李世景1, 2, 3,
徐萍1,
张正斌1, 2, 3,,,
景蕊莲4
1.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.中国科学院大学生命科学学院/中国科学院大学现代农业科学学院 北京 100049
3.中国科学院种子创新研究院 北京 100101
4.中国农业科学院作物科学研究所 北京 100081
基金项目: 国家重点研发计划项目2017YFD0300202
详细信息
作者简介:王亚飞, 主要研究方向为作物遗传育种。E-mail:18330117389@163.com
通讯作者:张正斌, 主要研究方向为作物遗传育种。E-mail:zzb@sjziam.ac.cn
中图分类号:S512.1+1计量
文章访问数:403
HTML全文浏览量:6
PDF下载量:432
被引次数:0
出版历程
收稿日期:2019-05-22
录用日期:2019-09-22
刊出日期:2020-03-01
Agronomic traits and cluster analysis of winter wheat varieties (lines) in the Huanghuai and the middle/lower reaches of the Yangtze River wheat areas
WANG Yafei1, 2, 3,,LI Shijing1, 2, 3,
XU Ping1,
ZHANG Zhengbin1, 2, 3,,,
JING Ruilian4
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. Department of Life Sciences, University of Chinese Academy of Sciences/Department of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3. Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
4. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds: the National Key Research and Development Program of China2017YFD0300202
More Information
Corresponding author:ZHANG Zhengbin, E-mail: zzb@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:气候变暖对我国乃至世界小麦育种和生产有很大影响。为了研究我国不同生态麦区小麦品种(系)农艺性状适应气候变化调控机理,本研究以黄淮冬麦区北片和南片及长江中下游冬麦区的20个当前大面积推的小麦品种、新审定品种和新选育品系为试验材料,在黄淮冬麦区北片河北省石家庄市种植,在返青期前对其抗旱抗冻性、根冠比和叶片干重与鲜重比进行调查;收获后对株高、穗长、穗下节间长、分蘖数、小穗数、穗粒数、千粒重、单株生物量、单株粒重、经济系数等10个农艺性状进行了考种和相关、聚类和主成分分析。结果表明,不同麦区小麦品种(系)苗期的抗旱抗冻性为黄淮冬麦区北片>黄淮冬麦区南片>长江中下游冬麦区。三大生态麦区的单株粒重与分蘖数、穗粒数、单株生物量、经济系数均呈极显著正相关,黄淮冬麦区南片和长江中下游冬麦区呈显著和极显著的农艺性状相对较多,说明这两个生态麦区的品种有很大的相似性;但不同生态麦区其他农艺性状正负相关各有一定差异。在欧氏距离20处,20个小麦品种(系)被聚类为长江中下游冬麦区和黄淮冬麦区南片品种(系)(第Ⅰ类)及黄淮冬麦区北片品种(系)(第Ⅱ类)两个大的生态型;在欧氏距离6处,Ⅰ类又分为分别以‘百农207’‘济麦22’和‘西农979’为代表的3个亚类,Ⅱ类是以‘长旱58’为代表。产量、穗长、株高和经济系数4个主成分因子对10个农艺性状表现型变异累计贡献率为76.39%。‘济麦22’等黄淮冬麦区北片的品种(系)综合得分在前20株中占95%。以上研究结果为小麦适应气候变暖育种和引种示范推广提供了重要参考信息。
关键词:小麦品种(系)/
黄淮/
长江中下游/
冬麦区/
农艺性状/
聚类分析
Abstract:Climate warming is having a great impact on wheat breeding and production in China and worldwide. To study the regulation mechanisms of the agronomic characteristics of wheat varieties (lines) adapting to climate change in different ecological wheat areas in China, this study selected 20 materials of wheat from the north and south of the Huanghuai winter wheat areas and the middle and lower reaches of the Yangtze River winter wheat area, including good varieties with currently large distributions, new approved varieties, and new breeding lines. The experiment was conducted in Shijiazhuang City of Hebei Province, which is located to the north of the Huanghuai winter wheat area. The drought and cold resistance, root-shoot ratio, and dry leaf weight ratio were investigated before the reviving stage. After harvest, the yield and ten agronomic characteristics, including plant height, spike length, internode length under the spike, tillers number, spikelets number, grains number per spike, 1000-grain weight, biomass per plant, grains weight per plant, and economic index were tested, after which correlation, clustering, and principal component analyses were carried out. The results showed that the drought and cold resistance of different wheat varieties (lines) at the seedling stage was in the order of the north of Huanghuai winter wheat area > the south of Huanghuai winter wheat area > the middle and lower reaches of the Yangtze River winter wheat area. There were extremely significant positive correlations between grains weight per plant and tillers number, grains number per spike, biomass per plant, and economic index in three ecological wheat areas. There were more agronomic characteristics with significant and extremely significant positive correlations in the south of the Huanghuai winter wheat area and the middle and lower reaches of the Yangtze River winter wheat area, indicating that the varieties from these two ecological wheat areas had great similarities. However, there were some differences in the positive and negative correlations among other agronomic traits in different ecology wheat areas. The 20 wheat varieties (lines) were divided into two ecotypes at a Euclidean distance of 20. Varieties (lines) from the middle and lower reaches of the Yangtze River winter wheat area and the south of the Huanghuai winter wheat area were in the type Ⅰ, and those from the north of the Huanghuai winter wheat area in the type Ⅱ. The type Ⅰ was further divided into three sub-classes at a Euclidean distance of 6, which were represented by 'Bainong 207' 'Jimai 22' and 'Xinong 979', respectively. The type Ⅱ was represented by 'Changhan 58'. There were four principal components, yield, spike length, plant height, and economic index, which contributed to over 76.39% of the performance variation of the ten agronomic traits. 'Jimai 22' and other varieties (lines) from the north of the Huanghuai winter wheat area accounted for 95% of the varieties (lines) whose comprehensive scores were ranked in the top 20 varieties (lines). These results provide important reference information for wheat breeding and adaptions to climate warming.
Key words:Wheat varieties (lines)/
Huanghuai/
Middle and lower reaches of the Yangtze River/
Winter wheat area/
Agronomic traits/
Clustering analysis
HTML全文

图1不同生态麦区小麦品种(系)苗期的根冠比和干叶重/地上部鲜重
MLRWA:长江中下游冬麦区; SHWA:黄淮冬麦区南片; NHWA:黄淮冬麦区北片。不同小写字母表示不同生态麦区间P < 0.05水平差异显著。
Figure1.Root-shoot ratio and ratio of dry leaves weight to shoot fresh weight of wheat varieties (lines) from different wheat ecological areas
MLRWA: middle and lower reaches of Yangtze River winter wheat area; SHWA: south of Huanghuai winter wheat area; NHWA: north of Huanghuai winter wheat area. Different lowercases mean significant differences at P < 0.05 level among three wheat ecological areas.


图2不同生态麦区小麦品种(系)的农艺性状
MLRWA:长江中下游冬麦区; SHWA:黄淮冬麦区南片; NHWA:黄淮冬麦区北片。不同小写字母表示不同生态麦区间P < 0.05水平差异显著。
Figure2.Comparison of agronomic characters of wheat varieties (lines) from different wheat ecology areas
MLRWA: middle and lower reaches of Yangtze River winter wheat area; SHWA: south of Huanghuai winter wheat area; NHWA: north of Huanghuai winter wheat area. Different lowercases mean significant differences at P < 0.05 level among three wheat ecological areas.


图3小麦品种(系)农艺性状聚类分析
1:襄麦55; 2:安农1124; 3:扬麦16; 4:周麦27; 5:中涡22; 6:西农979; 7:郑麦7698; 8:衡观35; 9:百农207; 10:鑫农518; 11:远育0370; 12:临XY22; 13:中麦36; 14:临Y8012; 15:济麦22; 16:山农28; 17:冀麦325; 18:舜麦1718; 19:中麦175; 20:长旱58。
Figure3.Cluster analysis of agronomic traits of wheat varieties (lines)
1: Xiangmai 55; 2: Annong 1124; 3: Yangmai 16; 4: Zhoumai 27; 5: Zhongwo 22; 6: Xinong 979; 7: Zhengmai 7698; 8: Hengguan 35; 9: Bainong 207; 10: Xinnong 518; 11: Yuanyu 0370; 12: Lin XY22; 13: Zhongmai 36; 14: Lin Y8012; 15: Jimai 22; 16: Shannong 28; 17: Jimai 325; 18: Shunmai 1718; 19: Zhongmai 175; 20: Changhan 58.

表1供试20个小麦品种(系)材料
Table1.Twenty wheat varieties (lines) tested in this study
编号 No. | 品种(系) Variety (line) | 种植区域 Planting area | 育成时间 Time released |
1 | 襄麦55 Xiangmai 55 | 长江中下游冬麦区Middle and lower reaches of the Yangtze River winter wheat area | 2009 |
2 | 安农1124 Annong 1124 | 长江中下游冬麦区Middle and lower reaches of the Yangtze River winter wheat area | 2018 |
3 | 扬麦16 Yangmai 16 | 长江中下游冬麦区Middle and lower reaches of the Yangtze River winter wheat area | 2004 |
4 | 周麦27 Zhoumai 27 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2011 |
5 | 中涡22 Zhongwo 22 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2017 |
6 | 西农979 Xinong 979 | 黄淮冬麦区南片South of the Huanghuai winter wheat rarea | 2005 |
7 | 郑麦7698 Zhengmai 7698 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2012 |
8 | 衡观35 Hengguan 35 | 黄淮冬麦区北、南片North and south of the Huanghuai winter wheat area | 2006 |
9 | 百农207 Bainong 207 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2013 |
10 | 鑫农518 Xinnong 518 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2018 |
11 | 远育0370 Yuanyu 0370 | 黄淮冬麦区南片South of the Huanghuai winter wheat area | 2017 |
12 | 临XY22 Lin XY22 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2016 |
13 | 中麦36 Zhongmai 36 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2018 |
14 | 临Y8012 Lin Y8012 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2018 |
15 | 济麦22 Jimai 22 | 黄淮冬麦区北、南片North and south of the Huanghuai winter wheat area | 2006 |
16 | 山农28 Shannong 28 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2017 |
17 | 冀麦325 Jimai 325 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2016 |
18 | 舜麦1718 Shunmai 1718 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2011 |
19 | 中麦175 Zhongmai 175 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2008 |
20 | 长旱58 Changhan 58 | 黄淮冬麦区北片North of the Huanghuai winter wheat area | 2004 |

表2不同生态麦区小麦品种(系)农艺性状相关性分析
Table2.Correlation analysis of agronomic characters of varieties (lines) from different ecological areas
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | ||
黄淮冬麦区北片 North of the Huanghuai winter wheat area | X1 | 1.000 | |||||||||
X2 | 0.353** | 1.000 | |||||||||
X3 | 0.347** | 0.090 | 1.000 | ||||||||
X4 | -0.087 | -0.129* | -0.070 | 1.000 | |||||||
X5 | 0.401** | 0.456** | -0.003 | 0.078 | 1.000 | ||||||
X6 | 0.316** | 0.493** | 0.041 | 0.113 | 0.542** | 1.000 | |||||
X7 | 0.097 | 0.011 | -0.035 | 0.848** | 0.269** | 0.344** | 1.000 | ||||
X8 | 0.016 | -0.002 | -0.062 | 0.815** | 0.197** | 0.316** | 0.964** | 1.000 | |||
X9 | 0.201 | 0.205 | 0.000 | 0.044 | 0.036 | -0.040 | 0.048 | 0.015 | 1.000 | ||
X10 | -0.195** | -0.024 | -0.081 | 0.061 | -0.168** | 0.003 | 0.081 | 0.330** | -0.081 | 1.000 | |
黄淮冬麦区南片 South of the Huanghuai winter wheat area | X1 | 1.000 | |||||||||
X2 | 0.313** | 1.000 | |||||||||
X3 | 0.261** | 0.199** | 1.000 | ||||||||
X4 | 0.223** | 0.034 | 0.054 | 1.000 | |||||||
X5 | -0.039 | 0.071 | -0.117 | -0.135* | 1.000 | ||||||
X6 | 0.356** | 0.472** | 0.061 | 0.100 | 0.419** | 1.000 | |||||
X7 | 0.463** | 0.205** | 0.111 | 0.839** | 0.006 | 0.362** | 1.000 | ||||
X8 | 0.457** | 0.183** | 0.097 | 0.778** | 0.012 | 0.316** | 0.954** | 1.000 | |||
X9 | -0.087 | 0.058 | -0.059 | 0.114 | 0.088 | 0.327** | 0.119 | 0.140 | 1.000 | ||
X10 | 0.150* | -0.006 | 0.045 | 0.055 | 0.063 | -0.020 | 0.169* | 0.443** | 0.214 | 1.000 | |
长江中下游冬麦区 Middle and lower reaches of the Yangtze River winter wheat area | X1 | 1.000 | |||||||||
X2 | 0.597** | 1.000 | |||||||||
X3 | 0.639** | 0.597** | 1.000 | ||||||||
X4 | -0.126 | -0.066 | -0.165 | 1.000 | |||||||
X5 | 0.424** | 0.385** | 0.106 | -0.060 | 1.000 | ||||||
X6 | 0.569** | 0.478** | 0.216* | -0.001 | 0.680** | 1.000 | |||||
X7 | 0.437** | 0.330** | 0.191* | 0.665** | 0.325** | 0.538** | 1.000 | ||||
X8 | 0.376** | 0.316** | 0.186* | 0.666** | 0.297** | 0.475** | 0.948** | 1.000 | |||
X9 | 0.342* | 0.236 | 0.351* | -0.007 | 0.145 | -0.085 | -0.053 | -0.030 | 1.000 | ||
X10 | -0.077 | 0.035 | 0.043 | 0.141 | -0.010 | -0.030 | 0.113 | 0.411** | -0.019 | 1.000 | |
*和**分别表示在0.05和0.01水平(双侧)显著相关。X1:株高; X2:穗长; X3:穗下节间长; X4:分蘖数; X5:小穗数; X6:穗粒数; X7:单株生物量; X8:单株粒重; X9:千粒重; X10:经济系数。* and ** mean significant correlation at 0.05 and 0.01 levels (bilateral), respectively. X1: plant height; X2: spike length; X3: internode length under spike; X4: tillers number; X5: spikelets number; X6: grain number per spike; X7: biomass per plant; X8: grain weight per plant; X9:1000-grain weight; X10: economic index. |

表3小麦品种(系)农艺性状的主成分分析
Table3.Principal component analysis of agronomic characters of wheat varieties (lines)
农艺性状 Agronomic trait | 主成分Principal component | |||
Y1 | Y2 | Y3 | Y4 | |
株高Plant height | 0.530 | 0.434 | 0.444 | -0.112 |
穗长Spike length | 0.204 | 0.742 | 0.055 | 0.114 |
穗下节间长Internode length under spike | 0.170 | 0.325 | 0.805 | 0.026 |
分蘖数Tiller number | 0.822 | -0.386 | -0.129 | -0.210 |
小穗数Spikelet number | 0.094 | 0.637 | -0.438 | 0.073 |
穗粒数Grain number per spike | 0.439 | 0.685 | -0.300 | 0.008 |
单株生物量Biomass per plant | 0.953 | -0.142 | -0.141 | -0.139 |
单株粒重Grains per plant | 0.950 | -0.189 | -0.139 | 0.092 |
千粒重1000-grain weight | 0.433 | -0.282 | 0.368 | 0.034 |
经济系数Economic index | 0.236 | -0.180 | 0.011 | 0.947 |
贡献率Contribution rate (%) | 32.816 | 20.367 | 13.201 | 10.005 |
累计贡献率Cumulative contribution rate (%) | 32.816 | 53.183 | 66.385 | 76.389 |

表4小麦品种(系)的单株农艺性状综合得分
Table4.Comprehensive scores of agronomic traits of wheat varieties (lines)
优良单株编号 No. of excellent plant | Y1 | Y2 | Y3 | Y4 | 综合得分值 Comprehensive score | 类群 Group |
1 | 2.08 | 2.54 | 0.96 | 0.39 | 1.80 | Ⅰ |
2 | 1.19 | 0.67 | 0.22 | 7.08 | 1.66 | Ⅱ |
3 | 0.64 | 0.31 | 1.92 | 6.92 | 1.60 | Ⅰ |
4 | 0.91 | 2.42 | 1.31 | 1.19 | 1.42 | Ⅱ |
5 | 3.08 | 0.87 | 0.19 | -1.43 | 1.40 | Ⅰ |
6 | 1.69 | 1.79 | 0.68 | 0.24 | 1.35 | Ⅰ |
7 | 2.64 | 1.31 | -0.63 | -0.70 | 1.28 | Ⅰ |
8 | 2.63 | 0.83 | -0.20 | -0.57 | 1.24 | Ⅱ |
9 | 1.61 | 1.48 | 0.54 | 0.23 | 1.21 | Ⅱ |
10 | 1.83 | 0.86 | 1.58 | -0.66 | 1.20 | Ⅰ |
11 | 1.49 | 1.08 | 0.53 | 0.91 | 1.14 | Ⅱ |
12 | 0.95 | 0.12 | 2.60 | 1.94 | 1.14 | Ⅱ |
13 | 1.11 | 1.64 | 2.01 | -0.97 | 1.13 | Ⅰ |
14 | 2.36 | 0.38 | 1.48 | -1.93 | 1.12 | Ⅱ |
15 | 1.91 | 0.86 | 0.81 | -0.55 | 1.12 | Ⅰ |
16 | 1.04 | 1.07 | 1.41 | 0.78 | 1.08 | Ⅰ |
17 | 3.67 | -0.51 | -1.21 | -1.13 | 1.08 | Ⅱ |
18 | 1.42 | 1.72 | 0.79 | -1.03 | 1.07 | Ⅱ |
19 | 2.42 | 0.26 | 0.96 | -1.83 | 1.03 | Ⅱ |
20 | 1.25 | 1.04 | 2.44 | -1.59 | 1.03 | Ⅰ |

参考文献
[1] | ORTIZ R, SAYRE K D, GOVAERTS B, et al. Climate change:Can wheat beat the heat?[J]. Agriculture, Ecosystems & Environment, 2008, 126(1/2):46-58 |
[2] | 孟自力, 闫向泉, 马新明, 等.黄淮中部地区小麦气候变化特征及其影响[J].农业科技通讯, 2016, (12):220-223 doi: 10.3969/j.issn.1000-6400.2016.12.078 MENG Z L, YAN X Q, MA X M, et al. Climate change characteristics and its influence on wheat in the central region of Huang-Huai River[J]. Bulletin of Agricultural Science and Technology, 2016, (12):220-223 doi: 10.3969/j.issn.1000-6400.2016.12.078 |
[3] | SUN Q H, MIAO C Y, HANEL M, et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming[J]. Environment International, 2019, 128:125-136 doi: 10.1016/j.envint.2019.04.025 |
[4] | RAI M, REEVES T G, PANDEY S, et al. Save and Grow: A Policymaker; s Guide to Sustainable Intensification of Smallholder Crop Production[R]. Rome: Food and Agriculture Organization of the United Nations, 2011 |
[5] | 吴秀亭, 张正斌, 徐萍, 等.黄淮小麦农艺性状演变趋势[J].中国农业科学, 2013, 46(18):3930-3938 doi: 10.3864/j.issn.0578-1752.2013.18.024 WU X T, ZHANG Z B, XU P, et al. Agronomic traits development and evolution of winter wheat in Huang-Huai Basin[J]. Scientia Agricultura Sinica, 2013, 46(18):3930-3938 doi: 10.3864/j.issn.0578-1752.2013.18.024 |
[6] | 刘新月, 裴磊, 卫云宗, 等.气温变化背景下中国黄淮旱地冬小麦农艺性状的变化特征——以山西临汾为例[J].中国农业科学, 2015, 48(10):1942-1954 doi: 10.3864/j.issn.0578-1752.2015.10.007 LIU X Y, PEI L, WEI Y Z, et al. Agronomic traits variation analysis of Huanghuai dryland winter wheat under temperature change background in China-Taking Linfen, Shanxi as an example[J]. Scientia Agricultura Sinica, 2015, 48(10):1942-1954 doi: 10.3864/j.issn.0578-1752.2015.10.007 |
[7] | 陈帅.气候变化对中国小麦生产力的影响——基于黄淮海平原的实证分析[J].中国农村经济, 2015, (7):4-16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201507002 CHEN S. Effects of climate change on wheat productivity in China:an empirical analysis based on the Huang-Huai-Hai Plain[J]. Chinese Rural Economy, 2015, (7):4-16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncjj201507002 |
[8] | 杨宇.气候变化对黄淮海平原粮食生产力影响的实证研究[J].干旱区资源与环境, 2017, 31(6):130-135 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201706021 YANG Y. The empirical study on impacts of climate changes on grain productivity in the Huang-Huai-Hai Plain[J]. Journal of Arid Land Resources and Environment, 2017, 31(6):130-135 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201706021 |
[9] | 程晓明, 程婧晔, 胡文静, 等. 23个小麦品种春化特性主成分分析及聚类分析[J].江苏农业科学, 2019, 47(8):64-68 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201908014 CHENG X M, CHENG J Y, HU W J, et al. Principal component analysis and cluster analysis of vernalization characteristics of 23 wheat varieties[J]. Jiangsu Agricultural Sciences, 2019, 47(8):64-68 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201908014 |
[10] | 张桂英, 张国权, 罗勤贵, 等.陕西关中小麦品质性状的因子及聚类分析[J].麦类作物学报, 2010, 30(3):548-554 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201003032 ZHANG G Y, ZHANG G Q, LUO Q G, et al. Factors and cluster analysis of quality properties of wheat in Guanzhong Area of Shaanxi Province[J]. Journal of Triticeae Crops, 2010, 30(3):548-554 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201003032 |
[11] | 孙宪印, 吴科, 钱兆国, 等.黄淮冬麦区北片水地组供试小麦品种(系)主要品质性状的主成分分析和聚类分析[J].山东农业科学, 2006, 38(1):24-26 doi: 10.3969/j.issn.1001-4942.2006.01.009 SUN X Y, WU K, QIAN Z G, et al. Principal component analysis and cluster analysis of the main quality characters of wheat varieties (lines) tested in the irrigation group of North region of Huanghuai winter wheat region[J]. Shandong Agricultural Sciences, 2006, 38(1):24-26 doi: 10.3969/j.issn.1001-4942.2006.01.009 |
[12] | 吴秀宁, 张军, 于浩世.旱地小麦高代新品系的农艺性状[J].商洛学院学报, 2019, 33(2):24-28 http://d.old.wanfangdata.com.cn/Periodical/slsfzkxxxb201902005 WU X N, ZHANG J, YU H S. Agronomic traits of dry-land wheat advanced lines[J]. Journal of Shangluo University, 2019, 33(2):24-28 http://d.old.wanfangdata.com.cn/Periodical/slsfzkxxxb201902005 |
[13] | 张文彤, 董伟. SPSS统计分析高级教程[M].第2版.北京:高等教育出版社, 2013:213-226 ZHANG W T, DONG W. Advanced Course of SPSS Statistical Analysis[M]. 2nd ed. Beijing:Higher Education Press, 2013:213-226 |
[14] | 张鹏.基于主成分分析的综合评价研究[D].南京: 南京理工大学, 2004: 51-58 http://d.wanfangdata.com.cn/Thesis_Y624974.aspx ZHANG P. Comprehensive evaluation based principal component analysis[D]. Nanjing: Nanjing University of Science and Technology, 2004: 51-58 http://d.wanfangdata.com.cn/Thesis_Y624974.aspx |
[15] | 高辉明, 张正斌, 徐萍, 等. 2001-2009年中国北部冬小麦生育期和产量变化[J].中国农业科学, 2013, 46(11):2201-2210 doi: 10.3864/j.issn.0578-1752.2013.11.003 GAO H M, ZHANG Z B, XU P, et al. Changes of winter wheat growth period and yield in northern China from 2001-2009[J]. Scientia Agricultura Sinica, 2013, 46(11):2201-2210 doi: 10.3864/j.issn.0578-1752.2013.11.003 |
[16] | 葛亚宁, 刘洛, 徐新良, 等.近50a气候变化背景下我国玉米生产潜力时空演变特征[J].自然资源学报, 2015, 30(5):784-795 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201505007 GE Y N, LIU L, XU X L, et al. Temporal and spatial variations of Chinese maize production potential on the background of climate change during 1960-2010[J]. Journal of Natural Resources, 2015, 30(5):784-795 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201505007 |
[17] | 简俊涛, 李玉鹏, 张震, 等.小麦主要农艺性状受气候波动的模拟分析[J].农业科技通讯, 2017, (8):184-188 doi: 10.3969/j.issn.1000-6400.2017.08.062 JIAN J T, LI Y P, ZHANG Z, et al. Simulation of main agronomic characters of wheat subject to climatic fluctuation[J]. Bulletin of Agricultural Science and Technology, 2017, (8):184-188 doi: 10.3969/j.issn.1000-6400.2017.08.062 |
[18] | 谢成俊, 王平, 李卫民, 等.小麦收获指数与主要农艺性状的相关性分析[J].中国农学通报, 2015, 31(3):88-93 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201503014 XIE C J, WANG P, LI W M, et al. Correlation analysis between wheat harvest index and main agronomic characters[J]. Chinese Agricultural Science Bulletin, 2015, 31(3):88-93 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201503014 |
[19] | 潘琦.安徽省五个农业区气候变化特点及粮食生产特点分析[D].合肥: 安徽农业大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10364-1016064542.htm PAN Q. Climate change and food production characteristics of five agricultural areas in Anhui[D]. Hefei: Anhui Agricultural University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10364-1016064542.htm |
[20] | 李素, 姜鸿明, 宫德衬, 等. 48份冬小麦主要田间农艺性状的主成分分析及抗旱性综合评价[J].山东农业科学, 2014, 46(7):25-30 doi: 10.3969/j.issn.1001-4942.2014.07.006 LI S, JIANG H M, GONG D C, et al. Principal component analysis of primary agronomic characters and comprehensive evaluation on drought resistance of 48 winter wheat cultivars[J]. Shandong Agricultural Sciences, 2014, 46(7):25-30 doi: 10.3969/j.issn.1001-4942.2014.07.006 |
[21] | 董攀, 李伟, 郑有良.波兰小麦主要农艺性状分析[J].麦类作物学报, 2007, 27(2):216-222 doi: 10.3969/j.issn.1009-1041.2007.02.008 DONG P, LI W, ZHENG Y L. Analysis on the agronomic traits of Triticum polonicum L.[J]. Journal of Triticeae Crops, 2007, 27(2):216-222 doi: 10.3969/j.issn.1009-1041.2007.02.008 |
[22] | 管利军, 朱晓平, 陶志柱, 等.新疆春小麦品种(系)农艺性状的主成分和聚类分析[J].安徽农业科学, 2017, 45(31):34-35 doi: 10.3969/j.issn.0517-6611.2017.31.012 GUAN L J, ZHU X P, TAO Z Z, et al. Principal component analysis and cluster analysis of the agronomic traits of spring wheat varieties (lines) in Xinjiang[J]. Journal of Anhui Agricultural Sciences, 2017, 45(31):34-35 doi: 10.3969/j.issn.0517-6611.2017.31.012 |
[23] | 朱晓平, 郑新疆, 管利军, 等.哈密地区春小麦品种(系)主要性状的主成分分析[J].安徽农学通报, 2017, 23(15):31-32 doi: 10.3969/j.issn.1007-7731.2017.15.012 ZHU X P, ZHENG X J, GUAN L J, et al. Principal component analysis of the main agronomic traits of spring wheat strains in Hami[J]. Auhui Agricultural Science Bulletin, 2017, 23(15):31-32 doi: 10.3969/j.issn.1007-7731.2017.15.012 |
[24] | 蔡金华, 杨阳, 单延博, 等. 35份小麦种质资源品质性状的主成分和聚类分析[J].浙江农业科学, 2017, 58(5):758-760 http://d.old.wanfangdata.com.cn/Periodical/zjnykx201705010 CAI J H, YANG Y, SHAN Y B, et al. Principal component and cluster analysis of quality characters of 35 wheat germplasm resources[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(5):758-760 http://d.old.wanfangdata.com.cn/Periodical/zjnykx201705010 |
[25] | 周丽艳, 郭振清, 马玉玲, 等.春小麦品种农艺性状的主成分分析与聚类分析[J].麦类作物学报, 2011, 31(6):1057-1062 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201106013 ZHOU L Y, GUO Z Q, MA Y L, et al. Principal component and cluster analysis of different spring wheat cultivars based on agronomic traits[J]. Journal of Triticeae Crops, 2011, 31(6):1057-1062 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mlzwxb201106013 |
[26] | 尹桂芳, 王艳青, 李春花, 等.荞麦新品种(系)农艺性状的主成分分析和聚类分析[J].中国农学通报, 2017, 33(34):20-25 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201734004 YIN G F, WANG Y Q, LI C H, et al. Principal component analysis and cluster analysis of main agronomic characters of buckwheat new varieties (lines)[J]. Chinese Agricultural Science Bulletin, 2017, 33(34):20-25 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201734004 |
[27] | 孟丽梅, 杨子光, 孙军伟, 等. 53份小麦品种农艺性状的聚类分析[J].山西农业科学, 2018, 46(7):1085-1088 doi: 10.3969/j.issn.1002-2481.2018.07.06 MENG L M, YANG Z G, SUN J W, et al. Cluster analysis of agronomic traits of 53 wheat varieties[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(7):1085-1088 doi: 10.3969/j.issn.1002-2481.2018.07.06 |
[28] | 宁晓菊.气候变化下我国主要粮食作物种植环境适应性研究[D].郑州: 河南大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016208034.htm NING X J. Adaptation of main grain crops to environment under climate change in China[D]. Zhengzhou: Henan University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016208034.htm |