吴雅薇1,
李小龙1,
陈祥1,
邓长春2,
朱骁雍2,
袁继超1,
孔凡磊1,,
1.四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室 成都 611130
2.四川省中江县农业农村局 中江 618100
基金项目: 国家重点研发计划项目2018YFD0301206
国家重点研发计划项目2017YFD0301704
国家重点研发计划项目2016YFD0300307
四川省玉米创新团队建设项目SCCXTD-2020-02
详细信息
作者简介:赵波, 主要研究方向为玉米机械化籽粒直收技术。E-mail:sicauzb4633@163.com
通讯作者:孔凡磊, 主要研究方向为农作制度与玉米高产高效栽培技术。E-mail:kflstar@163.com
中图分类号:S372计量
文章访问数:540
HTML全文浏览量:7
PDF下载量:283
被引次数:0
出版历程
收稿日期:2020-02-20
录用日期:2020-04-13
刊出日期:2020-06-01
Differences in mechanical threshing broken rate between superior and inferior maize grains
ZHAO Bo1,,WU Yawei1,
LI Xiaolong1,
CHEN Xiang1,
DENG Changchun2,
ZHU Xiaoyong2,
YUAN Jichao1,
KONG Fanlei1,,
1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest China, Ministry of Agriculture, Chengdu 611130, China
2. Agricultural and Rural Bureau of Zhongjiang County, Zhongjiang 618100, China
Funds: the National Key Research and Development Project of China2018YFD0301206
the National Key Research and Development Project of China2017YFD0301704
the National Key Research and Development Project of China2016YFD0300307
Sichuan Innovation Team Program of MaizeSCCXTD-2020-02
More Information
Corresponding author:KONG Fanlei, E-mail:kflstar@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为明确机械脱粒时玉米强弱势粒间破碎率的差异及其影响因素,选用2个玉米品种,将玉米分强弱势粒分别机械脱粒,比较分析3次机械脱粒日期(8月9日、8月16日、8月23日)强弱势粒的含水率、百粒重、力学强度、淀粉粒形态和破碎率。结果表明,参试品种‘仲玉3号’在8月9日、8月16日和8月23日脱粒弱势粒的破碎率均高于强势粒,‘先玉1171’在8月16日和8月23日脱粒弱势粒的破碎率也均高于强势粒;不同机械脱粒日期强势粒的含水率和百粒重显著高于弱势粒,同时较弱势粒具有明显的力学强度优势。籽粒顶面压碎强度和胚部压碎强度与破碎率呈极显著和显著负相关(r=-0.46**,r=-0.34*),可更好地反映籽粒耐破碎能力;强势粒的角质胚乳淀粉粒大于弱势粒,强势粒的粉质胚乳淀粉粒主要呈多面体,弱势粒主要呈球体。强弱势粒含水率差异难以反映其耐破碎能力,粒重和力学强度差异是造成强弱势粒破碎率差异的重要原因。
关键词:玉米/
机械脱粒/
强势粒/
弱势粒/
力学强度/
破碎率
Abstract:High grain broken rate is the main limiting factor encountered when mechanically harvesting maize grains. Owing to different filling degrees, the structures of superior and inferior maize grains are different. Therefore, the objectives of this study were:1) to explore the difference in mechanical threshing broken rate between superior and inferior grains and factors that influence this; 2) to select a mechanical strength evaluation index with a high correlation with grain broken rate. Two maize varieties ('Zhongyu 3' and 'Xianyu 1171') were selected, and superior and inferior grains were mechanically threshed separately. Moisture content, 100-grain weight, mechanical strength, starch grain shape, and grain broken rate were compared and analyzed for the superior and inferior grains over three mechanical threshing dates (August 9, August 16, August 23). The results showed that the broken rate of inferior grians of 'Zhongyu 3' was higher than that of superior grains threshed on August 9, August 16, and August 23; and that the broken rate of 'Xianyu 1171' inferior grains was higher than that of superior grains on threshing dates August 16 and August 23. The moisture content and 100-grain weight of superior grains were significantly higher than those of inferior grains across different mechanical threshing dates. At the same time, the superior grains had an obvious mechanical strength advantage over the inferior grains. The results also showed that there were significant negative correlations between broken rate and facade crushing strength (r=-0.46**), broken rate and germ crushing strength (r=-0.34*), which could be used to better reflect the breaking resistance of grains. The horny endosperm starch granules of superior grains were larger than those of inferior grains, and the floury endosperm starch granules were mainly polyhedral in the superior grains but were mainly spheroid in inferior grains. The difference in moisture content between superior and inferior grains could not reliably reflect breaking resistance. Differences in grain weight and mechanical strength were the main factors behind differences in broken rate between superior and inferior grains. The present study highlighted the importance of the differences between superior and inferior grains in maize mechanical harvesting as well as the relationship between grain mechanical strength and breaking resistance.
Key words:Maize/
Mechanical threshing/
Superior grains/
Inferior grains/
Mechanical strength/
Broken rate
HTML全文
图1玉米强弱势粒的划分
Figure1.Division of superior and inferior grains of maize
下载: 全尺寸图片幻灯片
图2玉米籽粒力学强度受力(F)示意图
Figure2.Grains mechanical strength stress (F) diagram
下载: 全尺寸图片幻灯片
图3不同机械脱粒日期不同玉米品种强弱势粒的破碎率
图中不同小写字母表示在P < 0.05水平差异显著。
Figure3.Broken rates of superior and inferior grains of different maize varieties mechanically threshed at different dates
Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图4不同机械脱粒日期不同玉米品种强弱势粒的含水率
图中不同小写字母表示在P < 0.05水平差异显著。
Figure4.Moisture contents of superior and inferior grains of different maize varieties mechanically threshed at different dates
Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图5不同机械脱粒日期不同玉米品种强弱势粒的百粒重
图中不同小写字母表示在P < 0.05水平差异显著。
Figure5.Hundred-grain weight of superior and inferior grains of different maize varieties mechanically threshed at different dates
Different lowercase letters show significant differences at P < 0.05 level.
下载: 全尺寸图片幻灯片
图6不同机械脱粒日期不同玉米品种强弱势粒的力学强度
图中不同小写字母表示在P < 0.05水平差异显著; 图中的方差分析仅限于同一品种同一指标不同日期的强弱势粒。
Figure6.Mechanical strength indexes of superior and inferior grains of different maize varieties mechanically threshed at different dates
Different lowercase letters show significant differences at P < 0.05 level. The analysis of variance in the figure is only limited to the superior and inferior grains of the same variety with the same index and different dates.
下载: 全尺寸图片幻灯片
图7玉米籽粒各力学强度指标与破碎率的相关系数
FCS:顶面压碎强度; SCS:侧面压碎强度; GCS:胚部压碎强度; VCS:腹面压碎强度; FSS:顶面剪切强度; SSS:侧面剪切强度; GSS:胚部剪切强度; VSS:腹面剪切强度。*和**分别表示在P < 0.05和P < 0.01水平差异显著。
Figure7.Correlation coefficient of maize grain mechanical strength index and broken rate
FCS: facade crushing strength; SCS: side crushing strength; GCS: germ crushing strength; VCS: ventral crushing strength; FSS: facade shear strength; SSS: side shear strength; GSS: germ shear strength; VSS: ventral shear strength. * and ** stand significant correlations at P < 0.05 and P < 0.01 probability level, respectively.
下载: 全尺寸图片幻灯片
图8‘仲玉3号’和‘先玉1171’强弱势粒淀粉粒镜检差异比较
A-D:仲玉3号; E-H:先玉1171; A, C, E, G:强势粒; B, D, F, H:弱势粒; A, B, E, F:角质胚乳(2 000×, 比例尺为30 μm); C, D, G, H:粉质胚乳(500×, 比例尺为100 μm)。
Figure8.Comparison of the microscopical examination differences between the superior and inferior grains of 'Zhongyu 3' and 'Xianyu 1171'
A-D: Zhongyu 3; E-H: Xianyu 1171; A, C, E and G: superior grains; B, D, F and H: inferior grains; A, B, E, F: horny endosperm (2 000×, scale bar = 30 μm); C, D, G, H: floury endosperm (500×, scale bar = 100 μm).
下载: 全尺寸图片幻灯片
参考文献
[1] | FAO. FAOSTAT: Agriculture database. FAO, Rome. 2019. http://faostat.fao.org/ |
[2] | 李少昆.我国玉米机械粒收质量影响因素及粒收技术的发展方向[J].石河子大学学报:自然科学版, 2017, (3): 265–272 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb201703001 LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology[J]. Journal of Shihezi University: Natural Science, 2017, (3): 265–272 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb201703001 |
[3] | 王克如, 李少昆.玉米机械粒收破碎率研究进展[J].中国农业科学, 2017, 50(11): 2018–2026 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711007 WANG K R, LI S K. Progresses in research on grain broken rate by mechanical grain harvesting[J]. Scientia Agricultura Sinica, 2017, 50(11): 2018–2026 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711007 |
[4] | 张向前, 王瑞, 张瑞霞, 等.内蒙古适宜籽粒机械化收获春玉米品种筛选[J].北方农业学报, 2018, 46(1): 25–29 http://d.old.wanfangdata.com.cn/Periodical/nmgnykj201801006 ZHANG X Q, WANG R, ZHANG R X, et al. Screening varieties suitable for mechanical harvesting of spring maize kernel in Inner Mongolia[J]. Journal of Northern Agriculture, 2018, 46(1): 25–29 http://d.old.wanfangdata.com.cn/Periodical/nmgnykj201801006 |
[5] | 薛军, 李璐璐, 张万旭, 等.玉米穗轴机械强度及其对机械粒收籽粒破碎率的影响[J].中国农业科学, 2018, 51(10): 1868–1877 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201810006 XUE J, LI L L, ZHANG W X, et al. Maize cob mechanical strength and its influence on kernel broken rate[J]. Scientia Agricultura Sinica, 2018, 51(10): 1868–1877 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201810006 |
[6] | 李少昆, 王克如, 裴志超, 等.北京春玉米机械粒收质量影响因素研究及品种筛选[J].玉米科学, 2018, 26(6): 110–115 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201806019 LI S K, WANG K R, PEI Z C, et al. Study on the influencing factors of maize mechanical grain harvest quality and cultivars selection in Beijing[J]. Journal of Maize Sciences, 2018, 26(6): 110–115 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201806019 |
[7] | 王克如, 李少昆, 王延波, 等.辽宁中部适宜机械粒收玉米品种的筛选[J].作物杂志, 2018, (3): 97–102 http://d.old.wanfangdata.com.cn/Periodical/zwzz201803015 WANG K R, LI S K, WANG Y B, et al. Screening maize varieties suitable for mechanical harvesting grain in the central Liaoning Province[J]. Crops, 2018, (3): 97–102 http://d.old.wanfangdata.com.cn/Periodical/zwzz201803015 |
[8] | SEHGAL S M, BROWN W L. Cob morphology and its relations to combine harvesting in maize[J]. Iowa Stage Journal of Science, 1965, 39(3): 251–268 |
[9] | 李川, 乔江方, 谷利敏, 等.影响玉米籽粒直接机械化收获质量的生物学性状分析[J].华北农学报, 2015, 30(6): 164–169 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201506025 LI C, QIAO J F, GU L M, et al. Analysis of maize biological traits which affected corn kernel mechanically harvesting qualities[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 164–169 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201506025 |
[10] | 易克传, 朱德文, 张新伟, 等.含水率对玉米籽粒机械化直接收获的影响[J].中国农机化学报, 2016, 37(11): 78–80 http://d.old.wanfangdata.com.cn/Periodical/zgnjh201611019 YI K C, ZHU D W, ZHANG X W, et al. Effect of moisture content on corn grain harvesting mechanization[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 78–80 http://d.old.wanfangdata.com.cn/Periodical/zgnjh201611019 |
[11] | 李清龙.打击式玉米脱粒机脱粒过程试验研究及仿真分析[D].长春: 吉林大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10183-1014271384.htm LI Q L. Research on the experiment and simulation analysis of the threshing process of the collision style corn thresher[D]. Changchun: Jilin University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10183-1014271384.htm |
[12] | BAUER P J, CARTER P R. Effect of seeding date, plant density, moisture availability, and soil nitrogen fertility on maize kernel breakage susceptibility[J]. Crop Science, 1986, 26(6): 1220–1226 |
[13] | 赵波, 李小龙, 周茂林, 等.西南玉米机械粒收籽粒破碎率现状及影响因素分析[J].作物学报, 2020, 46(1): 74–83 http://d.old.wanfangdata.com.cn/Periodical/zuowxb202001008 ZHAO B, LI X L, ZHOU M L, et al. Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China[J]. Acta Agronomica Sinica, 2020, 46(1): 74–83 http://d.old.wanfangdata.com.cn/Periodical/zuowxb202001008 |
[14] | 李璐璐, 雷晓鹏, 谢瑞芝, 等.夏玉米机械粒收质量影响因素分析[J].中国农业科学, 2017, 50(11): 2044–2051 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711010 LI L L, LEI X P, XIE R Z, et al. Analysis of influential factors on mechanical grain harvest quality of summer maize[J]. Scientia Agricultura Sinica, 2017, 50(11): 2044–2051 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711010 |
[15] | 柴宗文, 王克如, 郭银巧, 等.玉米机械粒收质量现状及其与含水率的关系[J].中国农业科学, 2017, 50(11): 2036–2043 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711009 CHAI Z W, WANG K R, GUO Y Q, et al. Current status of maize mechanical grain harvesting and its relationship with grain moisture content[J]. Scientia Agricultura Sinica, 2017, 50(11): 2036–2043 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201711009 |
[16] | 孔凡磊, 赵波, 吴雅薇, 等.收获时期对四川春玉米机械粒收质量的影响[J].中国生态农业学报(中英文), 2020, 28(1): 50–56 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0106&journal_id=zgstny KONG F L, ZHAO B, WU Y W, et al. Effects of harvesting date on mechanical grain-harvesting quality of spring maize in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 50–56 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0106&journal_id=zgstny |
[17] | VYN T J, MOES J. Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions[J]. Agronomy Journal, 1988, 80(6): 915–920 |
[18] | DUARTE A P, MASON SC, JACKSON DS, et al. Grain quality of Brazilian maize genotypes as influenced by nitrogen level[J]. Crop Science, 2005, 45(5): 1958–1964 https://digitalcommons.unl.edu/foodsciefacpub/114/ |
[19] | TSAI C Y, HUBER D M, GLOVER D V, et al. Relationship of N deposition to grain yield and N response of three maize hybrids[J]. Crop Science, 1984, 24(2): 277–281 |
[20] | LEFORD D R, RUSSELL W A. Evaluation of physical grain quality in the BS17 and BSI (HS)CI synthetics of maize[J]. Crop Science, 1985, 25(3): 471–476 |
[21] | MARTIN C R, CONVERSE H H, CZUCHAJOWSKA Z, et al. Breakage susceptibility and hardness of corn kernels of various sizes and shapes[J]. Applied Engineering in Agriculture, 1987, 3(1): 104–113 |
[22] | WANG B, WANG J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ[J]. International Journal of Food Properties, 2019, 22(1): 863–877 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10942912.2019.1614050 |
[23] | HOU J F, ZHANG Y, JIN X L, et al. Structural parameters for X-ray micro-computed tomography (μCT) and their relationship with the breakage rate of maize varieties[J]. Plant Methods, 2019, 15(1): 1–11 |
[24] | KATO T. Effect of spikelet removal on the grain filling of akenohoshi, a rice cultivar with numerous spikelets in a panicle[J]. The Journal of Agricultural Science, 2004, 142(2): 177–181 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0021859604004265 |
[25] | YANG J C, ZHANG J H, WANG Z Q, et al. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene[J]. Journal of Experimental Botany, 2006, 57(1): 149–160 doi: 10.1093-jxb-erj018/ |
[26] | YANG J C, ZHANG J H, WANG Z Q, et al. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling[J]. Plant Physiology, 2004, 135(3): 1621–1629 doi: 10.1104-pp.104.041038/ |
[27] | YANG J C, ZHANG J H, WANG Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling[J]. Field Crops Research, 2003, 81(1): 69–81 doi: 10.1016-S0378-4290(02)00214-9/ |
[28] | 李木英, 石庆华, 胡志红, 等.高温胁迫对不同早稻品种胚乳淀粉合成酶类活性的影响[J].中国农业科学, 2007, 40(8): 1622–1629 http://d.old.wanfangdata.com.cn/Periodical/zgnykx200708006 LI M Y, SHI Q H, HU Z H, et al. Effects of high temperature stress on activity of amylosynthease in endosperm of early Indica rice varieties[J]. Scientia Agricultura Sinica, 2007, 40(8): 1622–1629 http://d.old.wanfangdata.com.cn/Periodical/zgnykx200708006 |
[29] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T21961–2008玉米收获机械试验方法[S].北京: 中国标准出版社, 2008 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Standardization Administration of People's Republic of China. GB/T21961–2008 Test Methods for Maize Combine Harvester[S]. Beijing: Standards Press of China, 2008 |
[30] | ZHAO F C, JING L Q, WANG D C, et al. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen[J]. Scientific Reports, 2018, 8(1): 6343 http://www.nature.com/articles/s41598-018-23977-0 |
[31] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21962–2008玉米收获机械技术条件[S].北京: 中国标准出版社, 2008 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Standardization Administration of People's Republic of China. GB/T 21962–2008 Technical Requirements for Maize Combine Harvester[S]. Beijing: Standards Press of China, 2008 |
[32] | 谢瑞芝, 雷晓鹏, 王克如, 等.黄淮海夏玉米子粒机械收获研究初报[J]., 作物杂志, 2014, (2): 76–79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201402019 XIE R Z, LEI X P, WANG K R, et al. Research on corn mechanically harvesting grain quality in Huanghuaihai Plain[J]. Crops, 2014, (2): 76–79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201402019 |
[33] | WAELTI H, BUCHELE W F. Factors affecting corn kernel damage combine cylinders[J]. Transactions of the ASAE, 1969, 12(1): 55–59 https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1218&context=abe_eng_pubs |
[34] | JOHNSON D Q, RUSSELL W A. Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize[J]. Crop Science, 1982, 22(4): 805–809 |
[35] | 袁月明, 栾玉振.玉米籽粒力学性质的试验研究[J].吉林农业大学学报, 1996, 18(4): 75–78 http://www.cnki.com.cn/Article/CJFDTotal-JLNY604.017.htm YUAN Y M, LUAN Y Z. Experimental investigation of mechanical properties for corn kernels[J]. Journal of Jilin Agricultural University, 1996, 18(4): 75–78 http://www.cnki.com.cn/Article/CJFDTotal-JLNY604.017.htm |
[36] | 张永丽, 高连兴, 刘红力, 等.玉米籽粒剪切破碎的试验研究[J].农机化研究, 2007, (5): 136–138 http://d.old.wanfangdata.com.cn/Periodical/njhyj200705042 ZHANG Y L, GAO L X, LIU H L, et al. Experimental study on corn kernel shear crash[J]. Journal of Agricultural Mechanization Research, 2007, (5): 136–138 http://d.old.wanfangdata.com.cn/Periodical/njhyj200705042 |
[37] | 李璐璐, 薛军, 谢瑞芝, 等.夏玉米籽粒含水率对机械粒收质量的影响[J].作物学报, 2018, 44(12): 1747–1754 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201812002 LI L L, XUE J, XIE R Z, et al. Effects of grain moisture content on mechanical grain harvesting quality of summer maize[J]. Acta Agronomica Sinica, 2018, 44(12): 1747–1754 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201812002 |
[38] | KNIEP K R, MASON S C. Kernel breakage and density of normal and Opaque-2 maize grain as influenced by irrigation and nitrogen[J]. Crop Science, 1989, 29(1): 158–163 |
[39] | WANG B, WANG J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ[J]. International Journal of Food Properties, 2019, 22(1): 863–877 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10942912.2019.1614050 |
[40] | 董朋飞, 郭亚南, 王克如, 等.玉米子粒耐破碎性及其评价与测试方法[J].玉米科学, 2016, 26(4): 79–84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201804014 DONG P F, GUO Y N, WANG K R, et al. Evaluation and determination of maize kernel breakage tolerance[J]. Journal of Maize Sciences, 2016, 26(4): 79–84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201804014 |
[41] | FOX G, MANLEY M. Hardness methods for testing maize kernels[J]. Journal of Agricultural and Food Chemistry, 2009, 57(13): 5647–5657 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4259ba12e9b54dc7dcf4ed567c9fd6da |
[42] | DOMBRINK-KURTZMAN M A, KNUTSON C A. A study of maize endosperm hardness in relation to amylose content and susceptibility to damage[J]. Cereal Chemistry, 1997, 74(6): 776–780 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1094/CCHEM.1997.74.6.776 |
[43] | CERRUDO A, MARTINEZ D, IZQUIERDO N G, et al. Environment, management, and genetic contributions to maize kernel hardness and grain yield[J]. Crop Science, 2017, 57(5): 2788–2798 doi: 10.2135/cropsci2016.12.0997 |
[44] | 徐云姬, 钱希旸, 李银银, 等.根系分区交替灌溉对玉米籽粒灌浆及相关生理特性的影响[J].作物学报, 2016, 42(2): 230–242 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201602008 XU Y J, QIAN X Y, LI Y Y, et al. Effect of alternate irrigation in partitioned roots on the kernel-filling and its related physiological characteristics in maize[J]. Acta Agronomica Sinica, 2016, 42(2): 230–242 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201602008 |
[45] | 魏亚萍.氮肥对夏玉米籽粒库容建成和充实的影响机理[D].北京: 中国农业大学, 2004 http://cdmd.cnki.com.cn/article/cdmd-10019-2004077882.htm WEI Y P. Effect of nitrogen on the kernel sink development in summer maize (Zea mays L.)[D]. Beijing: China Agricultural University, 2004 http://cdmd.cnki.com.cn/article/cdmd-10019-2004077882.htm |