删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米间作豌豆种间竞争互补对少耕密植的响应

本站小编 Free考研考试/2022-01-01

任旭灵,
滕园园,
王一帆,
殷文,
柴强,
甘肃省干旱生境作物学重点实验室/甘肃农业大学农学院 兰州 730070
基金项目: 国家现代农业绿肥产业技术体系项目CARS-22-G-12
国家自然科学基金项目31771738


详细信息
作者简介:任旭灵, 主要研究方向为旱地与绿洲农作制。E-mail:renxl1020@163.com
通讯作者:柴强, 主要从事多熟种植、节水农业和循环农业研究。E-mail:chaiq@gsau.edu.cn
中图分类号:S529;S513

计量

文章访问数:2235
HTML全文浏览量:6
PDF下载量:2777
被引次数:0
出版历程

收稿日期:2018-09-17
录用日期:2018-11-15
刊出日期:2019-06-01

Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting

REN Xuling,
TENG Yuanyuan,
WANG Yifan,
YIN Wen,
CHAI Qiang,
Gansu Provincial Key Laboratory of Arid Land Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
Funds: the National Modern Agricultural Green Manure Industry Technology System of ChinaCARS-22-G-12
the National Natural Science Foundation of China31771738


More Information
Corresponding author:CHAI Qiang, E-mail:chaiq@gsau.edu.cn


摘要
HTML全文
(3)(4)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:通过对种间关系的研究,确定玉米间作豌豆中能否集成少耕和密植效应,对进一步优化间作技术具有理论指导意义。2016—2017年,本研究在河西绿洲灌区,以玉米间作豌豆为研究对象,设传统耕作、少耕两种耕作措施和低、中、高3种玉米密度,研究不同处理对玉米间作豌豆种间竞争力和豌豆收后间作玉米恢复效应的影响,揭示种间关系与间作产量的相关关系。结果表明,不同间作处理的土地当量比均大于1,说明本试验条件下的间作处理均具有增产优势;与传统耕作相比,少耕使玉米间作豌豆产量提高5.79%;少耕条件下,中密度间作产量较低密度、高密度处理显著提高8.37%、9.09%,说明玉米间作豌豆集成少耕和中密度具有进一步增产的优势。少耕结合中密度强化了间作豌豆对玉米的竞争力,较低密度、高密度处理的竞争力分别高36.56%、20.17%,形成间作玉米恢复效应强化的基础;豌豆收获后,少耕间作玉米具有明显的恢复生长效应,较传统耕作高10.30%~47.11%。间作群体的籽粒产量与豌豆相对于玉米全生育期内的平均竞争力呈二次曲线相关关系,当竞争力在0.25时利于间作获得高产。因此,玉米间作豌豆模式中集成少耕和密植技术,通过调控种间关系进一步挖掘间作增产潜力,少耕结合玉米中密度可作为绿洲灌区玉米间作豌豆增产的理想措施。
Abstract:Through the study of an interspecific relationship, the effects of reduced tillage and high-density planting was analyzed in a maize/pea intercropping system. The research could provide a theoretical basis for further optimization of intercropping technology. The study, conducted in 2016-2017 in the Hexi Oasis Irrigation Area, used a maize/pea intercropping system as the research setup. Two tillage patterns were measured:conventional tillage and reduced tillage. Simultaneously, maize was planted at low, medium and high density to study the effects of different treatments on the competitiveness of maize/pea intercropping systems. Also, the recovery ability of maize after the pea harvest was analyzed to reveal the interspecies relationship and the correlation with intercropping production. The results showed that the land equivalent ratio of different intercropping treatments was higher than 1, indicating that these intercropping treatments resulted in an increased yield. Compared with conventional tillage, reduced tillage increased the yield of maize/pea intercropping system by 5.79%. Under reduced tillage conditions, the yield of intercropping system at medium density was considerably increased by 8.37% and 9.09% relative to low-density and high-density conditions, respectively. This observation indicates that combining reduced tillage with a medium-density plantation further increased the yield of a maize/pea intercropping system. Reduced tillage combined with a medium-density plantation enhanced the competitiveness of maize/pea intercropping:the competitiveness was 36.56% and 20.17% higher relative to the low-density and high-density treatment, respectively. The enhanced competitiveness formed the basis of the enhanced maize intercropping recovery effect. After the pea harvest under reduced tillage conditions, maize displayed a significant recovery growth effect, which was 10.30%-47.11% higher than that under conventional tillage conditions. The correlation between the grain yields of intercropping system and the average competitiveness of pea relative to maize during the whole growth period was quadratic function. The integration of reduced tillage and a medium-density planting technology in the maize/pea intercropping model provides the potential for an intercropping system to increase the yield by regulating the interspecific relationship.

HTML全文


图12016—2017年玉米/豌豆间作系统不同耕作措施和玉米密度处理的土地当量比
不同小写字母表示同一年份各处理间差异达显著水平(P < 0.05)。图中CT代表传统耕作, RT代表少耕, I代表间作, 1、2、3代表玉米低密度、中密度、高密度。
Figure1.Land equivalent ratios of maize/pea intercropping system under different tillage measures and maize densities in 2016 and 2017
Different lowercase letters indicate significant differences among different treatments in the same year at P < 0.05. CT: conventional tillage; RT: reduced tillage; I: intercropping; 1: low density; 2: medium density; 3: high density.


下载: 全尺寸图片幻灯片


图22016年和2017年不同耕作措施和玉米密度下玉米/豌豆间作系统中豌豆相对于玉米竞争力的动态
图中CT代表传统耕作, RT代表少耕, I代表间作, 1、2、3代表玉米低密度、中密度、高密度。
Figure2.Dynamics of competitiveness of pea to maize in maize/pea intercropping system under different tillage measures and maize densities in 2016 and 2017
CT: conventional tillage; RT: reduced tillage; I: intercropping; 1: low density; 2: medium density; 3: high density.


下载: 全尺寸图片幻灯片


图32016年和2017年玉米/豌豆间作系统全生育期豌豆相对于玉米的平均竞争力与籽粒产量的相关性
Figure3.Relationship between competitiveness of pea to maize during whole growth period and grain yield of maize/pea intercropping system in 2016 and 2017


下载: 全尺寸图片幻灯片

表1试验代码及处理
Table1.Codes of different treatments
处理
Treatment
耕作方式
Tillage method
种植方式
Planting pattern
种植密度
Planting density (104 plant·hm-2)
处理
Treatment
年际间耕作措施试验操作说明
Experiments on interannual tillage measures
玉米Maize 豌豆Pea 2015 2016 2017
CTM1 传统耕作
Conventional tillage
单作玉米
Sole maize
7.80 CTM→RTM 单作玉米
Sole maize
单作玉米, 传统耕作
Sole maize, conventional tillage
单作玉米, 少耕耕作
Sole maize, reduced tillage
CTM2 10.35
CTM3 12.90
RTM1 少耕
Reduced tillage
7.80 RTM→CTM 单作玉米
Sole maize
单作玉米, 少耕耕作
Sole maize, reduced tillage
单作玉米, 传统耕作
Sole maize, conventional tillage
RTM2 10.35
RTM3 12.90
CTI1 传统耕作
Conventional tillage
玉米间作豌豆
Maize/pea intercropping
4.50 10 CTI→RTI 玉米/豌豆
Maize/pea intercropping
玉米/豌豆, 传统耕作
Maize/pea intercropping, conventional tillage
玉米/豌豆, 少耕耕作
Maize/pea intercropping, reduced tillage
CTI2 6.00 10
CTI3 7.50 10
RTI1 少耕
Reduced tillage
4.50 10 RTI→CTI 玉米/豌豆
Maize/pea intercropping
玉米/豌豆, 少耕耕作
Maize/pea intercropping, reduced tillage
玉米/豌豆, 传统耕作
Maize/pea intercropping, conventional tillage
RTI2 6.00 10
RTI3 7.50 10
P 24 P 单作豌豆Pea 单作豌豆Pea 单作豌豆Pea


下载: 导出CSV
表22016年和2017年少耕密植处理下玉米/豌豆间作系统的产量表现
Table2.Yield of maize/pea intercropping system under different tillage measures and maize densities in 2016 and 2017
kg·hm-2
年份
Year
处理
Treatment
籽粒产量Grain yield 生物产量Biological yield
豌豆Pea 玉米Maize 总产量Total 豌豆Pea 玉米Maize 总产量Total
2016 CTM1 12 059±292b 12 059±292b 26 175±4 024b 26 175±4 024b
CTM2 12 695±221a 12 695±221a 27 859±370ab 27 859±370ab
CTM3 12 151±551b 12 151±551b 27 907±775ab 27 907±775ab
RTM1 12 214±1 477b 12 214±1 477b 26 712±3 047b 26 712±3 047b
RTM2 12 682±195a 12 682±195a 28 357±1 081a 28 357±1 081a
RTM3 12 027±643b 12 027±643b 27 878±1 860ab 27 878±1 860ab
CTI1 2 085±167d 8 412±419f 10 498±434e 4 995±1 152d 17 841±598e 22 837±933e
CTI2 2 105±90d 8 543±721ef 10 648±731e 5 094±1 009d 18 550±614cd 23 645±977d
CTI3 2 052±196d 8 710±872ef 10 763±1 039de 5 162±932cd 18 236±857d 23 399±1 215de
RTI1 2 238±216c 8 808±1 045de 11 047±992d 4 789±228d 18 004±1 630de 22 794±1 656e
RTI2 2 397±128b 9 699±1 007c 12 097±1 069b 5 639±531b 18 939±1 748c 24 579±1 587c
RTI3 2 339±231b 9 041±1 271d 11 380±1 375c 5 354±334c 18 689±1 917cd 24 044±1 878cd
P 4 452±229a 4 452±229f 8 910±83a 8 910±83f
2017 CTM1 13 251±375c 13 251±375cd 26 882±1816bc 26 882±1 816bcd
CTM2 14 460±251b 14 460±251b 29 236±799ab 29 236±799ab
CTM3 13 785±580bc 13 785±580bc 28 083±822bc 28 083±822bc
RTM1 14 205±360b 14 205±360bc 26 701±1 583c 26 701±1 583cdef
RTM2 15 977±1 744a 15 977±1 744a 31 278±1 880a 31 278±1 880a
RTM3 13 693±2 597bc 13 693±2 597bc 30 734±824a 30 734±824a
CTI1 2 155±173c 8 936±840e 11 091±903f 4 450±178d 16 578±795f 21 028±716h
CTI2 2 358±100bc 9 408±332de 11 765±232ef 4 944±305cd 18 354±924e 23 299±1 041fgh
CTI3 2 281±218bc 8 670±83e 10 952±296e 5 540±224bc 20 438±414d 25 978±543cdef
RTI1 2 255±218bc 9 363±386de 11 618±595ef 5 653±483b 16 675±843f 22 329±840gh
RTI2 2 471±1121b 9 987±334d 12 458±5 047de 6 043±235b 19 368±882d 25 412±1 079def
RTI3 2 326±727bc 8 809±957e 11 134±1 665f 5 773±77b 18 522±808de 24 294±771efg
P 4 511±591a 4 511±591g 12 627±403a 12 627±403i
同列不同小写字母表示同一年份各处理间差异达显著水平(P < 0.05)。表中CT代表传统耕作, RT代表少耕, I代表间作, 1、2、3代表玉米低密度、中密度、高密度。Different lowercase letters mean significant differences among different treatments in the same year at P < 0.05. CT: conventional tillage; RT: reduced tillage; I: intercropping; 1: low density; 2: medium density; 3: high density.


下载: 导出CSV
表3少耕密植处理对玉米/豌豆间作系统籽粒产量和生物产量的主效应分析
Table3.Analysis of main effect of tillage measure and maize density on grain yield and biological yield of maize/pea intercropping system
处理
Treatment
籽粒产量Grain yield 生物产量Biological yield
豌豆Pea 玉米Maize 总产量Total 豌豆Pea 玉米Maize 总产量Total
年际Year 0.061 0.000** 0.000** 0.351 0.155 0.101
种植模式Planting pattern 0.000** 0.000** 0.000** 0.000**
耕作措施Tillage measure 0.050* 0.674 0.483 0.043 0.289 0.111
玉米密度Maize density 0.026 0.001** 0.000** 0.199 0.001** 0.000**
年际×种植模式Year × planting pattern 0.000** 0.000** 0.176 0.124 0.203
年际×耕作措施Year × tillage measure 0.018* 0.260 0.149 0.881 0.752 0.497
年际×玉米密度Year × maize density 0.251 0.505 0.449 0.312 0.215 0.202
种植模式×耕作措施Planting pattern × tillage measure 0.060 0.036* 0.323 0.679
种植模式×玉米密度Planting pattern × maize density 0.640 0.879 0.626 0.786
耕作措施×玉米密度Tillage measure × maize density 0.408 0.024* 0.039* 0.589 0.716 0.585
年际×种植模式×耕作措施Year × planting pattern × tillage measure 0.691 0.985 0.324* 0.544
年际×种植模式×玉米密度Year × planting pattern × maize density 0.394* 0.558 0.766 0.696
年际×耕作措施×玉米密度Year × tillage measure × maize density 0.750 0.030* 0.036* 0.509 0.791 0.842
种植模式×耕作措施×玉米密度Planting pattern × tillage measure × maize density 0.049* 0.041* 0.639 0.525
年际×种植模式×耕作措施×玉米密度Year × planting pattern × tillage measure × maize density 0.141* 0.172* 0.407 0.276*
**和*指P < 1%和P < 5%水平上显著。** and * mean significant levels at 1% and 5% levels, respectively.


下载: 导出CSV
表42016年和2017年玉米/豌豆间作系统中不同耕作措施和玉米密度处理下豌豆收获后玉米的恢复效应
Table4.Recovering effect of maize after pea harvest in maize/pea intercropping system under different tillage measures and maize densities in 2016 and 2017
年际Year 处理Treatment 日期(月-日) Date (month-day)
07-07—07-22 07-23—08-11 08-12—08-26 08-27—09-27
2016 CTI1 0.81±0.07c 1.48±0.16b 2.95±0.16c 1.16±0.11c
CTI2 1.46±0.11ab 1.56±0.14b 3.98±0.31a 1.49±0.08ab
CTI3 0.40±0.06c 1.89±0.12a 3.14±0.27bc 1.09±0.09c
RTI1 1.01±0.09bc 2.02±0.18a 3.97±0.35a 1.71±0.11a
RTI2 1.65±0.13a 1.89±0.12a 4.38±0.34a 1.64±0.11a
RTI3 0.72±0.08c 1.83±0.16a 3.43±0.24b 1.25±0.15bc
2017 CTI1 0.85±0.06cd 1.52±0.12d 3.22±0.24d 1.44±0.16c
CTI2 1.56±0.09ab 1.87±0.22cd 4.34±0.43ab 2.54±0.15a
CTI3 0.47±0.05d 2.03±0.23bc 3.41±0.32cd 1.47±0.11c
RTI1 1.12±0.07bc 2.46±0.14ab 4.06±0.42b 2.05±0.13b
RTI2 1.87±0.17a 2.88±0.22a 4.62±0.29a 2.34±0.24ab
RTI3 0.79±0.11cd 2.04±0.13bc 3.86±0.31bc 1.45±0.23c
主效应分析Main effects analysis
年际Year 0.023* 0.003** 0.010** 0.000**
耕作措施Tillage measure 0.000** 0.000** 0.000** 0.015*
玉米密度Maize density 0.000** 0.402 0.000** 0.000**
年际×耕作措施Year × tillage measure 0.440 0.086 0.805 0.331
年际×玉米密度Year × maize density 0.608 0.174 0.766 0.009**
耕作措施×玉米密度Tillage measures × maize density 0.659 0.014* 0.035* 0.010**
年际×耕作措施×玉米密度Year x tillage measures × maize density 0.842 0.524 0.749 0.585
**和*指P < 1%和P < 5%水平上显著。表中CT代表传统耕作, RT代表少耕, I代表间作, 1、2、3代表玉米低密度、中密度、高密度。** and * mean significant levels at 1% and 5% levels, respectively. CT: conventional tillage; RT: reduced tillage; I: intercropping; 1: low density; 2: medium density; 3: high density.


下载: 导出CSV

参考文献(30)
[1]YAN S, DU X Q, WU F, et al. Proteomics insights into the basis of interspecific facilitation for maize (Zea mays) in faba bean (Vicia faba)/maize intercropping[J]. Journal of Proteomics, 2014, 109:111-124 doi: 10.1016/j.jprot.2014.06.027
[2]TAKIM F O. Advantages of maize-cowpea intercropping over sole cropping through competition indices[J]. Journal of Agriculture and Biodiversity Research, 2012, 1(4):53-59
[3]杨友琼, 吴伯志.作物间套作种植方式间作效应研究[J].中国农学通报, 2007, 23(11):192-196 doi: 10.3969/j.issn.1000-6850.2007.11.043
YANG Y Q, WU B Z. Research of intercropping benefit of crop intercropping systems[J]. Chinese Agricultural Science Bulletin, 2007, 23(11):192-196 doi: 10.3969/j.issn.1000-6850.2007.11.043
[4]LI L, SUN J H, ZHANG F S, et al. Wheat/maize or wheat/soybean strip intercropping:Ⅰ. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Research, 2001, 71(2):123-137 doi: 10.1016/S0378-4290(01)00156-3
[5]TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898):671-677 doi: 10.1038/nature01014
[6]肖焱波, 李隆, 张福锁.豆科//禾本科间作系统中氮营养研究进展[J].中国农业科技导报, 2003, 5(6):44-49 doi: 10.3969/j.issn.1008-0864.2003.06.010
XIAO Y B, LI L, ZHANG F S. An outlook of the complementary nitrogen nutrition in the legume//graminaceae system[J]. Review of China Agricultural Science and Technology, 2003, 5(6):44-49 doi: 10.3969/j.issn.1008-0864.2003.06.010
[7]高阳, 段爱旺, 刘祖贵, 等.间作种植模式对玉米和大豆干物质积累与产量组成的影响[J].中国农学通报, 2009, 25(2):214-222 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200902051
GAO Y, DUAN A W, LIU Z G, et al. Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean[J]. Chinese Agricultural Science Bulletin, 2009, 25(2):214-222 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200902051
[8]张恩和, 黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报, 2003, 14(8):1301-1304 doi: 10.3321/j.issn:1001-9332.2003.08.020
ZHANG E H, HUANG G B. Temporal and spatial distribution characteristics of the crop root in intercropping system[J]. Chinese Journal of Applied Ecology, 2003, 14(8):1301-1304 doi: 10.3321/j.issn:1001-9332.2003.08.020
[9]赵建华, 孙建好, 李隆, 等.改变玉米行距种植对豌豆/玉米间作体系产量的影响[J].中国生态农业学报, 2012, 20(11):1451-1456 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20121106&journal_id=zgstny
ZHAO J H, SUN J H, LI L, et al. Effect of maize row spacing on yield of pea/maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11):1451-1456 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20121106&journal_id=zgstny
[10]刘淑梅, 黄鹏, 柴强, 等.空间布局对玉米/豌豆种间竞争力及产量的影响[J].甘肃农业大学学报, 2014, 49(2):61-65 doi: 10.3969/j.issn.1003-4315.2014.02.011
LIU S M, HUANG P, CHAI Q, et al. Effect of spatial arrangement on aggressivity and grain yield of maize/pea intercropping system[J]. Journal of Gansu Agricultural University, 2014, 49(2):61-65 doi: 10.3969/j.issn.1003-4315.2014.02.011
[11]张训忠, 李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究[J].中国农业科学, 1987, 20(2):34-42 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK198702005.htm
ZHANG X Z, LI B H. A study on the complementarity and competition effects induced by inter-and mixed-cropping of maize-soybean on fertile land[J]. Scientia Agricultura Sinaca, 1987, 20(2):34-42 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK198702005.htm
[12]樊志龙, 陶志强, 柴强, 等.少耕秸秆覆盖对小麦间作玉米产量和水分利用的影响[J].灌溉排水学报, 2012, 31(1):109-112 http://d.old.wanfangdata.com.cn/Periodical/ggps201201027
FAN Z L, TAO Z Q, CHAI Q, et al. Yield and water use efficiency of wheat corn intercropping with reduced tillage and wheat straw mulching[J]. Journal of Irrigation and Drainage, 2012, 31(1):109-112 http://d.old.wanfangdata.com.cn/Periodical/ggps201201027
[13]高慧, 朱倩, 张荣, 等.不同种植密度下玉米与豌豆间作对群体总产量的影响[J].应用生态学报, 2016, 27(11):3548-3558 http://d.old.wanfangdata.com.cn/Periodical/yystxb201611018
GAO H, ZHU Q, ZHANG R, et al. Effects of maize and pea intercropping on the total grain yield of community under different planting densities[J]. Chinese Journal of Applied Ecology, 2016, 27(11):3548-3558 http://d.old.wanfangdata.com.cn/Periodical/yystxb201611018
[14]王利立, 朱永永, 殷文, 等.大麦/豌豆间作系统种间竞争力及产量对地下作用和密度互作的响应[J].中国生态农业学报, 2016, 24(3):265-273 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016301&journal_id=zgstny
WANG L L, ZHU Y Y, YIN W, et al. Competitiveness and yield response to belowground interaction and density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3):265-273 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016301&journal_id=zgstny
[15]赵洋, 冯福学, 赵财, 等.绿洲灌区玉米间作豌豆的产量密植效应[J].甘肃农业大学学报, 2017, 52(1):37-43 http://d.old.wanfangdata.com.cn/Periodical/gsnydxxb201701007
ZHAO Y, FENG F X, ZHAO C, et al. Yield performance of maize/pea intercropping system under high planting density in Hexi oasis irrigated area[J]. Journal of Gansu Agricultural University, 2017, 52(1):37-43 http://d.old.wanfangdata.com.cn/Periodical/gsnydxxb201701007
[16]张婧, 张仁陟, 左小安.保护性耕作对黄土高原农田土壤理化性质的影响[J].中国沙漠, 2016, 36(1):137-143 http://d.old.wanfangdata.com.cn/Periodical/zgsm201601020
ZHANG J, ZHANG R Z, ZUO X A. Effects of conservative tillage on physical and chemical characteristics under a pea-wheat rotation system in the loess plateau[J]. Journal of Desert Research, 2016, 36(1):137-143 http://d.old.wanfangdata.com.cn/Periodical/zgsm201601020
[17]HU F L, CHAI Q, YU A Z, et al. Less carbon emissions of wheat-maize intercropping under reduced tillage in arid areas[J]. Agronomy for Sustainable Development, 2015, 35(2):701-711 doi: 10.1007/s13593-014-0257-y
[18]殷文, 冯福学, 赵财, 等.秸秆还田及地膜对间作农田环境效应的影响[J].农业工程学报, 2016, 32(S2):77-84 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z2011
YIN W, FENG F X, ZHAO C, et al. Effects of straw returning and plastic film mulching on environmental effect in intercropping system[J]. Transactions of the CSAE, 2016, 32(S2):77-84 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z2011
[19]谢瑞芝, 李少昆, 李小君, 等.中国保护性耕作研究分析——保护性耕作与作物生产[J].中国农业科学, 2007, 40(9):1914-1924 doi: 10.3321/j.issn:0578-1752.2007.09.010
XIE R Z, LI S K, LI X J, et al. The analysis of conservation tillage in china-conservation tillage and crop production:Reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9):1914-1924 doi: 10.3321/j.issn:0578-1752.2007.09.010
[20]何奇镜, 佟培生, 边少锋, 等.长期少耕对玉米产量与土壤生态环境的影响(1983~2002)[J].玉米科学, 2004, 12(S1):99-102 http://d.old.wanfangdata.com.cn/Periodical/ymkx2004z1050
HE Q J, TONG P S, BIAN S F, et al. The influence of long-term minimum tillage on corn yield and soil ecological surroundings (1983-2002)[J]. Journal of Maize Sciences, 2004, 12(S1):99-102 http://d.old.wanfangdata.com.cn/Periodical/ymkx2004z1050
[21]宫秀杰, 钱春荣, 于洋, 等.深松少耕技术对土壤物理性状及玉米产量的影响[J].黑龙江农业科学, 2009, (5):32-34 doi: 10.3969/j.issn.1002-2767.2009.05.011
GONG X J, QIAN C R, YU Y, et al. Effects of subsoiling and fewer-tillage on soil physical characters and the yield[J]. Heilongjiang Agricultural Sciences, 2009, (5):32-34 doi: 10.3969/j.issn.1002-2767.2009.05.011
[22]MONNEVEUX P, QUILLéROU E, SANCHEZ C, et al. Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment (Mexico)[J]. Plant and Soil, 2006, 279(1/2):95-105 doi: 10.1007-s11104-005-0436-3/
[23]章家恩, 高爱霞, 徐华勤, 等.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报, 2009, 20(7):1597-1602 http://cdmd.cnki.com.cn/Article/CDMD-10464-1015902371.htm
ZHANG J E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents[J]. Chinese Journal of Applied Ecology, 2009, 20(7):1597-1602 http://cdmd.cnki.com.cn/Article/CDMD-10464-1015902371.htm
[24]赵财, 柴强, 冯福学, 等.不同灌水水平下一膜两年覆盖间作农田耗水特征及经济效益研究[J].中国生态农业学报, 2016, 24(6):744-752 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016606&journal_id=zgstny
ZHAO C, CHAI Q, FENG F X, et al. Characteristics and economic benefits of water consumption in intercropping fields with one plastic film mulching for 2 years and different irrigation levels[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):744-752 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016606&journal_id=zgstny
[25]魏欢欢, 王仕稳, 杨文稼, 等.免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析[J].中国农业科学, 2017, 50(3):461-477 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201703005
WEI H H, WANG S W, YANG W J, et al. Meta analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the loess plateau[J]. Scientia Agricultura Sinica, 2017, 50(3):461-477 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201703005
[26]DAPAAH H K, ASAFU-AGYEI J N, ENNIN S A, et al. Yield stability of cassava, maize, soya bean and cowpea intercrops[J]. The Journal of Agricultural Science, 2003, 140(1):73-82 doi: 10.1017/S0021859602002770
[27]NDAKIDEMI P A. Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems[J]. African Journal of Biotechnology, 2006, 5(25):2526-2533 https://www.ajol.info/index.php/ajb/article/viewFile/56070/44530
[28]齐万海, 柴强.不同隔根方式下间作小麦玉米的竞争力及产量响应[J].中国生态农业学报, 2010, 18(1):31-34 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2010106&journal_id=zgstny
QI W H, CHAI Q. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):31-34 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2010106&journal_id=zgstny
[29]殷文, 赵财, 于爱忠, 等.秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响[J].作物学报, 2015, 41(4):633-641
YIN W, ZHAO C, YU A Z, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4):633-641
[30]赵明, 李建国, 张宾, 等.论作物高产挖潜的补偿机制[J].作物学报, 2006, 32(10):1566-1573 doi: 10.3321/j.issn:0496-3490.2006.10.023
ZHAO M, LI J G, ZHANG B, et al. The compensatory mechanism in exploring crop production potential[J]. Acta Agronomica Sinica, 2006, 32(10):1566-1573 doi: 10.3321/j.issn:0496-3490.2006.10.023

相关话题/系统 作物 土壤 玉米 科学