郭琪琳,
王金强,
李欢,
刘庆,
青岛农业大学资源与环境学院 青岛 266109
基金项目: 现代农业产业技术体系建设专项资金CARS-10-B10
详细信息
作者简介:吴海云, 主要从事甘薯水分生理的研究。E-mail:1369524844@qq.com
通讯作者:刘庆, 主要从事甘薯营养生理及品质调控方面的研究。E-mail:qy7271@163.com
中图分类号:S531计量
文章访问数:1114
HTML全文浏览量:4
PDF下载量:2750
被引次数:0
出版历程
收稿日期:2018-12-03
录用日期:2019-01-28
刊出日期:2019-06-01
Effects of water supply on photosynthesis and fluorescence characteristics of sweet potato[Ipomoea batatas (L.) Lam.] leaves and comparison of light response models
WU Haiyun,GUO Qilin,
WANG Jinqiang,
LI Huan,
LIU Qing,
College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
Funds: the Industrial Technology System Construction of Modem Agriculture of ChinaCARS-10-B10
More Information
Corresponding author:LIU Qing, E-mail:qy7271@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:水分供应对甘薯生长发育、产量形成具有重要影响。为探讨不同水分处理对甘薯光合与荧光特性的影响,本研究以鲜食型甘薯‘烟薯25号’为试验材料,研究不同水分处理下甘薯叶片的光合-光响应过程及其荧光特性,并利用不同模型对光响应过程进行拟合。研究结果表明:干旱和淹水处理显著降低了甘薯叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr);当PAR≤1 000 μmol·m-2·s-1时,干旱及淹水处理Pn的降低主要受气孔限制,当PAR>1 000 μmol·m-2·s-1时,Pn的降低主要受非气孔限制。荧光参数表明,干旱及淹水处理下甘薯叶片光系统Ⅱ(PSⅡ)对光的捕获及吸收能力下降,热耗散增加。光响应模型以直角双曲线修正模型拟合精度最高,且能拟合出饱和光强,适用于不同的土壤水分环境。模型拟合参数显示,所有处理甘薯叶片初始量子效率(α)为0.039~0.055,位于0~0.125的理论范围值内,干旱、淹水处理下甘薯叶片表现出显著的光饱和、光抑制现象,光能利用减弱,且淹水处理的光利用能力小于干旱处理。综合分析认为,直角双曲线修正模型是甘薯不同水分条件下光响应变化最佳模型。干旱及淹水处理均会对甘薯光系统造成损伤,使甘薯光合能力下降,淹水比干旱更易于降低甘薯叶片对光的利用能力,高光强会加重甘薯水分的胁迫程度。
关键词:甘薯/
水分供应/
光合特性/
荧光特性/
光响应曲线模型
Abstract:Water supply plays a vital role in the growth and yield of sweet potato. In this paper, the edible sweet potato 'Yanshu 25' was used to study the photosynthesis-light response process and fluorescence characteristics of sweet potato leaves under different water treatments. Different models were used to study the light response process, and the effects of different water treatments on photosynthesis and fluorescence characteristics of sweet potato were analyzed. The results showed that:drought and flooding treatment significantly reduced the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of sweet potato leaves; at PAR ≤ 1 000 μmol·m-2·s-1, the decrease of Pn under drought and flooding treatment was induced by stomatal restrictions, and at PAR > 1 000 μmol·m-2·s-1, the decrease of Pn was induced by non-stomatal restrictions. The fluorescence parameters indicated that the light capture and absorption capacity of photosystem Ⅱ (PS Ⅱ) of sweet potato leaves decreased under drought and flooding treatment, while the heat dissipation increased. The modified rectangular hyperbola model demonstrated the best fit among all the light response models and matched the light saturation point. The model was, therefore, suitable for simulation of photoresponse simulation under different soil water environments. The model parameters showed that the initial quantum efficiency (α) of sweet potato leaves ranged from 0.039 to 0.055 under different water treatments, falling within the theoretical range of 0-0.125. The sweet potato leaves demonstrated significant photo-saturation and photo-inhibition under drought and flooding treatment, resulting in a reduced light utilization capacity. The light utilization capacity under flooding treatment was lower than that under drought treatment. It can be concluded that the modified rectangular hyperbola model is the optimal model to analyze light response changes of sweet potato under different water conditions. Both the drought and flooding treatment damage the photosynthetic system of sweet potato and reduce its photosynthetic capacity. Flooding is more likely to reduce the light utilization capacity of sweet potato leaves when compared with drought, and high light intensity increases the degree of water stress of sweet potato.
Key words:Sweet potato/
Water supply/
Photosynthesis characteristics/
Chlorophyll fluorescence characteristics/
Light response curve model
HTML全文

图1不同水分处理下甘薯叶片气体交换参数的光响应变化
图中曲线均由二项式拟合得出。The curves in the figure are all derived from the binomial fit. Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2; WUE: water use efficiency; Tr: transpiration rate; Ls: stomatal limit; PAR: photosynthetically active radiation.
Figure1.Light-response variation of gas exchange parameters of sweet potato leaves under different water treatments


图2不同水分处理对甘薯叶片比活性参数的影响
Figure2.Effects of different water treatments on specific activity parameters of sweet potato leaves


图3不同水分处理对甘薯叶片最大光化学效率(Fv/Fm)及光化学性能指数(PIABS)的影响
Figure3.Effects of different water treatments on maximal photochemical efficiency (Fv/Fm) and photochemical performance index (PIABS) of sweet potato leaves


图4甘薯叶片净光合速率光响应的实测点与不同模型拟合曲线(a:直角双曲线模型; b:非直角双曲线模型; c:指数函数模型; d:直角双曲线修正模型)
ZN:正常水分处理拟合值; YN:淹水处理拟合值; GN:干旱处理拟合值; ZSC:正常水分处理实测值; YSC:淹水处理实测值; GSC:干旱处理实测值。
Figure4.Light-response curves of photosynthesis of sweet potato leaves under different water treatments (a: rectangular hyperbolic model; b: non-rectangular hyperbolic model; c: exponential model; d: modified rectangular hyperbolic model)
ZN: fitted value of normal water treatment; YN: fitted value of flooded water treatment; GN: fitted value of drought treatment; ZSC: measured value of normal moisture treatment; YSC: measured value of flooded water treatment; GSC: measured value of drought treatment. Pn: net photosynthetic rate; PAR: photosynthetically active radiation.

表1不同模型拟合的不同水分处理甘薯叶片光响应特征参数
Table1.Light response parameters of sweet potato leaves under different water treatments fitted by different models
光响应模型 Light response model | 水分处理 Water treatment | 光响应参数?Light response parameter | 决定系数(R2) Determination coefficient | ||||
初始量子效率(α) Initial quantum efficiency | 最大净光合速率(Pnmax) Maximum net photosynthetic rate (μmol?m-2?s-1) | 饱和光强(Isat) Saturation light intensity (μmol?m-2?s-1) | 光补偿点(Ic) Light compensation point (μmol?m-2?s-1) | 暗呼吸速率(Rd) Dark breathing rate (μmol?m-2?s-1) | |||
实测值 Measured value | 正常?Normal | 0.046 7a | 19.95a | 1 200a | 45.52c | 2.13a | — |
淹水?Flooding | 0.027 8c | 5.95c | 800b | 50.13b | 1.39c | — | |
干旱?Drought | 0.033 7b | 7.10b | 800b | 53.97a | 1.82b | — | |
直角双曲线模型 Rectangular hyperbolic model | 正常?Normal | 0.085 7a | 28.36a | — | 40.63c | 3.10a | 0.986 4 |
淹水?Flooding | 0.063 0b | 10.00b | — | 52.83a | 2.50b | 0.970 3 | |
干旱?Drought | 0.058 3c | 10.69b | — | 47.06b | 2.18c | 0.989 3 | |
非直角双曲线模型 Non-rectangular hyperbolic model | 正常?Normal | 0.046 5a | 22.52a | — | 44.11c | 2.03a | 0.995 0 |
淹水?Flooding | 0.026 9c | 7.30c | — | 51.27b | 1.35c | 0.996 7 | |
干旱?Drought | 0.031 2b | 9.11b | — | 56.61a | 1.70b | 0.996 8 | |
指数模型 Exponential model | 正常?Normal | 0.057 6a | 19.82a | — | 20.30c | 1.13b | 0.994 7 |
淹水?Flooding | 0.030 1b | 5.84c | — | 47.66a | 1.27a | 0.996 4 | |
干旱?Drought | 0.031 3b | 7.04b | — | 44.59b | 1.27a | 0.998 5 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 正常?Normal | 0.054 9a | 19.64a | 1 157.45a | 42.93c | 2.25a | 0.999 3 |
淹水?Flooding | 0.039 1c | 6.02c | 947.71c | 46.01b | 1.56c | 0.998 5 | |
干旱?Drought | 0.042 1b | 7.13b | 1 061.70b | 52.31a | 1.90b | 0.9992 | |
表中同列不同字母表示同一模型不同处理在5%水平显著。Values measured and fitted by the same model followed by different letters in the same column are significantly different at 5% level. |

参考文献
[1] | 张向前, 曹承富, 乔玉强, 等.不同土壤水分条件对小麦光合生理和产量的影响[J].西北农业学报, 2015, 24(4):44-50 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201504008 ZHANG X Q, CAO C F, QIAO Y Q, et al. Effect of soil water content on photosynthesis and yield of wheat under different soil water content conditions[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(4):44-50 http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201504008 |
[2] | 许大全.光合作用效率[M].上海:上海科学技术出版社, 2002 XU D Q. Photcaynthetic Efficiency[M]. Shanghai:Shanghai Scientific & Technical Publishers, 2002 |
[3] | 安玉艳, 梁宗锁, 韩蕊莲, 等.土壤干旱对黄土高原3个常见树种幼苗水分代谢及生长的影响[J].西北植物学报, 2007, 27(1):91-97 doi: 10.3321/j.issn:1000-4025.2007.01.016 AN Y Y, LIANG Z S, HAN R L, et al. Effect of soil drought on seedling growth and water metabolism of three tree species in loess plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(1):91-97 doi: 10.3321/j.issn:1000-4025.2007.01.016 |
[4] | YUAN X K, YANG Z Q, LI Y X, et al. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato[J]. Photosynthetica, 2016, 54(1):28-39 doi: 10.1007/s11099-015-0122-5 |
[5] | 李德全, 张建华.冬小麦根系渗透调节的研究[C]//面向21世纪的科技进步与社会经济发展.杭州: 中国科学技术协会, 1999 LI D Q, ZHANG J H. Study on root infiltration regulation of winter wheat[C]//Scientific and Technological Progress and Social and Economic Development Facing the 21st Century. Hangzhou: China Association for Science and Technology, 1999 |
[6] | 陈鹏, 潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报)[J].植物生理学通讯, 2001, 37(6):520-522 http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200106011 CHEN P, PAN X L. Change of betaine contents and activity of betaine aldehyde dehydrogenase in seedlings of Haloxylon ammodendron under drought and NaCl stress[J]. Plant Physiology Communications, 2001, 37(6):520-522 http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200106011 |
[7] | 夏江宝, 田家怡, 张光灿, 等.黄河三角洲贝壳堤岛3种灌木光合生理特征研究[J].西北植物学报, 2009, 29(7):1452-1459 doi: 10.3321/j.issn:1000-4025.2009.07.025 XIA J B, TIAN J Y, ZHANG G C, et al. Photosynthetic and physiological characteristics of three shrubs species in shell islands of Yellow River Delta[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7):1452-1459 doi: 10.3321/j.issn:1000-4025.2009.07.025 |
[8] | 张宪初, 王胜亮.旱地甘薯田水分供需状况及增产措施研究[J].干旱地区农业研究, 1999, 17(4):93-97 doi: 10.3321/j.issn:1000-7601.1999.04.018 ZHANG X C, WANG S L. Research on field water supply and requirement condition of dryland sweet potato and yield-increasing method[J]. Agricultural Research in the Arid Areas, 1999, 17(4):93-97 doi: 10.3321/j.issn:1000-7601.1999.04.018 |
[9] | MAKUNDE G S, ANDRADE M I, RICARDO J, et al. Adaptation to mid-season drought in a sweetpotato (Ipomoea batatas[L.] Lam) germplasm collection grown in Mozambique[J]. Open Agriculture, 2017, 2(1):133-138 |
[10] | MBINDA W, OMBORI O, DIXELIUS C, et al. Xerophyta viscosa aldose reductase, xvald1, enhances drought tolerance in transgenic sweetpotato[J]. Molecular Biotechnology, 2018, 60(3):203-214 doi: 10.1007/s12033-018-0063-x |
[11] | 孙哲, 范维娟, 刘桂玲, 等.干旱胁迫下外源ABA对甘薯苗期叶片光合特性及相关生理指标的影响[J].植物生理学报, 2017, 53(5):873-880 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201705017 SUN Z, FAN W J, LIU G L, et al. Effects of exogenous ABA on leaf photosynthetic characteristics and associated physiological indexes of sweetpotato (Ipomoea batatas) seedlings under drought stress[J]. Plant Physiology Journal, 2017, 53(5):873-880 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201705017 |
[12] | 张海燕, 解备涛, 段文学, 等.不同时期干旱胁迫对甘薯光合效率和耗水特性的影响[J].应用生态学报, 2018, 29(6):1943-1950 http://d.old.wanfangdata.com.cn/Periodical/yystxb201806026 ZHANG H Y, XIE B T, DUAN W X, et al. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1943-1950 http://d.old.wanfangdata.com.cn/Periodical/yystxb201806026 |
[13] | 孙哲, 史春余, 刘桂玲, 等.干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异[J].植物营养与肥料学报, 2016, 22(4):1071-1078 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201604024 SUN Z, SHI C Y, LIU G L, et al. Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4):1071-1078 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201604024 |
[14] | 李鹏民, 高辉远, STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6):559-566 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200506001 LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6):559-566 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200506001 |
[15] | 王慧, 曾路生, 刘庆, 等.肥料添加剂对甘薯冠层光谱和叶绿素荧光参数特征的影响[J].华北农学报, 2017, 32(1):142-148 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201701022 WANG H, ZENG L S, LIU Q, et al. Effects of fertilizer additives on spectrum characteristics and the chlorophyll fluorescence parameters in sweet potato[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(1):142-148 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201701022 |
[16] | 李长志, 李欢, 刘庆, 等.不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较[J].植物营养与肥料学报, 2016, 22(2):511-517 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602026 LI C Z, LI H, LIU Q, et al. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):511-517 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602026 |
[17] | 朱永宁, 张玉书, 纪瑞鹏, 等.干旱胁迫下3种玉米光响应曲线模型的比较[J].沈阳农业大学学报, 2012, 43(1):3-7 http://d.old.wanfangdata.com.cn/Periodical/synydxxb201201001 ZHU Y N, ZHANG Y S, JI R P, et al. Fitting light response curve of photosynthesis of maize under drought stress[J]. Journal of Shenyang Agricultural University, 2012, 43(1):3-7 http://d.old.wanfangdata.com.cn/Periodical/synydxxb201201001 |
[18] | 韩刚, 赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报, 2010, 30(15):4019-4026 http://d.old.wanfangdata.com.cn/Periodical/stxb201015008 HAN G, ZHAO Z. Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures[J]. Acta Ecologica Sinica, 2010, 30(15):4019-4026 http://d.old.wanfangdata.com.cn/Periodical/stxb201015008 |
[19] | 王荣荣, 夏江宝, 杨吉华, 等.贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J].植物生态学报, 2013, 37(2):111-121 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302003 WANG R R, XIA J B, YANG J H, et al. Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells[J]. Chinese Journal of Plant Ecology, 2013, 37(2):111-121 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302003 |
[20] | 郎莹, 张光灿, 张征坤, 等.不同土壤水分下山杏光合作用光响应过程及其模拟[J].生态学报, 2011, 31(16):1517-1524 http://d.old.wanfangdata.com.cn/Periodical/stxb201116002 LANG Y, ZHANG G C, ZHANG Z K, et al. Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions[J]. Acta Ecologica Sinica, 2011, 31(16):1517-1524 http://d.old.wanfangdata.com.cn/Periodical/stxb201116002 |
[21] | 李瑞姣, 陈献志, 岳春雷, 等.干旱胁迫对日本荚蒾幼苗光合生理特性的影响[J].生态学报, 2018, 38(6):2041-2047 http://d.old.wanfangdata.com.cn/Periodical/stxb201806015 LI R J, CHEN X Z, YUE C L, et al. Effects of drought stress on the photosynthetic characteristics of Viburnum japonicum seedlings[J]. Acta Ecologica Sinica, 2018, 38(6):2041-2047 http://d.old.wanfangdata.com.cn/Periodical/stxb201806015 |
[22] | 周多多, 蒋少伟, 吴桂林, 等.不同水分条件下胡杨光响应曲线拟合模型比较[J].植物科学学报, 2017, 35(3):406-412 http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201703013 ZHOU D D, JIANG S W, WU G L, et al. Comparison of light response models of photosynthesis in Populus euphratica Oliv. grown under contrasting groundwater conditions[J]. Plant Science Journal, 2017, 35(3):406-412 http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201703013 |
[23] | 张玉娟, 周金卢, 李育明, 等.水培甘薯的光合研究[J].中国农学通报, 2011, 27(3):112-115 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201103023 ZHANG Y J, ZHOU J L, LI Y M, et al. The photosynthesis study of hydroponic sweet-potato[J]. Chinese Agricultural Science Bulletin, 2011, 27(3):112-115 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201103023 |
[24] | 张磊, 刘维正, 辛国胜, 等. 3种专用型甘薯光合光响应曲线及其模型拟合研究[J].中国农学通报, 2015, 31(15):71-77 doi: 10.11924/j.issn.1000-6850.casb14110037 ZHANG L, LIU W Z, XIN G S, et al. Photosynthesis light response curves of three sweet-potato varieties and model fitting[J]. Agricultural Science Bulletin, 2015, 31(15):71-77 doi: 10.11924/j.issn.1000-6850.casb14110037 |
[25] | BALY E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 1935, 117(804):218-239 doi: 10.1098/rspb.1935.0026 |
[26] | THORNLEY J H M. Mathematical Models in Plant Physiology[M]. London, New York:Academic Press (Inc.), 1976 |
[27] | BASSMAN J H, ZWIER J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpap×P. deltoids clones[J]. Tree Physiology, 1991, 8(2):145-159 |
[28] | YE Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4):637-640 doi: 10.1007/s11099-007-0110-5 |
[29] | 叶子飘, 康华靖.植物光响应修正模型中系数的生物学意义研究[J].扬州大学学报:农业与生命科学版, 2012, 32(2):51-57 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj201202010 YE Z P, KANG H J. Study on biological significance of coefficients in modified model of photosynthesis-irradiance[J]. Journal of Yangzhou University:Agricultural and Life Science Edition, 2012, 32(2):51-57 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj201202010 |
[30] | 裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5):1386-1396 http://d.old.wanfangdata.com.cn/Periodical/stxb201305006 PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings[J]. Acta Ecologica Sinica, 2013, 33(5):1386-1396 http://d.old.wanfangdata.com.cn/Periodical/stxb201305006 |
[31] | 陆佩玲, 于强, 罗毅, 等.冬小麦光合作用的光响应曲线的拟合[J].中国农业气象, 2001, 22(2):12-14 doi: 10.3969/j.issn.1000-6362.2001.02.003 LU P L, YU Q, LUO Y, et al. Fitting light response curves of photosynthesis of winter wheat[J]. Chinese Journal of Agrometeorology, 2001, 22(2):12-14 doi: 10.3969/j.issn.1000-6362.2001.02.003 |
[32] | 陈建, 张光灿, 张淑勇, 等.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程[J].应用生态学报, 2008, 19(6):1185-1190 http://d.old.wanfangdata.com.cn/Periodical/yystxb200806003 CHEN J, ZHANG G C, ZHANG S Y, et al. Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture[J]. Chinese Journal of Applied Ecology, 2008, 19(6):1185-1190 http://d.old.wanfangdata.com.cn/Periodical/yystxb200806003 |
[33] | 夏江宝, 张淑勇, 赵自国, 等.贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级[J].植物生态学报, 2013, 37(9):851-860 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201309007 XIA J B, ZHANG S Y, ZHAO Z G, et al. Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its threshold grade in shell ridge island[J]. Chinese Journal of Plant Ecology, 2013, 37(9):851-860 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201309007 |
[34] | DU N, GUO W H, ZHANG X R, et al. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress[J]. Acta Physiologiae Plantarum, 2010, 32(5):839-848 doi: 10.1007/s11738-010-0468-z |
[35] | FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33:317-345 doi: 10.1146/annurev.pp.33.060182.001533 |
[36] | STEDUTO P, KATERJI N, PUERTOS-MOLINA H, et al. Water-use efficiency of sweet sorghum under water stress conditions Gas-exchange investigations at leaf and canopy scales[J]. Field Crops Research, 1997, 54(2/3):221-234 http://www.sciencedirect.com/science/article/pii/S0378429097000506 |
[37] | 夏江宝, 张光灿, 孙景宽, 等.山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J].植物生态学报, 2011, 35(3):322-329 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103010 XIA J B, ZHANG G C, SUN J K, et al. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity[J]. Chinese Journal of Plant Ecology, 2011, 35(3):322-329 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103010 |
[38] | 叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报, 2010, 34(6):727-740 doi: 10.3773/j.issn.1005-264x.2010.06.012 YE Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chinese Journal of Plant Ecology, 2010, 34(6):727-740 doi: 10.3773/j.issn.1005-264x.2010.06.012 |
[39] | 黄红英, 窦新永, 孙蓓育, 等.两种不同生态型麻疯树夏季光合特性的比较[J].生态学报, 2009, 29(6):2861-2867 doi: 10.3321/j.issn:1000-0933.2009.06.012 HUANG H Y, DOU X Y, SUN B Y, et al. Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer[J]. Acta Ecologica Sinica, 2009, 29(6):2861-2867 doi: 10.3321/j.issn:1000-0933.2009.06.012 |
[40] | TARTACHNYK I I, BLANKE M M. Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves[J]. New Phytologist, 2004, 164(3):441-450 doi: 10.1111/j.1469-8137.2004.01197.x |
[41] | COLEY P D. Herbivory and defensive characteristics of tree species in a lowland tropical forest[J]. Ecological Monographs, 1983, 53(2):209-234 doi: 10.2307/1942495 |