7a | |
T4 | 237.3±21.6bc | 154.4±8.1ab | 81.9±5.6a | 29.3±0.3a | 9.0±0.5a | |
T5 | 256.2±21.2ab | 160.2±10.9ab | 81.2±4.7a | 29.2±0.2a | 9.6±0.6a | |
T6 | 263.9±16.8a | 159.9±9.6ab | 79.2±4.6a | 29.1±0.3a | 9.4±0.8a | |
T7 | 236.4±28.6bc | 150.1±20.5b | 82.6±3.5a | 29.3±0.3a | 9.4±0.9a | |
T8 | 231.8±26.4c | 162.0±9.8a | 80.6±3.2a | 29.2±0.2a | 9.5±1.0a | |
F值 F value | 杂草防治 Weed control (W) | 7.3* | 0.0 | 0.0 | 0.3 | 5.8 |
病虫防治 Disease and pest control (D) | 3.5 | 1.7 | 2.8 | 1.4 | 0.3 | |
秧苗处理 Seedling treatment (S) | 0.1 | 0.1 | 0.7 | 0.2 | 0.2 | |
W×D | 4.7* | 0.0 | 0.1 | 0.1 | 0.6 | |
W×S | 0.4 | 4.3* | 1.9 | 2.9 | 0.0 | |
D×S | 0.0 | 2.2 | 0.1 | 0.3 | 2.3 | |
W×D×S | 1.9 | 1.0 | 0.0 | 0.0 | 0.1 | |
T1-T8处理描述见表 1。同列不同小写字母表示不同防治方式处理间在P < 0.05水平差异显著。*和**分别表示在P < 0.05和P < 0.01水平差异显著。The meanings of T1-T8 are shown in the table 1. Different lowercase letters indicate significant differences at P < 0.05 level among different control methods. * and ** mean significant differences at P < 0.05 and P < 0.01 levels, respectively. |

表6稻田病虫草害发生与水稻产量和产量构成因素的相关性
Table6.Correlation between occurrence of diseases, pests, weeds and yield and yield components of rice
时期 Stage | 指标 Index | 有效穗数 Effective panicle number | 每穗粒数 Grains number per panicle | 结实率 Seed-setting rate | 千粒重 1000-grain weight | 产量 Yield | |
分蘖期 Tillering | 杂草株数 Weed number | 莎草科Cyperaceae | -0.45 | 0.12 | -0.07 | -0.19 | -0.86** |
阔叶Broadleaf | -0.38 | -0.02 | 0.02 | -0.12 | -0.91** | ||
禾本科Gramineae | -0.46 | -0.13 | -0.02 | -0.07 | -0.92** | ||
杂草鲜重 Weed fresh weight | 莎草科Cyperaceae | -0.31 | 0.02 | -0.05 | -0.14 | -0.81* | |
阔叶Broadleaf | -0.55 | 0.00 | -0.05 | -0.14 | -0.88** | ||
禾本科Gramineae | -0.37 | -0.04 | -0.02 | -0.18 | -0.93** | ||
叶瘟病 Leaf blast | 发病率Incidence | -0.24 | -0.05 | 0.14 | -0.10 | -0.81* | |
病情指数Disease index | -0.21 | -0.02 | 0.12 | -0.12 | -0.83* | ||
灌浆期 Grain-filling | 杂草株数 Weed number | 莎草科Cyperaceae | -0.48 | -0.14 | 0.05 | -0.07 | -0.93** |
阔叶Broadleaf | -0.44 | 0.07 | -0.05 | -0.32 | -0.85** | ||
禾本科Gramineae | — | — | — | — | — | ||
杂草鲜重 Weed fresh weight | 莎草科Cyperaceae | -0.62 | -0.21 | 0.24 | -0.02 | -0.76* | |
阔叶Broadleaf | -0.33 | 0.19 | -0.33 | -0.48 | -0.88** | ||
禾本科Gramineae | — | — | — | — | — | ||
黄熟期 Yellow ripening | 颈瘟病 Panicle blast | 发病率Incidence | -0.05 | -0.69 | 0.48 | 0.26 | -0.19 |
病情指数Disease index | 0.14 | -0.69 | -0.71* | 0.36 | -0.02 | ||
稻曲病 Rice false smut | 病穗率Diseased panicle rate | -0.43 | -0.29 | -0.79* | 0.74* | 0.24 | |
病粒率Diseased grain rate | -0.17 | -0.45 | -0.81* | 0.71* | 0.40 | ||
整白穗率Whole white panicle rate | 0.22 | 0.12 | -0.39 | -0.32 | -0.51 | ||
部分白穗率Partial white panicle rate | 0.32 | 0.18 | 0.09 | 0.32 | 0.75* | ||
*和**分别表示在P < 0.05和P < 0.01水平显著相关。* and ** mean significant correlation at P < 0.05 and P < 0.01 levels, respectively. |

参考文献
[1] | 郭建平.气候变化对中国农业生产的影响研究进展[J].应用气象学报, 2015, 26(1): 1-11 http://d.wanfangdata.com.cn/Periodical/yyqxxb201501001 GUO J P. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11 http://d.wanfangdata.com.cn/Periodical/yyqxxb201501001 |
[2] | 陈德西, 何忠全, 封传红, 等.水稻主要病害发生区划研究[J].西南农业学报, 2014, 27(3): 1072-1078 http://www.cqvip.com/QK/94396X/201403/61584751.html CHEN D X, HE Z Q, FENG C H, et al. Study on occurrence regionalization of rice major diseases[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1072-1078 http://www.cqvip.com/QK/94396X/201403/61584751.html |
[3] | 董坤, 王海龙, 陈斌, 等.水稻种植管理和多元有害生物为害模式特点及其与水稻产量的关系[J].生态学报, 2009, 29(3): 1140-1152 http://www.cnki.com.cn/Article/CJFDTotal-STXB200903014.htm DONG K, WANG H L, CHEN B, et al. Characterization of patterns of rice cropping practices and multiple pest injury profiles and relation with yield levels[J]. Acta Ecologica Sinica, 2009, 29(3): 1140-1152 http://www.cnki.com.cn/Article/CJFDTotal-STXB200903014.htm |
[4] | 程家安, 祝增荣.中国水稻病虫草害治理60年:问题与对策[J].植物保护学报, 2017, 44(6): 885-895 http://www.cqvip.com/QK/90215X/201706/674394830.html CHENG J A, ZHU Z R. Development of rice pest management in the past 60 years in China: Problems and strategies[J]. Journal of Plant Protection, 2017, 44(6): 885-895 http://www.cqvip.com/QK/90215X/201706/674394830.html |
[5] | QIU D W, DONG Y J, ZHANG Y, et al. Plant immunity inducer development and application[J]. Molecular Plant-Microbe Interactions, 2017, 30(5): 355-360 |
[6] | 刘艳潇, 祝一鸣, 周而勋.植物免疫诱抗剂的作用机理和应用研究进展[J].分子植物育种, 2020, 18(3): 1020-1026 LIU Y X, ZHU Y M, ZHOU E X. Research progress on the action mechanism and application of plant immune inducers[J]. Molecular Plant Breeding, 2020, 18(3): 1020-1026 |
[7] | 赵利辉, 邱德文, 刘峥, 等.植物激活蛋白对水稻抗性相关基因转录水平的影响[J].中国农业科学, 2005, 38(7): 1358-1363 http://www.cqvip.com/Main/Detail.aspx?id=16147077 ZHAO L H, QIU D W, LIU Z, et al. Effect of plant activator protein on the transcription of defense-related genes in rice seedlings[J]. Scientia Agricultura Sinica, 2005, 38(7): 1358-1363 http://www.cqvip.com/Main/Detail.aspx?id=16147077 |
[8] | CHEN F, LI Q, HE Z H. Proteomic analysis of rice plasma membrane-associated proteins in response to chitooligosaccharide elicitors[J]. Journal of Integrative Plant Biology, 2007, 49(6): 863-870 http://d.wanfangdata.com.cn/Periodical/zwxb200706015 |
[9] | 邱德文.植物免疫诱抗剂的研究进展与应用前景[J].中国农业科技导报, 2014, 16(1): 39-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201401007 QIU D W. Progress and prospect of plant immunity inducer[J]. Journal of Agricultural Science and Technology, 2014, 16(1): 39-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201401007 |
[10] | 廖永林, 李燕芳, 刘明津, 等.水稻带药移栽对分蘖期白背飞虱和褐飞虱的防治效果[J].环境昆虫学报, 2013, 35(3): 311-316 http://www.cnki.com.cn/Article/CJFDTotal-KCTD201303006.htm LIAO Y L, LI Y F, LIU M J, et al. Control effect of applying pesticides before transplanting to Sogatella furcifera and Nilaparvata lugens at rice tillering stage[J]. Journal of Environmental Entomology, 2013, 35(3): 311-316 http://www.cnki.com.cn/Article/CJFDTotal-KCTD201303006.htm |
[11] | CHAUHAN B S, GILL G S, PRESTON C. Tillage system effects on weed ecology, herbicide activity and persistence: A review[J]. Australian Journal of Experimental Agriculture, 2006, 46(12): 1557-1570 http://europepmc.org/abstract/AGR/IND43865471 |
[12] | SAHRAWAT K L. Fertility and organic matter in submerged rice soil[J]. Current Science, 2005, 88(5): 735-739 http://www.researchgate.net/publication/228362089_Fertility_and_organic_matter_in_submerged_rice_soil |
[13] | LINH T B, SLEUTEL S, GUONG V T, et al. Deeper tillage and root growth in annual rice-upland cropping systems result in improved rice yield and economic profit relative to rice monoculture[J]. Soil and Tillage Research, 2015, 154: 44-52 |
[14] | 王秋菊, 高中超, 张劲松, 等.黑土稻田连续深耕改善土壤理化性质提高水稻产量大田试验[J].农业工程学报, 2017, 33(9): 126-132 http://d.wanfangdata.com.cn/Periodical/nygcxb201709016 WANG Q J, GAO Z C, ZHANG J S, et al. Black-soil paddy field experiment on improving soil physical and chemical properties and increasing rice yield by continuous deep ploughing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 126-132 http://d.wanfangdata.com.cn/Periodical/nygcxb201709016 |
[15] | 刁春友, 朱叶芹.农作物主要病虫害预测预报与防治[M].南京:江苏科学技术出版社, 2006: 49-129 DIAO C Y, ZHU Y Q. Prediction, Forecast and Control of Main Crop Diseases and Insect Pests[M]. Nanjing: Jiangsu Science and Technology Press, 2006: 49-129 |
[16] | 杨林章, 冯彦房, 施卫明, 等.我国农业面源污染治理技术研究进展[J].中国生态农业学报, 2013, 21(1): 96-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013112&flag=1 YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 96-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013112&flag=1 |
[17] | 徐红星, 郑许松, 田俊策, 等.我国水稻害虫绿色防控技术的研究进展与应用现状[J].植物保护学报, 2017, 44(6): 925-939 http://www.cqvip.com/QK/90215X/201706/674394834.html XU H X, ZHENG X S, TIAN J C, et al. Advances in the development and application of control technologies for insect pest management in paddy fields in China[J]. Journal of Plant Protection, 2017, 44(6): 925-939 http://www.cqvip.com/QK/90215X/201706/674394834.html |
[18] | 羊绍武, 张晓明, 郭海业, 等.不同药剂对多年生水稻主要病虫害的田间防治效果[J].河南农业科学, 2019, 48(9): 98-102 http://www.cnki.com.cn/Article/CJFDTotal-HNNY201909016.htm YANG S W, ZHANG X M, GUO H Y, et al. Control effect of different pesticides on main diseases and pest insects in perennial rice field[J]. Journal of Henan Agricultural Sciences, 2019, 48(9): 98-102 http://www.cnki.com.cn/Article/CJFDTotal-HNNY201909016.htm |
[19] | 陈将赞, 丁灵伟, 戴以太, 等.不同药剂带药移栽防治水稻前期害虫试验[J].浙江农业科学, 2014, 55(12): 1827-1829 http://www.cqvip.com/QK/91114X/201412/663288054.html CHEN J Z, DING L W, DAI Y T, et al. Experiment on the control of early pests of rice by transplanting with different medicaments[J]. Journal of Zhejiang Agricultural Sciences, 2014, 55(12): 1827-1829 http://www.cqvip.com/QK/91114X/201412/663288054.html |
[20] | KHAN N U, LIU M J, YANG X F, et al. Fungal elicitor MoHrip2 induces disease resistance in rice leaves, triggering stress-related pathways[J]. PLoS One, 2016, 11(6): e0158112 http://europepmc.org/articles/PMC4922587/ |
[21] | 王炳楠, 王双超, 檀贝贝, 等.大丽轮枝菌蛋白激发子PevD1诱导的烟草对烟草花叶病毒(TMV)系统获得性抗性及其分子机制[J].农业生物技术学报, 2012, 20(2): 188-195 http://d.wanfangdata.com.cn/Periodical/nyswjsxb201202011 WANG B N, WANG S C, TAN B B, et al. Systemic acquired resistance to tobacco mosaic virus (TMV) induced by protein elicitor from Verticillium dahliae (PevD1) and its mechanisms in tobacco[J]. Journal of Agricultural Biotechnology, 2012, 20(2): 188-195 http://d.wanfangdata.com.cn/Periodical/nyswjsxb201202011 |
[22] | 袁肖寒, 顾成波, 邱德文, 等.新型真菌源激活蛋白诱导水稻抗病性及其生理机制[J].植物研究, 2013, 33(2): 220-224 http://www.cqvip.com/QK/95722X/201302/44980498.html YUAN X H, GU C B, QIU D W, et al. Rice disease resistance induced by new fungal activator protein and its physiological mechanism[J]. Bulletin of Botanical Research, 2013, 33(2): 220-224 http://www.cqvip.com/QK/95722X/201302/44980498.html |
[23] | CHAUHAN B S, JOHNSON D E. Influence of tillage systems on weed seedling emergence pattern in rainfed rice[J]. Soil and Tillage Research, 2009, 106(1): 15-21 |
[24] | CHHOKAR R S, SHARMA R K, GATHALA M K, et al. Effects of crop establishment techniques on weeds and rice yield[J]. Crop Protection, 2014, 64: 7-12 |
[25] | YENISH J P, DOLL J D, BUHLER D D. Effects of tillage on vertical distribution and viability of weed seed in soil[J]. Weed Science, 1992, 40(3): 429-433 |
[26] | 张亚萍.耕作深度和茬口模式对上海浦东稻田杂草土壤种子库多样性的影响[D].上海: 华东师范大学, 2018 ZHANG Y P. Diversity of soil weed seedbank in response to different tillage and cropping systems in Shanghai Pudong[D]. Shanghai: East China Normal University, 2018 |
[27] | 敖和军, 王淑红, 邹应斌, 等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学, 2008, 41(7): 1927-1936 AO H J, WANG S H, ZOU Y B, et al. Study on yield stability and dry matter characteristics of super hybrid rice[J]. Scientia Agricultura Sinica, 2008, 41(7): 1927-1936 |
[28] | 邓飞, 王丽, 刘利, 等.不同生态条件下栽培方式对水稻干物质生产和产量的影响[J].作物学报, 2012, 38(10): 1930-1942 http://d.wanfangdata.com.cn/Periodical/zuowxb201210025 DENG F, WANG L, LIU L, et al. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions[J]. Acta Agronomica Sinica, 2012, 38(10): 1930-1942 http://d.wanfangdata.com.cn/Periodical/zuowxb201210025 |
[29] | 李扬汉.中国杂草志[M].北京:中国农业出版社, 1998: 1-10 LI Y H. Chinese Weeds[M]. Beijing: China Agricultural Press, 1998: 1-10 |
[30] | 朱文达.稗对水稻生长和产量性状的影响及其经济阈值[J].植物保护学报, 2005, 32(1): 81-86 ZHU W D. Influence of barnyardgrass, Echinochloa crusgalli, on the growth and yield of paddy rice and its economic threshold[J]. Journal of Plant Protection, 2005, 32(1): 81-86 |
[31] | 胡尊艳. "稻杰"对水稻生长发育的影响[J].黑龙江农业科学, 2009, 31(1): 58-59 HU Z Y. Effect of "Daojie" on growth and development of paddy rice[J]. Heilongjiang Agricultural Sciences, 2009, 31(1): 58-59 |
[32] | 薛高峰, 孙万春, 宋阿琳, 等.硅对水稻生长、白叶枯病抗性及病程相关蛋白活性的影响[J].中国农业科学, 2010, 43(4): 690-697 XUE G F, SUN W C, SONG A L, et al. Influence of silicon on rice growth, resistance to bacterial blight and activity of pathogenesis-related proteins[J]. Scientia Agricultura Sinica, 2010, 43(4): 690-697 |
[33] | 唐力琼, 胡运高, 张玲, 等. '冈优725'对四个稻瘟病菌生理小种毒素的响应[J].植物保护学报, 2013, 40(1): 15-19 http://www.cnki.com.cn/Article/CJFDTotal-ZWBF201301003.htm TANG L Q, HU Y G, ZHANG L, et al. Response of 'Gangyou725' to the toxin of four rice blast fungus Magnaporthe oryzae physiological races[J]. Journal of Plant Protection, 2013, 40(1): 15-19 http://www.cnki.com.cn/Article/CJFDTotal-ZWBF201301003.htm |
[34] | 陈敬, 易军, 蒋芬, 等.不同稻瘟病菌生理小种对水稻产量性状的影响[J].西南农业学报, 2016, 29(2): 298-301 http://d.wanfangdata.com.cn/Periodical/xnnyxb201602016 CHEN J, YI J, JIANG F, et al. Effect of different physiological races of rice blast fungus on rice yield traits[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(2): 298-301 http://d.wanfangdata.com.cn/Periodical/xnnyxb201602016 |