删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于三温模型和热红外遥感的不同大豆品种蒸腾特征研究

本站小编 Free考研考试/2022-01-01

鲁赛红,
蒋适莲,
王眺,
张彤,
侯梦杰,
田菲,
中国农业大学水利与土木工程学院 北京 100083
基金项目: 国家自然科学基金青年科学基金项目41601015
大学生创新创业训练计划项目2018bj110

详细信息
作者简介:鲁赛红, 主要从事农业水文水资源研究。E-mail:caulusaihong@163.com
通讯作者:田菲, 主要从事农业水文与水文遥感研究。E-mail:feitian@cau.edu.cn
中图分类号:S271

计量

文章访问数:467
HTML全文浏览量:1
PDF下载量:478
被引次数:0
出版历程

收稿日期:2019-04-19
录用日期:2019-06-27
刊出日期:2019-10-01

Transpiration characteristics of different soybean varieties based on the Three-Temperature Model and thermal infrared remote sensing

LU Saihong,
JIANG Shilian,
WANG Tiao,
ZHANG Tong,
HOU Mengjie,
TIAN Fei,
College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
Funds: This study was supported by the National Natural Science Foundation of China41601015
the Student's Platform for Innovation and Entrepreneurship Training Program of China2018bj110

More Information
Corresponding author:TIAN Fei, E-mail: feitian@cau.edu.cn


摘要
HTML全文
(6)(2)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:蒸腾耗水是水循环中重要的水分存在形式之一,是准确量化水分利用效率的关键参数,对研究碳水循环关系及节水农业有重要意义。本研究以大豆品种‘晋21’(J21)和‘Union’(C08)为研究对象,设置两种水分处理[当地经验灌水定额的75%(A0)和37.5%(A1)],基于三温模型(3T Model)和热红外遥感,定量研究不同品种和不同水分胁迫下的大豆蒸腾速率,揭示其时空特征差异,从而为抗旱节水大豆品种筛选提供参考。研究结果表明:1)不同处理下大豆的蒸腾速率日变化趋势与气温、太阳净辐射和冠层温度的基本一致,呈先增加后减小的单峰曲线,且于午间达到峰值,峰值为1.2~2.5 mm·h-1;各处理的大豆冠层温度和蒸腾速率均呈现出明显的空间异质性。2)J21与C08大豆的冠层温度A0处理分别低于A1处理6.55 K和5.91 K,蒸腾速率A0处理高于A1处理0.28 mm·h-1和0.29 mm·h-1;大豆蒸腾速率与灌水量呈正相关、与冠层温度呈负相关。3)在相同水分胁迫下,大豆冠层温度J21低于C08 1.83~2.47 K,蒸腾速率J21高于C08 0.13~0.14 mm·h-1。本研究与传统方法相比,所需要的参数较少,避开了空气动力学阻抗等难获取的参数,对农田尺度更具有适宜性,更能揭示不同农田环境下作物的蒸腾时空异质性,在农业水分高效利用和节水品种筛选上有十分重要的科学意义。
关键词:三温模型/
热红外遥感/
大豆蒸腾/
冠层温度/
水分胁迫/
节水品种
Abstract:Transpiration is an important process in the water cycle and is the key parameter to accurately quantify water use efficiency. Thus, it is of great importance for studying the relationship between the carbon and water cycles and for developing water-saving agricultural practices. The major objective of this study was to quantitatively study the transpiration rate of soybean plants of different varieties and under different water stress conditions, to identify differences in temporal and spatial characteristics, and finally, to provide a reference for the selection of drought-resistant and water-saving soybean varieties. Therefore, two soybean varieties (C08 and J21) were selected as the research objects and two water stress conditions (75%[A0] and 37.5%[A1] of the local empirical irrigation quota) were used for each variety. Based on the Three-Temperature Model (3T model) and using thermal infrared remote sensing, transpiration was quantified in the different soybean varieties under different water stress conditions. The diurnal variation in transpiration rate of the soybean plants under different water stress conditions was basically consistent with temperature, net solar radiation (Rn), and canopy temperature (Tc), showing a single-peak curve that first increased and then decreased, reaching a peak at value between 1.2 mm·h-1 and 2.5 mm·h-1 at noon. Moreover, the canopy temperature and transpiration rate of soybean plants under different treatments showed obvious spatial heterogeneity. Under different water stress conditions, C08 and J21 soybean varieties showed canopy temperatures in the order A0 < A1, with means of 6.55 K and 5.91 K, respectively. Transpiration rates were in the order of A0 > A1, with averages of 0.28 mm·h-1 and 0.29 mm·h-1, respectively. Transpiration rates were positively correlated with irrigation and negatively correlated with canopy temperature. Under the same water stress conditions, canopy temperatures were in the order of C08 < J21, with the mean canopy temperature of J21 1.83-2.47 K lower than that of C08. In addition, transpiration rates were of the order J21 < C08, with the mean transpiration rate of the J21 soybean variety 0.13-0.14 mm·h-1 higher than that of the C08 soybean variety. Thus, the J21 soybean variety consumes more water than the C08 variety under the same conditions of water stress. In combination with crop growth indicators, such as leaf area index (LAI) and crop yield, these data provide an important reference for improving crop water productivity in the future. Compared with traditional methods, the method used in this study has some advantages. The 3T model requires fewer parameters which are easy to be measured through introducing the concept of reference soil. The high-resolution thermal infrared instrument used here can reach the millimeter scale and meets the accuracy requirements of crop transpiration rate measurement in the farmland microclimate environment. Therefore, crop transpiration estimation based on the 3T model and thermal infrared remote sensing technology is convenient and accurate and is of scientific significance in promoting efficient agricultural water use and selecting water-saving crop varieties.
Key words:Three-Temperature Model/
Thermal infrared remote sensing/
Soybean transpiration/
Canopy temperature/
Water stress/
Water-saving varieties

HTML全文


图1大豆及参考叶片的可见光图像
Figure1.Visible image of soybean and reference leaf


下载: 全尺寸图片幻灯片


图2试验期间研究区太阳净辐射和气温的日变化曲线
Figure2.Diurnal variations of net radiation (Rn) and air temperature (Ta) in the investigation days


下载: 全尺寸图片幻灯片


图3不同水分胁迫处理下大豆品种‘晋21’(J21)和‘Union’(C08)的冠层温度日变化曲线
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。
Figure3.Diurnal variations of canopy temperature (Tc) of soybean varieties J21 and C08 under different soil water stresses
A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota.


下载: 全尺寸图片幻灯片


图47月16日12:30大豆品种‘晋21’(J21)和‘Union’(C08)不同水分胁迫下可见光图像(左)和冠层温度图像(右)
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。
Figure4.Visible images (left) and thermal images (right) of soybean varieties J21 and C08 under different soil water stresses at 12:30 on July 16
A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota.


下载: 全尺寸图片幻灯片


图5不同水分胁迫处理下大豆品种‘晋21’(J21)和‘Union’(C08)的蒸腾速率日变化曲线
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。
Figure5.Diurnal variations of transpiration rates of soybean varieties J21 and C08 under different soil water stresses
A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota.


下载: 全尺寸图片幻灯片


图67月16日12:30大豆品种‘晋21’(J21)和‘Union’(C08)不同水分胁迫下蒸腾速率的空间分布及其直方图和基本统计
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。
Figure6.Spatial variations, histograms and basic statistics of transpiration rates of soybean varieties J21 and C08 under different water stresses
A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota.


下载: 全尺寸图片幻灯片

表1不同水分胁迫处理下大豆品种‘晋21’(J21)和‘Union’(C08)的平均蒸腾速率峰值与均值及差异显著性分析
Table1.Analysis of the mean peak and mean of transpiration rates of soybean varieties J21 and C08 under different water stresses
水分胁迫处理
Water stress treatment
平均蒸腾速率峰值
Average peak transpiration rate (mm?h-1)
平均蒸腾速率
Average transpiration rate (mm?h-1)
J21 C08 J21 C08
A0 1.53Aα 1.26Aβ 0.84aα 0.71aα
A1 0.95Bα 0.71Bβ 0.56bα 0.42aα
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。不同大写和小写英文字母分别表示在P < 0.01和P < 0.05水平A0和A1处理间差异显著, 不同小写希腊字母表示在P < 0.05水平大豆品种J21和C08间差异显著。A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota. Different captical and lowercase English letters mean significant differences between two water stress treatments at P < 0.01 and P < 0.05 levels, respectively. Different Greek letters mean significant difference between two soybean varieties at P < 0.05 level.


下载: 导出CSV
表2不同水分胁迫处理下大豆品种‘晋21’(J21)和‘Union’(C08)的不同日期(月-日)蒸腾速率峰值及差异显著性分析
Table2.Analysis of the peak of transpiration rates of soybean varieties J21 and C08 at different dates (month-day) under different water stress
水分胁迫处理
Water stress treatment
大豆品种
Soybean variety
不同日期(月-日)蒸腾速率峰值
Peak transpiration rate on different date (month-day) (mm?h-1)
差异显著性
Significance of difference
06-15 06-20 06-21 06-26 07-04 07-05 07-06 07-09 07-16 07-19
A0 J21 1.11 1.79 2.08 1.16 2.06 1.49 0.79 1.56 1.53 1.36 NS
C08 0.92 1.21 1.75 1.06 1.80 1.37 0.67 1.41 1.45 0.99
A1 J21 0.91 1.09 1.08 1.23 0.73 0.94 0.92 0.73 *
C08 0.95 0.92 0.99 0.70 0.60 0.54 0.51 0.48
A0:灌水定额为当地经验灌水定额的75%; A1:灌水定额为当地经验灌水定额的37.5%。NS和*分别表示P < 0.05水平大豆品种J21和C08蒸腾速率差异不显著和显著。A0: irrigation quota is 75% of the local empirical irrigation quota; A1: irrigation quota is 37.5% of the local empirical irrigation quota. “NS” and “*” mean no-significant and significant differences in transpiration rate between two soybean varieties at P < 0.05 level.


下载: 导出CSV

参考文献(32)
[1]中华人民共和国水利部. 2017年中国水资源公报[EB/OL]. (2018-11-16)[2019-02-27]. http://szy.mwr.gov.cn/xxgk/201812/t20181231_1069705.html
Ministry of Water Resources of the People's Republic of China. China water resources bulletin 2017[EB/OL]. (2018-11-16)[2019-02-27]. http://szy.mwr.gov.cn/xxgk/201812/t20181231_1069705.html
[2]杨春燕, 姚利波, 刘兵强, 等.国内外大豆品质育种研究方法与最新进展[J].华北农学报, 2009, 24(S1):75-78 http://d.old.wanfangdata.com.cn/Periodical/hbnxb2009z1019
YANG C Y, YAO L B, LIU B Q, et al. Advance on soybean quality breeding in China and abroad[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(S1):75-78 http://d.old.wanfangdata.com.cn/Periodical/hbnxb2009z1019
[3]裴宇峰, 韩晓增, 祖伟, 等.水氮耦合对大豆生长发育的影响Ⅰ.水氮耦合对大豆产量和品质的影响[J].大豆科学, 2005, 24(2):106-111 http://d.old.wanfangdata.com.cn/Periodical/ddkx200502005
PEI Y F, HAN X Z, ZU W, et al. Effect of water and nitrogen fertilizer coupling on growth and develop of soybeanⅠ. Effect of water and nitrogen fertilizer coupling on yield and quality of soybean[J]. Soybean Science, 2005, 24(2):106-111 http://d.old.wanfangdata.com.cn/Periodical/ddkx200502005
[4]任海红, 刘学义, 李文强, 等.大豆不同时期抗旱鉴定研究进展[J].农业科技通讯, 2016, (8):111-114 http://d.old.wanfangdata.com.cn/Periodical/nykjtx201608036
REN H H, LIU X Y, LI W Q, et al. Research progress on soybean drought resistance at different growth stages[J]. Bulletin of Agricultural Science and Technology, 2016, (8):111-114 http://d.old.wanfangdata.com.cn/Periodical/nykjtx201608036
[5]杨鹏辉, 李贵全, 郭丽, 等.干旱胁迫对不同抗旱大豆品种花荚期质膜透性的影响[J].干旱地区农业研究, 2003, 21(3):127-130 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200303027
YANG P H, LI G Q, GUO L, et al. Effect of drought stress on plasma membrane permeability of soybean varieties during flowering-poding stage[J]. Agricultural Research in the Arid Areas, 2003, 21(3):127-130 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200303027
[6]孙继颖, 高聚林, 薛春雷, 等.不同品种大豆抗旱性能比较研究[J].华北农学报, 2007, 22(6):91-97 http://d.old.wanfangdata.com.cn/Periodical/hbnxb200706019
SUN J Y, GAO J L, XUE C L, et al. Comparative experiment on drought resistant characters of different soybean varieties[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(6):91-97 http://d.old.wanfangdata.com.cn/Periodical/hbnxb200706019
[7]郑伟, 刘成贵, 郭泰, 等.水分胁迫对不同类型大豆光合特性的影响[J].西北农业学报, 2016, 25(2):237-242 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201602012
ZHENG W, LIU C G, GUO T, et al. Effects of water stress on photosynthetic characteristics of different phenotypic soybeans[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(2):237-242 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201602012
[8]阳园燕, 郭安红, 安顺清, 等.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技, 2004, 32(5):316-321 http://d.old.wanfangdata.com.cn/Periodical/qxkj200405003
YANG Y Y, GUO A H, AN S Q, et al. Research on plant-root water uptake models in soil-plant-atmosphere continuum[J]. Meteorological Science and Technology, 2004, 32(5):316-321 http://d.old.wanfangdata.com.cn/Periodical/qxkj200405003
[9]ROSENBERG N J, BLACK B L, VERMA S B. Microclimate:The Biological Environment of Plants[M]. 2nd ed. New York:John Wiley Sons, 1983:495
[10]金菊良, 侯志强, 蒋尚明, 等.基于单作物系数和遗传算法的受旱胁迫下大豆蒸发蒸腾量估算[J].黑龙江大学工程学报, 2017, 8(1):1-10 http://d.old.wanfangdata.com.cn/Periodical/hljsz201701001
JIN J L, HOU Z Q, JIANG S M, et al. Estimation of soybean evapotranspiration under drought stress based on single crop coefficient and genetic algorithm[J]. Journal of Engineering of Heilongjiang University, 2017, 8(1):1-10 http://d.old.wanfangdata.com.cn/Periodical/hljsz201701001
[11]周欣, 郭亚芬, 魏永霞, 等.水分处理对大豆叶片净光合速率、蒸腾速率及水分利用效率的影响[J].农业现代化研究, 2007, 28(3):374-376 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj200703031
ZHOU X, GUO Y F, WEI Y X, et al. Effect of soil moisture on soybean's net photosynthetic rate, transpiration rate and water use efficiency[J]. Research of Agricultural Modernization, 2007, 28(3):374-376 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj200703031
[12]刘冰, 白子裕, 孙禹, 等.杂交大豆叶片光合相关参数日变化及其与环境因子关系[J].江苏农业科学, 2019, 47(4):69-71 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201904015
LIU B, BAI Z Y, SUN Y, et al. Diurnal variation of photosynthetic related parameters in leaves of hybrid soybean and its relationship with environmental factors[J]. Jiangsu Agricultural Sciences, 2019, 47(4):69-71 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201904015
[13]徐新娟, 王伟, 黄中文.大豆品种主要光合指标日变化的研究[J].河南农业科学, 2011, 40(11):49-52 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201111013
XU X J, WANG W, HUANG Z W. Studying on diurnal variation of main photosynthetic index of different soybean varieties[J]. Journal of Henan Agricultural Sciences, 2011, 40(11):49-52 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201111013
[14]郭晓寅, 程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展, 2004, 19(1):107-114 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200401015
GUO X Y, CHENG G D. Advances in the application of remote sensing to evapotranspiration research[J]. Advance in Earth Sciences, 2004, 19(1):107-114 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200401015
[15]BROWN K W, ROSENBERG N J. A resistance model to predict evapotranspiration and its application to a sugar beet field[J]. Agronomy Journal, 1973, 65(3):341-347 doi: 10.2134-agronj1973.00021962006500020004x/
[16]田菲.黑河流域蒸散发的遥感观测及对环境变化的响应[D].北京: 北京师范大学, 2012: 3-5 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2210536
TIAN F. Evapotranspiration remote sensing observations and response to environmental changes in Heihe River catchment[D]. Beijing: Beijing Normal University, 2012: 3-5 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2210536
[17]QIU G Y. A new method for estimation of evapotranspiration[D]. Tttori, Japan: The United Graduate School of Agriculture Science, Tttori University, 1996: 1-97
[18]QIU G Y, YANO T, MOMⅡ K. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface[J]. Journal of Hydrology, 1998, 210(1/4):93-105 doi: 10.1016-S0022-1694(98)00174-7/
[19]QIU G Y, MOMⅡ K, YANO T. Estimation of plant transpiration by imitation leaf temperature. Theoretical consideration and field verification (Ⅰ)[J]. Transaction of the Japanese Society of Irrigation, Drainage and Reclamation Engineering, 1996, 1996(183):401-410 https://www.researchgate.net/publication/284697020_Estimation_of_plant_transpiration_by_imitation_leaf_temperature_I_Theoretical_consideration_and_field_verification
[20]邱国玉, 王帅, 吴晓.三温模型——基于表面温度测算蒸散和评价环境质量的方法Ⅰ.土壤蒸发[J].植物生态学报, 2006, 30(2):231-238 http://d.old.wanfangdata.com.cn/Periodical/zwstxb200602005
QIU G Y, WANG S, WU X. Three temperature (3T) model-A method to estimate evapotranspiration and evaluate environmental quality[J]. Journal of Plant Ecology, 2006, 30(2):231-238 http://d.old.wanfangdata.com.cn/Periodical/zwstxb200602005
[21]TIAN F, QIU G Y, YANG Y H, et al. Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products[J]. Journal of Hydrology, 2013, 498:210-220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=75cfcb573434353b311db9701e779f9c
[22]高永, 张瀚文, 虞毅, 等.基于"三温模型"的珍稀濒危荒漠植物半日花蒸腾速率研究[J].生态学报, 2014, 34(20):5721-5727 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201420005
GAO Y, ZHANG H W, YU Y, et al. Transpiration rate change in the rare and endangered eremophyte Helianthemum songaricum schrenk based on the "Three-Temperature Model"[J]. Acta Ecologica Sinica, 2014, 34(20):5721-5727 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201420005
[23]LI S E, KANG S Z, ZHANG L, et al. Ecosystem water use efficiency for a sparse vineyard in arid northwest China[J]. Agricultural Water Management, 2015, 148:24-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c304678483da4229678685b39b15740
[24]张雨新.生育期水分调控对河西春小麦生长和水氮利用的影响[D].杨凌: 西北农林科技大学, 2017: 8-9 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017064578.htm
ZHANG Y X. Effects of water regulation in growth season on growth and water-nitrogen utilization of spring wheat in the Hexi Region[D]. Yangling: Northwest A&F University, 2017: 8-9 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017064578.htm
[25]XIONG Y J, ZHAO S H, TIAN F, et al. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing[J]. Journal of Hydrology, 2015, 530:392-404 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3beeb294d058684b1b60d24e13d44d49
[26]曹永强, 张亭亭, 徐丹, 等.海河流域蒸散发时空演变规律分析[J].资源科学, 2014, 36(7):1489-1500 http://d.old.wanfangdata.com.cn/Thesis/Y2377124
CAO Y Q, ZHANG T T, XU D, et al. Analysis of evapotranspiration of temporal-space evolution in the Haihe Basin[J]. Resources Science, 2014, 36(7):1489-1500 http://d.old.wanfangdata.com.cn/Thesis/Y2377124
[27]QIU G Y, MOMⅡ K, YANO T, et al. Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation[J]. Agricultural and Forest Meteorology, 1999, 93(2):79-93 https://www.researchgate.net/publication/222490225_Experimental_verification_of_a_mechanistic_model_to_partition_evapotranspiration_into_soil_water_and_plant_evaporation
[28]TIAN F, QIU G Y, LUY Y H, et al. Use of high-resolution thermal infrared remote sensing and "three-temperature model" for transpiration monitoring in arid inland river catchment[J]. Journal of Hydrology, 2014, 515:307-315 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=964d2f3d0ce0d551b36eecee47007644
[29]周新安, 年海, 杨文钰, 等.南方间套作大豆生产发展的现状与对策(Ⅰ)[J].大豆科技, 2010, (3):1-2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddtb201003001
ZHOU X A, NIAN H, YANG W Y, et al. Status and countermeasures of soybean production and development of intercropping with other crops in south China (Ⅰ)[J]. Soybean Bulletin, 2010, (3):1-2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddtb201003001
[30]HOU M J, TIAN F, ZHANG L, et al. Estimating crop transpiration of soybean under different irrigation treatments using thermal infrared remote sensing imagery[J]. Agronomy, 2019, 9(1):8
[31]王彩洁, 李伟, 徐冉, 等.黄淮海地区主栽大豆品种抗旱性比较[J].山东农业科学, 2018, 50(1):67-70 http://d.old.wanfangdata.com.cn/Periodical/shandnykx201801013
WANG C J, LI W, XU R, et al. Comparative study on drought resistance of main soybean cultivars planted in Huang-Huai-Hai valley region[J]. Shandong Agricultural Sciences, 2018, 50(1):67-70 http://d.old.wanfangdata.com.cn/Periodical/shandnykx201801013
[32]陈爱国, 吴禹, 崔晓光, 等.不同栽培大豆和野生大豆品种抗旱性综合评价[J].辽宁农业科学, 2014, (3):1-5 http://d.old.wanfangdata.com.cn/Periodical/lnnykx201403001
CHEN A G, WU Y, CUI X G, et al. Comprehensive evaluation on drought-resistance of different soybean cultivars and wild varieties[J]. Liaoning Agricultural Sciences, 2014, (3):1-5 http://d.old.wanfangdata.com.cn/Periodical/lnnykx201403001

相关话题/经验 图片 图像 农业 遥感