李广3,,,
王钧2,
董莉霞2,
逯玉兰2,
雒翠萍2,
马维伟3
1.甘肃农业大学资源与环境学院 兰州 730070
2.甘肃农业大学信息科学技术学院 兰州 730070
3.甘肃农业大学林学院 兰州 730070
基金项目: 国家自然科学基金项目31660348
国家自然科学基金项目31560378
国家自然科学基金项目31560343
甘肃农业大学科技创新基金——学科建设专项基金项目GAU-XKJS-2018-254
甘肃农业大学青年导师基金项目GAU-QNDS-201701
甘肃省重点研发计划项目18YF1NA070
甘肃省高等学校协同创新团队项目2018C-16
甘肃省财政专项GSCZZ-20160909
详细信息
作者简介:聂志刚, 主要从事作物生长模拟模型方面的研究。E-mail:niezg@gsau.edu.cn
通讯作者:李广, 主要从事农业生态方面的研究。E-mail:lig@gsau.edu.cn
中图分类号:S24计量
文章访问数:683
HTML全文浏览量:25
PDF下载量:393
被引次数:0
出版历程
收稿日期:2019-02-23
录用日期:2019-06-20
刊出日期:2020-01-01
Simulation model of the grain protein content of dryland wheat based on APSIM
NIE Zhigang1, 2,,LI Guang3,,,
WANG Jun2,
DONG Lixia2,
LU Yulan2,
LUO Cuiping2,
MA Weiwei3
1. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
2. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
3. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
Funds: the National Natural Science Foundation of China31660348
the National Natural Science Foundation of China31560378
the National Natural Science Foundation of China31560343
the Science and Technology Innovation Foundation of Gansu Agricultural UniversityGAU-XKJS-2018-254
the Youth Tutor Foundation of Gansu Agricultural UniversityGAU-QNDS-201701
the Key Research and Development Program of Gansu Province18YF1NA070
the University Collaborative Innovation Team Project of Gansu Province2018C-16
the Financial Special Project of Gansu ProvinceGSCZZ-20160909
More Information
Corresponding author:LI Guang, E-mail:lig@gsau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:籽粒蛋白质积累过程的准确模拟对黄土丘陵区旱地小麦优质生产的有效调控有重要意义。利用甘肃省定西市安定区凤翔镇安家沟村2016-2017年大田试验数据及定西市安定区1971-2017年气象资料,建立基于APSIM(agricultural production systems simulator)的旱地小麦籽粒蛋白质含量模型,采用相关性分析方法检验,并定量分析了耕作方式(传统耕作、传统耕作+秸秆覆盖、免耕及免耕+秸秆覆盖)和播期(正常播期、早播、晚播)对小麦籽粒蛋白质含量的影响。结果表明:3个播期处理和4种耕作方式下,产量和籽粒蛋白质含量模拟值和观测值之间的均方根误差(RMSE)分别为66.4~121.9 kg·hm-2和0.2%~1.1%;归一化均方根误差(NRMSE)分别为1.23%~9.66%和1.31%~9.94%,模型模拟精度较高。播期对旱地小麦籽粒蛋白质含量的影响显著,正常播期的蛋白质含量最高,晚播明显降低了蛋白质含量。4种耕作方式的小麦产量与籽粒蛋白质含量均呈开口向下的二次曲线关系,随着蛋白质含量的升高,产量呈先增加后减少的态势,经过秸秆覆盖的耕作方式(传统耕作+秸秆覆盖和免耕+秸秆覆盖)比不覆盖的耕作方式(传统耕作和免耕)更利于小麦籽粒蛋白质含量的提高。
关键词:小麦/
籽粒蛋白质含量/
耕作方式/
播期/
APSIM/
精度检验
Abstract:Accurate simulation of grain protein accumulation is of considerable importance for the effective regulation of high-quality wheat production on drylands in hilly loess regions. Using field experimental data of Anjiagou Village, Fengxiang Town, Anding District, and Dingxi City from 2016 to 2017 and meteorological data of Anding District and Dingxi City from 1971 to 2017, a dryland wheat grain protein content model was established using the Agricultural Production Systems Simulator (APSIM) and tested using correlation analysis. Quantitative analysis was conducted on the effect of different tillage methods and sowing dates on wheat grain protein content. Four tillage methods were used:conventional tillage (T), conventional tillage with straw cover (TS), no tillage (NT), and no tillage with straw cover (NTS). Further, three sowing dates were set:early sowing date (ESW), normal sowing date (NSW), and late sowing date (LSW). The findings revealed that under the tested tillage methods and sowing dates, the root mean square errors between the simulated and measured yield and grain protein content were 66.4-121.9 kg·hm-2 and 0.2%-1.1%, respectively, and the normalized root mean square errors were 1.23%-9.66% and 1.31%-9.94%, respectively. These results indicate a satisfactory precision. Sowing date had a significant effect on the wheat grain protein content for drylands. The highest grain protein content was found with NSW, but the content decreased significantly with LSW. The relationship between wheat yield and grain protein content for the four tillage methods showed a quadratic curve in an open downward direction. As the grain protein content increased, the yield first increased and then decreased. TS and NTS (straw cover) were more conducive to the increase in the wheat grain protein content than T and NT (no straw cover).
Key words:Wheat/
Grain protein content/
Tillage method/
Sowing date/
APSIM (agricultural production systems simulator)/
Accuracy test
HTML全文
图1旱地小麦产量(a)和蛋白质含量(b)模拟值与实测值关系
Figure1.Relationship between simulated and observed values of dryland wheat yield (a) and protein content
下载: 全尺寸图片幻灯片
图2旱地小麦播期和播种方式对旱地小麦籽粒蛋白质的影响
Figure2.Impact of sowing date and tillage treatment on grain protein content of dryland wheat
下载: 全尺寸图片幻灯片
图3不同耕作方式下旱地小麦产量与籽粒蛋白质含量关系
Figure3.Relationship between yield and grain protein content of dryland wheat under different tillage treatments
下载: 全尺寸图片幻灯片
表1耕作方式描述
Table1.Tillage treatment description
代码 Code | 耕作方式 Tillage treatment | 描述 Description |
T | 传统耕作 Conventional tillage | 三耕两耱。收获脱粒后, 马上进行第1次耕作, 将留茬翻埋入田, 8月底第2次耕作, 9月第3次耕作后耱第1次, 10月份冻结前耱第2次 The field is ploughed 3 times and harrowed twice after harvesting. The first plough is immediately taken after harvesting, and the stubble of previous crop is incorporated into soil. The second and third ploughs are respectively in late August and September. The field is harrowed after the third plough and re-harrowed in October before the ground is frozen. |
TS | 传统耕作+秸秆覆盖 Conventional tillage with straw cover | 耕作方式同T, 10月份耱第2次后收获所得全部前作秸秆覆盖原小区 The field is ploughed and harrowed as the treatment T. The ground is covered with all the straw from the previous crop after the second harrow in October. |
NT | 免耕 No tillage | 收获后, 全年不耕作, 田间管理同当地, 翌年一次性完成播种与施肥 After harvesting, no plough, no harrow and no cover with straw, and other field management is similar to local management practice. Sowing and fertilization is accomplished at one time. |
NTS | 免耕+秸秆覆盖 No tillage with straw cover | 耕作方式同NT, 收获所得全部前作秸秆覆盖原小区 Tillage is as the treatment NT. The ground is covered with all the straw from the previous crop after harvesting. |
下载: 导出CSV
表2APSIM中供试小麦主要属性初始参数
Table2.Initial parameters of the properties of dryland wheat in APSIM
参数Parameter | 值Value |
从灌浆到成熟的积温Accumulative temperature form filling to maturity (℃) | 580 |
主茎叶数Leaf number of main stem | 7 |
分蘖质量Weight of tiller (g) | 1.22 |
单株质量Weight of single plant (g) | 4 |
株高Stem length (cm) | 100 |
穗下节长Lower internode length (cm) | 33 |
日蛋白质积累上限Maximum of daily protein accumulation (g?kg-1) | 230 |
日蛋白质积累下限Minimum of daily protein accumulation (g?kg-1) | 70 |
下载: 导出CSV
表3开花后小麦茎和叶片氮浓度实测平均值
Table3.Observed mean of nitrogen concentration in stem and leaf of dryland wheat after flowering
器官 Organ | 耕作方式 Tillage treatment | 播期 Sowing date | 平均氮浓度Average N concentration (g?kg-1) | |
开花—灌浆 From flowering to grain filling | 灌浆—成熟 From grain filling to maturity | |||
茎 Stem | 传统耕作(T) Conventional tillage | 早播(ESW) Early sowing | 11.3 | 5.4 |
正常播(NSW) Normal sowing | 11.9 | 6.5 | ||
晚播(LSW) Late sowing | 10.0 | 5.2 | ||
传统耕作+秸秆覆盖(TS) Conventional tillage with straw cover | 早播(ESW) Early sowing | 15.6 | 8.3 | |
正常播(NSW) Normal sowing | 16.9 | 9.1 | ||
晚播(LSW) Late sowing | 14.7 | 7.9 | ||
免耕(NT) No tillage | 早播(ESW) Early sowing | 9.3 | 4.3 | |
正常播(NSW) Normal sowing | 8.8 | 4.8 | ||
晚播(LSW) Late sowing | 9.3 | 4.0 | ||
免耕+秸秆覆盖(NTS) No tillage with straw cover | 早播(ESW) Early sowing | 14.3 | 7.9 | |
正常播(NSW) Normal sowing | 13.9 | 8.8 | ||
晚播(LSW) Late sowing | 13.1 | 7.6 | ||
叶片 Leaf | 传统耕作(T) Conventional tillage | 早播(ESW) Early sowing | 28.2 | 13.2 |
正常播(NSW) Normal sowing | 26.6 | 12.3 | ||
晚播(LSW) Late sowing | 23.7 | 9.3 | ||
传统耕作+秸秆覆盖(TS) Conventional tillage with straw cover | 早播(ESW) Early sowing | 30.3 | 14.5 | |
正常播(NSW) Normal sowing | 28.1 | 12.6 | ||
晚播(LSW) Late sowing | 25.5 | 11.0 | ||
免耕(NT) No tillage | 早播(ESW) Early sowing | 22.3 | 8.4 | |
正常播(NSW) Normal sowing | 21.0 | 8.0 | ||
晚播(LSW) Late sowing | 20.4 | 7.5 | ||
免耕+秸秆覆盖(NTS) No tillage with straw cover | 早播(ESW) Early sowing | 29.5 | 13.8 | |
正常播(NSW) Normal sowing | 27.4 | 11.5 | ||
晚播(LSW) Late sowing | 24.3 | 10.8 |
下载: 导出CSV
表4旱地小麦产量和籽粒蛋白质含量模拟检验结果
Table4.Simulation result of dryland wheat yield by the mode of test
播期Sowing date | 耕作方式Tillage treatment | 产量Yield | 蛋白质含量Protein content | |||
RMSE (kg?hm-2) | NRMSE (%) | RMSE (%) | NRMSE (%) | |||
早播(ESW) Early sowing | 传统耕作(T) Conventional tillage | 78.3 | 5.09 | 0.7 | 6.47 | |
传统耕作+秸秆覆盖(TS) Conventional tillage with straw cover | 96.8 | 5.76 | 0.9 | 7.26 | ||
免耕(NT) No tillage | 74.0 | 4.77 | 0.2 | 1.31 | ||
免耕+秸秆覆盖(NTS) No tillage with straw cover | 88.3 | 5.30 | 1.1 | 9.13 | ||
正常(NSW) Normal sowing | 传统耕作(T) Conventional tillage | 119.3 | 9.66 | 1.1 | 8.83 | |
传统耕作+秸秆覆盖(TS) Conventional tillage with straw cover | 108.3 | 5.91 | 0.4 | 2.94 | ||
免耕(NT) No tillage | 66.4 | 3.84 | 0.7 | 5.83 | ||
免耕+秸秆覆盖(NTS) No tillage with straw cover | 19.9 | 1.23 | 0.3 | 2.22 | ||
晚播(LSW) Late sowing | 传统耕作(T) Conventional tillage | 121.9 | 9.43 | 1.0 | 9.59 | |
传统耕作+秸秆覆盖(TS) Conventional tillage with straw cover | 120.8 | 8.29 | 0.8 | 7.25 | ||
免耕(NT) No tillage | 91.3 | 6.64 | 1.1 | 9.94 | ||
免耕+秸秆覆盖(NTS) No tillage with straw cover | 82.9 | 5.52 | 0.6 | 5.23 |
下载: 导出CSV
参考文献
[1] | 董博.不同农作措施对小麦品质的影响[D].兰州: 甘肃农业大学, 2008 DONG B. Effect of the different farming system on wheat quality[D]. Lanzhou: Gansu Agricultural University, 2008 |
[2] | 李广. APSIM模型模拟与应用研究——基于旱地小麦、豌豆保护性耕作定位试验[D].兰州: 甘肃农业大学, 2006: 9–17 LI G. Study on simulation and application of APSIM model — based on the conservation tillage of dryland wheat and pea[D]. Lanzhou: Gansu Agricultural University, 2006: 9–17 |
[3] | 程志强, 蒙继华.作物单产估算模型研究进展与展望[J].中国生态农业学报, 2015, 23(4): 402–415 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201504003 CHENG Z Q, MENG J H. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402–415 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201504003 |
[4] | Ritchie J T, Godwin D C, Otter S. CERES-Wheat: A user-oriented Wheat Model[M]. Michigan State University, East Lansing: AGRISTARS Publication, 1985: 252 |
[5] | JEUFFROY M H, RECOUS S. Azodyn: a simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization[J]. European Journal of Agronomy, 1999, 10(2): 129–144 doi: 10.1016/S1161-0301(98)00059-8 |
[6] | MANSOURI M, DESTAIN M. An improved particle filtering for time-varying nonlinear prediction of biomass and grain protein content[J]. Computers and Electronics in Agriculture, 2015, 114: 145–153 doi: 10.1016/j.compag.2015.04.006 |
[7] | 潘洁, 戴廷波, 姜东, 等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型[J].中国农业科学, 2005, 38(4): 684–691 doi: 10.3321/j.issn:0578-1752.2005.04.007 PAN J, DAI T B, JIANG D, et al. An ecological model for predicting grain protein content in winter wheat[J]. Scientia Agricultura Sinica, 2005, 38(4): 684–691 doi: 10.3321/j.issn:0578-1752.2005.04.007 |
[8] | 李振海, 徐新刚, 金秀良, 等.基于氮素运转原理和GRA-PLS算法的冬小麦籽粒蛋白质含量遥感预测[J].中国农业科学, 2014, 47(19): 3780–3790 doi: 10.3864/j.issn.0578-1752.2014.19.006 LI Z H, XU X G, JIN X L, et al. Remote sensing prediction of winter wheat protein content based on nitrogen translocation and GRA-PLS method[J]. Scientia Agricultura Sinica, 2014, 47(19): 3780–3790 doi: 10.3864/j.issn.0578-1752.2014.19.006 |
[9] | 屈莎, 李振海, 邱春霞, 等.基于开花期氮素营养指标的冬小麦籽粒蛋白质含量遥感预测[J].农业工程学报, 2017, 33(12): 186–193 doi: 10.11975/j.issn.1002-6819.2017.12.024 QU S, LI Z H, QIU C X, et al. Remote sensing prediction of winter wheat grain protein content based on nitrogen nutrition index at anthesis stage[J]. Transactions of the CSAE, 2017, 33(12): 186–193 doi: 10.11975/j.issn.1002-6819.2017.12.024 |
[10] | 罗珠珠, 蔡立群, 李玲玲, 等.长期保护性耕作对黄土高原旱地土壤养分和作物产量的影响[J].干旱地区农业研究, 2015, 33(3): 171–176 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201503030 LUO Z Z, CAI L Q, LI L L, et al. Long-term effects of tillage system on soil nutrients and grain yields in rainfed area of Loess Plateau[J]. Agricultural Research in the Arid Areas, 2015, 33(3): 171–176 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201503030 |
[11] | 聂志刚, 李广.基于APSIM的旱地小麦叶面积指数模拟模型构建[J].干旱地区农业研究, 2013, 31(4): 94–98 doi: 10.3969/j.issn.1000-7601.2013.04.018 NIE Z G, LI G. Modeling of APSIM-based simulation of leaf area index of wheat in dryland[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 94–98 doi: 10.3969/j.issn.1000-7601.2013.04.018 |
[12] | 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 2000: 263–268 BAO S D. Soil Agricultural Chemistry Analysis[M]. 3rd Edition. Beijing: China Agriculture Press, 2000: 263–268 |
[13] | 李广, 黄高宝, William Bellotti, 等. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性[J].生态学报, 2009, 29(5): 2655–2663 doi: 10.3321/j.issn:1000-0933.2009.05.056 LI G, HUANG G B, WILLIAM B, et al. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region[J]. Acta Ecologica Sinica, 2009, 29(5): 2655–2663 doi: 10.3321/j.issn:1000-0933.2009.05.056 |
[14] | 李广, 黄高宝.基于APSIM模型的降水量分配对旱地小麦和豌豆产量影响的研究[J].中国生态农业学报, 2010, 18(2): 342–347 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201002024 LI G, HUANG G B. Determination of the effect of precipitation distribution on yield of wheat and pea in dryland using APSIM[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 342–347 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201002024 |
[15] | 李广, 李玥, 黄高宝, 等.基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应[J].中国生态农业学报, 2012, 20(8): 1088–1095 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201208021 LI G, LI Y, HUANG G B, et al. Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1088–1095 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201208021 |
[16] | 何亮, 赵刚, 靳宁, 等.不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析[J].农业工程学报, 2015, 31(14): 148–157 doi: 10.11975/j.issn.1002-6819.2015.14.021 HE L, ZHAO G, JIN N, et al. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels[J]. Transactions of the CSAE, 2015, 31(14): 148–157 doi: 10.11975/j.issn.1002-6819.2015.14.021 |
[17] | 董朝阳, 刘志娟, 杨晓光.北方地区不同等级干旱对春玉米产量影响[J].农业工程学报, 2015, 31(11): 157–164 doi: 10.11975/j.issn.1002-6819.2015.11.023 DONG C Y, LIU Z J, YANG X G. Effects of different grade drought on grain yield of spring maize in Northern China[J]. Transactions of the CSAE, 2015, 31(11): 157–164 doi: 10.11975/j.issn.1002-6819.2015.11.023 |
[18] | ASSENG S, BAR-TAL A, BOWDEN J W, et al. Simulation of grain protein content with APSIM-Nwheat[J]. European Journal of Agronomy, 2002, 16(1): 25–42 doi: 10.1016/S1161-0301(01)00116-2 |
[19] | ZHENG B Y, CHENU K, DOHERTY A, et al. The APSIM-Wheat module (7.5 R3008) documentation[R]. Toowoomba: APSRU, 2014: 9–17 |
[20] | MONSI M, SAIKI T. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany, 2005, 95(3): 549–567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005809716 |
[21] | SINCLAIR T R. Water and nitrogen limitations in soybean grain productionⅠ. Model development[J]. Field Crops Research, 1986, 15(2): 125–141 doi: 10.1016/0378-4290(86)90082-1 |
[22] | MONTEITH J L, D. GREENWOOD J. How do crops manipulate water supply and demand?[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1986, 316(316): 245–259 |
[23] | TRIBOI E, ABAD A, MICHELENA A, et al. Environmental effects on the quality of two wheat genotypes: 1. quantitative and qualitative variation of storage proteins[J]. European Journal of Agronomy, 2000, 13(1): 47–64 doi: 10.1016/S1161-0301(00)00059-9 |
[24] | 王绍中, 章练红, 徐雪林, 等.环境生态条件对小麦品质的影响研究进展[J].华北农学报, 1994, 9(S1): 141–144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb1994z1030 WANG S Z, ZHANG L H, XU X L, et al. Effect studies of environment and ecological conditions on wheat quality[J]. Acta Agriculturae Boreali-Sinica, 1994, 9(S1): 141–144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb1994z1030 |
[25] | ORLANDO F, MANCINI M, MOTHA R, et al. Modelling durum wheat (Triticum turgidum L. var. durum) grain protein concentration[J]. The Journal of Agricultural Science, 2017, 155(6): 930–938 doi: 10.1017/S0021859616001003 |
[26] | ASSENG S, VAN KEULEN H, STOL W. Performance and application of the APSIM Nwheat model in the Netherlands[J]. European Journal of Agronomy, 2000, 12(1): 37–54 doi: 10.1016/S1161-0301(99)00044-1 |
[27] | 徐寿军, 杨恒山, 范富, 等.大麦籽粒蛋白质含量预测模型[J].中国农业科学, 2009, 42(11): 3863–3870 doi: 10.3864/j.issn.0578-1752.2009.11.013 XU S J, YANG H S, FAN F, et al. A model for predicting grain protein content in barley[J]. Scientia Agricultura Sinica, 2009, 42(11): 3863–3870 doi: 10.3864/j.issn.0578-1752.2009.11.013 |
[28] | 慕军鹏.不同播期对春小麦品质性状及其贮藏蛋白合成和积累的影响[D].兰州: 甘肃农业大学, 2005: 9–17 http://cdmd.cnki.com.cn/article/cdmd-10733-2005103820.htm MU J P. Effect of different sowing dates on quality characters of spring wheat and synthesis and accumulation of storage protein[D]. Lanzhou: Gansu Agricultural University, 2005: 9–17 http://cdmd.cnki.com.cn/article/cdmd-10733-2005103820.htm |
[29] | 尚勋武, 康志钰, 柴守玺, 等.甘肃省小麦品质生态区划和优质小麦产业化发展建议[J].甘肃农业科技, 2003(5): 10–13 doi: 10.3969/j.issn.1001-1463.2003.05.004 SHANG X W, KANG Z Y, CHAI S X, et al. Suggestions to the industrialization of high quality wheat and ecozone division in Gansu according to wheat quality[J]. Gansu Agricultural Science and Technology, 2003(5): 10–13 doi: 10.3969/j.issn.1001-1463.2003.05.004 |
[30] | 王清奎, 汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报, 2005, 36(3): 415–421 doi: 10.3321/j.issn:0564-3945.2005.03.031 WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415–421 doi: 10.3321/j.issn:0564-3945.2005.03.031 |
[31] | 严洁, 邓良基, 黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化, 2005(2): 31–34 doi: 10.3969/j.issn.1006-7205.2005.02.010 YAN J, DENG L J, HUANG J. Effect of conservation tillage on soil physicochemical properties and crop yields[J]. Chinese Agricul Tural Mechanization, 2005(2): 31–34 doi: 10.3969/j.issn.1006-7205.2005.02.010 |
[32] | 孙向阳.土壤学[M].北京:中国林业出版社, 2005: 93–106 SUN X Y. Soil Science[M]. Beijing: China Forestry Press, 2005: 93–106 |
[33] | 杨文雄.中国西北春小麦[M].北京:中国农业出版社, 2016: 356–357 YANG W X. Spring Wheat in Northwest China[M]. Beijing: China Agriculture Press, 2016: 356–357 |