删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于投影寻踪模型的甘蓝型油菜产量因素评价

本站小编 Free考研考试/2022-01-01

田效琴1, 2,,
李卓1, 2,,,
李浩杰1,
柴靓1,
张锦芳1,
陈红琳2, 3,
刘永红1, 2
1.四川省农业科学院作物研究所 成都 610066
2.南方丘区节水农业研究四川省重点实验室 成都 610066
3.四川省农业科学院土壤肥料研究所 成都 610066
基金项目: 四川省财政创新能力提升工程2016GYSH-007
甘蓝型油菜种质资源创新和突破性新品种培育2016zypz-013
公益性科研(农业)专项20150312701
国家科技支撑计划项目2014BAD11B03
现代农业产业技术体系建设专项资金CARS-13

详细信息
作者简介:田效琴, 主要研究方向为作物栽培和农业资源环境。E-mail:865257025@qq.com
通讯作者:李卓, 主要研究方向为作物高效用水与农业资源环境E-mail:lizhuo_2000@sina.com
中图分类号:S565.4

计量

文章访问数:777
HTML全文浏览量:2
PDF下载量:464
被引次数:0
出版历程

收稿日期:2018-11-22
录用日期:2018-12-22
刊出日期:2019-03-01

Evaluation of factors affecting rape (swede type) yield using the projection pursuit model

TIAN Xiaoqin1, 2,,
LI Zhuo1, 2,,,
LI Haojie1,
CHAI Jing1,
ZHANG Jinfang1,
CHEN Honglin2, 3,
LIU Yonghong1, 2
1. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
2. Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of South China, Chengdu 610066, China
3. Soil Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
Funds: the Financial Innovation Capacity Improvement Project of Sichuan Province2016GYSH-007
the Germplasm Resources Innovation and Breakthrough New Varieties Cultivation of Brassica napus of China2016zypz-013
the Special Fund for Agro-scientific Research in the Public Interest of China20150312701
the National Key Technologies R & D Program of China2014BAD11B03
the Special Fund for Construction of Modern Agricultural Industrial Technology System of ChinaCARS-13

More Information
Corresponding author:LI Zhuo, E-mail: lizhuo_2000@sina.com


摘要
HTML全文
(2)(3)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:明确油菜产量因素对产量的贡献对于有目的地选择油菜优良组合具有重要意义,而常用的评价油菜产量因素贡献大小的分析方法限制较多。为此,本研究以正常生长的12份早熟和38份晚熟甘蓝型油菜组合为材料,利用基于加速遗传算法的投影寻踪模型分别定量评价了早、晚熟油菜组合产量因素对产量的贡献,并将其与灰色关联度分析、主成分分析结果进行了对比分析,讨论了各分析方法对产量因素贡献评价的准确性。结果表明,早熟组合产量贡献最大的3项指标依次为主序有效角果数>有效分枝部位>二次有效分枝数,贡献率分别达到36.79%、24.02%和11.33%;晚熟组合产量贡献最大的3项指标依次为每角粒数>千粒重>有效分枝部位,贡献率分别达到29.81%、17.52%和14.75%。有效分枝部位对不同熟期组合产量均有较大贡献;除此之外,早熟组合产量的形成还较多依赖于生育前期的有效分枝数与有效角果数,晚熟组合产量的形成则较多依赖于生育后期的每角粒数与千粒重。基于投影寻踪模型的油菜产量因素评价能较准确地判断油菜实际产量,并在利用各种分析方法评价油菜产量因素对产量的贡献中发现,灰色关联度分析和主成分分析比投影寻踪模型评价准确性低。从油菜产量因素评价及产量预测综合考虑,基于投影寻踪模型的油菜产量因素评价及产量预测具有最高的准确性,可以优先作为甘蓝型油菜良种选育及产量预测的一种分析方法。
关键词:投影寻踪/
油菜产量预测/
产量因素/
高维数据
Abstract:The relative contributions of factors that affect rapeseed production were determined. A field experiment was conducted in Jianyang, Sichuan using 12 early-maturing and 38 late-maturing newly recombinant rapeseed varieties. Contributions were evaluated using the projection pursuit model based on real code deaccelerating genetic algorithm. The evaluation was compared with gray correlation analysis and principal component analysis. Effective pods in main inflorescence, effective branching position, and second effective branch number were the major contributors for early-maturing varieties, accounting for 36.79%, 24.02%, and 11.33% of the yield variation, respectively. For late-maturing varieties, seeds per silique, 1000-grain weight, and effective branching position were the most influential factors, accounting for 29.81%, 17.52%, and 14.75% of the yield variation, respectively. Interestingly, effective branching position was a significant contributor for both early- and late-maturing varieties. In addition, yield appeared to be influenced mostly by the number of effective branches and the number of effective pods, both formed during early growing stages, for early-maturing rape plants, and by seeds per silique and 1000-grain weight, formed during late growing stages, for late-maturing varieties. Predicted yields by the projection pursuit model were consistent with observed yields. Rapeseed yield was affected mostly by branching and pod formation for early-maturing varieties and by seed development for late-maturing varieties, and the yield potential was accurately predicted by the projection pursuit model.
Key words:Projection pursuit/
Rapeseed yield prediction/
Rapeseed yield factors/
High dimensional data

HTML全文


图1早熟(A, B)和晚熟(C, D)油菜组合材料产量影响指标的最优投影方向(A, C)和影响百分比(B, D)
x1x2x3x4x5x6x7x8x9x10分别表示株高、有效分枝部位、主序长、一次有效分枝数、二次有效分枝数、主序有效角果数、一次枝有效角果数、二次枝有效角果数、每角粒数和千粒重。
Figure1.Optimal projection direction (A, C) and influence percentage (B, D) of yield impact indexes of early-maturing (A, B) and late-maturing (C, D) rape materials
x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10 respectively represent plant height, effective branching position, main sequence length, primary effective branching number, secondary effective branching number, effective pods number of the main sequence, primary effective pods number, secondary effective pods number, seed number per horn, and 1000-grain weight. x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10 respectively represent plant height, effective branching position, main sequence length, primary effective branching number, secondary effective branching number, effective pods number of the main sequence, primary effective pods number, secondary effective pods number, seed number per horn, and 1000-grain weight.


下载: 全尺寸图片幻灯片


图2早熟(a)和晚熟(b)油菜材料投影值及实际单株产量的比较
Figure2.Comparison of projection values and actual yields per plant of early-maturing (a) and late-maturing (b) rape materials


下载: 全尺寸图片幻灯片

表1供试早熟(早)和晚熟(晚)油菜组合材料的单株产量及其产量因素
Table1.Yield per plant and yield factors of the tested early-maturing (E) and later-maturing (L) materials of rape
试验材料
Tested
material
株高(x1)
Height
(cm)
有效分枝部位
(x2)
Effective
branching
position (cm)
主序长(x3)
Length of main
inflorescence
(cm)
有效分枝数
Effective branches
有效角果数
Effective pods
每角粒数(x9)
Seeds per
silique
千粒重(x10)
1000-grain
weight (g)
单产
Yield per
plant (g)
一次(x4) Primary 二次(x5) Second 主序(x6) Main inflorescence 一次枝(x7) Primary tiller 二次枝(x8) Second tiller
早1 E1 223.00± 3.17defgh 113.13±2.91cd 71.27±0.76 defghijklm 7.73±0.31 cdefgh 4.60±0.40c 93.20±3.08 bcdefg 274.60± 3.22bcdef 39.07±1.14 c 22.40±0.60 a 3.937±0.434ijklmno 35.44±0.89 a
早2 E2 218.77± 2.15efghij 104.50±1.95 fghijklm 69.67±1.47 efghijklmn 7.33±0.31 cdefgh 1.67±0.23 lmn 81.40±2.31 klmnopqr 219.53± 2.23 ijklmnop 9.20±1.06 hijklmno 18.53±0.83 efghij 4.044±0.399hijklmno 22.82±0.79 nop
早3 E3 222.97± 2.67defgh 111.20±1.56 cdef 71.43±2.05 defghijklm 7.53±0.50 cdefgh 1.47±0.12 mno 98.60±1.91 abc 268.67± 13.15 bcdef 5.67±1.40 jklmno 16.80±1.64 hijk 4.309±0.150 fghijkl 29.22±0.68 cdefg
早4 E4 217.33± 2.89ghij 103.40±2.12 ghijklm 68.05±0.94 fghijklmno 7.40±0.53 cdefgh 2.60±0.40 ghijk 86.00±1.04 efghijklmno 278.60± 11.09bcd 14.13±1.90 ghijklm 18.80±0.58 defghi 3.725±0.163lmnop 26.32±0.83 fghijklmn
早5 E5 223.27± 3.06defgh 112.83±1.96 cde 67.87±1.81 hijklmno 6.87±0.46 efgh 2.33±0.31 hijkl 88.60±2.75 defghijklm 213.87± 8.02 klmnop 20.73±2.50 efgh 16.69±0.54 hijk 3.640±0.162mnop 23.12±1.06mnop
早6 E6 217.87± 6.00efghij 103.73±1.68 ghijklm 66.47±2.00 klmno 7.67±0.46 cdefgh 2.07±0.12 ijklm 84.40±1.59 ghijklmnop 251.53± 12.59 bcdefghi 12.13±1.79 hijklmno 19.28±1.22 cdefghi 3.825±0.236jklmnop 26.33±0.90 fghijklmn
早7 E7 233.63± 2.93a 105.80±4.34 efghijk 72.70±1.95 cdefghijk 7.07±0.31 efgh 4.07±0.23cd 86.27±2.41 efghijklmno 260.53± 5.56 bcdefg 29.33±4.80 cde 17.87±0.65 fghij 4.281±0.295 fghijkl 29.31±0.83 cdefg
早8 E8 225.47± 3.82cdef 125.57±1.99a 63.13±2.19 o 6.87±0.50 efgh 2.80±0.20 fghi 88.87±6.47 defghijklm 229.33± 9.98 ghijklmno 17.93±3.92 fghi 19.47±1.30 bcdefghi 3.321±0.122p 19.76±1.55 q
早9 E9 219.87± 2.32efghij 97.53±3.89 mnopq 70.33±0.23 defghijklmn 7.53±0.58 cdefgh 4.53±0.23c 80.53±0.46 klmnopqr 256.60± 10.49 bcdefgh 31.67±5.49 cd 19.97±0.37 bcdefg 3.731±0.153lmnop 27.52±0.80 efghijk
早10 E10 216.92± 1.99ghijk 91.67±0.83 qr 66.10±1.67 klmno 8.73±0.31bc 5.60±0.35b 74.73±1.47 qr 282.73± 16.72b 49.40±5.70 b 17.73±0.31 fghij 3.994±0.141ijklmno 28.63±0.61 cdefghi
早11 E11 230.87± 3.36abc 107.87±2.83 defghi 73.87±1.40 bcdefgh 7.07±0.42 efgh 1.73±0.31 klmn 89.73±4.28 defghijkl 229.07± 4.39 ghijklmno 12.47±4.91 hijklmn 17.51±0.84 fghijk 3.959±0.069ijklmno 26.42±1.09 fghijklm
早12 E12 221.10± 1.91defghi 108.17±2.29 defghi 70.20±2.07 defghijklmn 7.33±0.31 cdefgh 1.00±0.17 nopq 86.07±4.69 efghijklmno 245.00± 17.44 defghijkl 8.53±1.94 ijklmno 19.53±1.03 bcdefgh 3.642±0.246mnop 23.92±0.45 lmnop
晚1 L1 224.00± 3.17defgh 119.47±2.31b 65.27±2.30mno 6.93±0.31 efgh 0.40±0.10 pqr 102.20±4.21a 250.20± 6.88 bcdefghij 1.07±0.70 no 21.00±1.22 abcde 4.436±0.447efghi 28.41±1.18 cdefghi
晚2 L2 218.33± 2.25efghij 117.73±2.31bc 67.67±0.83 hijklmno 7.33±0.31 cdefgh 1.87±0.23 jklmn 87.20±7.07defghijklmno 260.27± 14.11 bcdefg 15.33±3.80 ghijk 17.27±1.21 fghijk 4.052±0.055 hijklmno 23.86±1.13 lmnop
晚3 L3 212.57± 2.57jklmn 95.13±3.41 nopqr 73.47±2.08 bcdefgh 6.33±0.42hi 0.07±0.12r 80.07±0.95 lmnopqr 207.07± 7.46nop 0.13±0.23 o 16.53±0.12 ijk 5.013±0.109bcd 23.98±1.30 lmnop
晚4 L4 227.67± 3.10bcd 105.43±2.47 fghijkl 75.23±3.15 abcdef 7.20±0.20 defgh 2.73±0.42 fghij 91.93±3.72 cdefghi 262.87± 22.44 bcdefg 17.40±2.95 fghij 17.07±0.99 ghijk 3.546±0.14 1op 23.11±1.67 mnop
晚5 L5 213.87± 3.30ijklm 103.57±1.54 ghijklm 71.00±0.20 defghijklm 6.80±0.40 efgh 0.47±0.06 pqr 82.80±0.53 ijklmnopq 245.00± 3.98 defghijkl 3.67±0.58 klmno 16.60±0.14 hijk 4.980±0.023bcd 23.44±1.43 mnop
晚6 L6 213.53± 2.31ijklm 108.70±6.27 defgh 65.27±3.00mno 7.80±0.40 cdefgh 0.73±0.23 opqr 100.47±1.14ab 276.00± 19.26 bcdef 5.20±2.11 jklmno 14.93±0.48 k 4.577±0.077defgh 23.10±0.90 mnop
晚7 L7 213.73± 1.86ijklm 97.47±1.55 mnopq 73.00±1.11 bcdefghi 7.20±0.20 defgh 3.00±0.20 efgh 82.33±2.01 jklmnopq 211.47± 7.22 lmnop 32.60±6.88 cd 18.47±0.72 defghi 4.198±0.103 ghijklm 25.30±1.48 ijklmno
晚8 L8 231.80± 1.22ab 113.47±3.93cd 70.67±1.70 defghijklm 7.20±0.35 defgh 2.47±0.38 ghijkl 89.87±1.21 defghijk 201.20± 7.08op 14.40±2.36 ghijklm 18.40±1.25 fghij 4.289±0.267 fghijkl 24.15±1.28 lmnop
晚9 L9 225.83± 3.25cde 91.63±2.84 qr 76.90±1.10 abcd 8.60±0.40bcd 3.33±0.12 efg 87.00±0.87 defghijklmno 280.60± 12.15bc 26.67±3.53 def 17.47±1.16 fghijk 4.116±0.220 hijklmn 28.48±1.19 cdefghi
晚10 L10 224.43± 0.93defg 109.73±0.64 defg 70.60±1.22 defghijklm 6.87±0.46 efgh 2.00±0.35 ijklm 87.40± 1.44 defghijklmn 198.87± 5.61op 13.73±2.47 ghijklm 21.13±1.29 abcd 4.102±0.070 hijklmno 28.24±0.66 defghi
晚11 L11 202.20± 1.59pqr 79.77±1.54 s 77.90±1.32 abc 5.27±0.50j 2.67±0.42 fghij 73.33±1.70 r 168.40± 11.98q 17.27±1.55 fghij 16.80±0.53 hijk 5.080±0.131bc 27.60±1.52 efghij
晚12 L12 205.57± 2.50nopqr 78.87±1.33 s75.03±1.59 abcdef 7.73±0.23 cdefgh 3.33±0.12 efg 90.93±2.14 cdefghij 280.87± 11.92bc 30.80±3.70 cd 19.93±1.01 bcdefg 3.771±0.032lmnop 30.14±1.52 cde
晚13 L13 212.20± 1.64jklmn 101.40±2.46 hijklmn 72.23±1.10 cdefghijkl 6.93±0.64 efgh 1.67±0.42 lmn 91.60±0.60 cdefghij 203.73± 13.27op 10.07±4.84 hijklmno 18.27±0.64 fghij 4.378±0.246 fghijk 24.44±1.13 klmno
晚14 L14 213.53± 2.32ijklm 100.77±1.80 ijklmno 69.20±2.75 fghijklmno 6.47±0.42 fghi 0.67±0.12 opqr 80.20±3.90 lmnopqr 216.07± 12.41 jklmnop 3.07±1.68 lmno 17.47±0.46 fghijk 4.457±0.087 efghi 23.51±1.49 mnop
晚15 L15 207.60± 2.60 mnopq 88.10±2.33 r 74.67±3.33 abcdefg 7.40±0.20 cdefgh 2.40±0.20 hijkl 92.67±2.20 bcdefgh 265.87± 16.75 bcdef 11.73±3.93 hijklmno 17.47±0.69 fghijk 4.237±0.123 ghijkl 28.17±1.59 defghi
晚16 L16 208.60± 0.20l mnopq 90.27±2.70 r 71.30±2.87 defghijklm 8.00±0.80 cdef 2.47±0.31gh 95.20±3.34 abcde 308.40± 7.08a 14.93±4.56 ghijkl 18.07±1.17 fghij 4.224±0.088 ghijkl 28.47±1.34 cdefghi
晚17 L17 217.47± 0.99fghij 92.97±1.50 pqr 72.87±2.30 cdefghij 7.07±0.92 efgh 2.40±0.40 hijkl 94.40±0.87 abcdef 265.53± 3.42bcdef 15.73±1.01 ghijk 21.80±0.53 ab 3.762±0.110lmnop 31.54±1.12 bcd
晚18 L18 220.70± 0.95defghi 93.50±1.95 pqr 72.40±0.91 cdefghijkl 9.20±0.53b 4.40±0.80c 101.27±0.20a 250.73± 17.50 bcdefghij 39.07±8.02 c 19.20±1.25 cdefghi 3.791±0.055lmnop 30.39±1.15 cde
晚19 L19 222.33± 2.44defgh 113.67±1.21cd 68.47±3.70 fghijklmno 7.67±0.61 cdefgh 3.67±0.42de 78.07±1.62 nopqr 225.27± 15.28 hijklmnop 32.87±5.43 cd 18.60±0.60 efghi 3.616±0.152nop 23.23±1.02 mnop
晚20 L20 218.27± 2.34efghij 98.47±1.53 lmnopq 71.10±2.77 defghijklm 7.33±0.31 cdefgh 2.60±0.72 ghijk 88.27±3.72 defghijklm 189.47± 16.32p 20.47±0.42 efgh 18.13±0.31 fghij 4.165±0.059hijklmn 24.76±1.41 jklmno
晚21 L21 216.13± 0.83hijkl 98.60±0.72 klmnopq 69.60±3.36 efghijklmn 6.67±0.31 efghi 1.47±0.31 mno 80.13±2.02 lmnopqr 230.60± 7.80 ghijklmno 14.53±4.61 ghijklm 21.53±1.10 abc 3.970±0.066ijklmno 28.26±1.09 defghi
晚22 L22 206.50± 1.85 mnopq 89.61±4.01 r 71.33±1.22 defghijklm 8.07±0.12cde 2.33±0.42 hijkl 83.80±3.41 hijklmnopq 277.80± 6.07bcde 17.13±2.72 fghij 16.73±0.76 hijk 4.175±0.105 ghijklmn 24.17±0.74 lmnop
晚23 L23 218.93± 1.10efghij 107.60±2.84 defghi 65.73±1.55 lmno 10.73±0.95a 3.20±0.52 efgh 83.60±1.80 hijklmnopq 242.73± 15.25 efghijklm 24.13±3.01 defg 17.93±0.95 fghij 4.129±0.140 hijklmn 25.90±0.96 ghijklmn
晚24 L24 221.27± 1.96defghi 107.90±2.72 defghi 68.57±2.36 fghijklmno 7.53±0.42 cdefgh 1.13±0.12 nop 81.00±2.80 klmnopqr 212.73± 13.39 klmnop 8.60±3.49 ijklmno 17.27±0.81 fghijk 4.109±0.126 hijklmno 23.61±1.18 mnop
晚25 L25 216.07± 1.80hijkl 100.73±2.12 ijklmno 73.07±2.32 bcdefghi 6.47±0.46 fghi 1.13±0.06 nop 95.07±4.69 abcde 213.80± 18.63 klmnop 5.47±1.63 jklmno 22.27±0.64 a 3.807±0.147klmnop 29.90±1.14 cde
晚26 L26 215.90± 1.14hijkl 116.53±2.00bc 63.20±3.08 o 6.60±0.53 efghi 1.00±0.20 nopq 83.47±2.86 hijklmnopq 201.40± 11.88op 7.73±3.67 ijklmno 18.00±1.25 fghij 3.775±0.377lmnop 20.88±1.30 pq
晚27 L27 209.00± 2.27lmnop 107.33±2.16 defghi 66.53±2.12 jklmno 6.60±0.35 efghi 0.73±0.23 opqr 95.80±3.46 abcd 241.47± 10.71 fghijklmn 5.67±1.15 jklmno 16.00±1.22 jk 5.550±0.407a 24.39±1.51 klmno
晚28 L28 199.73± 2.34r 78.70±3.40 s 70.50±1.73 defghijklm 7.13±0.70 efgh 6.40±0.40a 79.87±7.05 lmnopqr 220.80± 14.84 ijklmnop 57.80±13.42a 17.93±0.23 fghij 4.803±0.15 1cdef 31.72±1.11 bc
晚29 L29 184.20± 2.43s 90.53±1.70 r 73.10±2.69 bcdefghi 5.47±0.31ij 0.20±0.35qr 77.80±2.46 opqr 158.67± 12.78q 0.53±0.31 no 17.53±1.33 fghijk 4.581±0.163 defgh 23.41±1.93 mnop
晚30 L30 209.67± 1.96klmno 106.53±5.83 defghij 63.20±2.69 o 7.27±0.46 defgh 2.47±0.12 ghijkl 85.53±1.72 fghijklmno 209.13± 11.94 mnop 20.93±5.32 efgh 17.27±1.04 fghijk 4.729±0.223cdefg 23.50±0.63 mnop
晚31 L31 221.47± 1.10defghi 98.00±2.09 mnopq 80.13±0.81 a 6.40±0.53ghi 1.87±0.42 jklmn 100.80±4.39ab 224.53± 21.62 hijklmnop 5.67±3.06 jklmno 17.60±1.40 fghijk 4.395±0.059 fghij 28.60±1.19 cdefghi
晚32 L32 212.50± 3.41jklmn 101.47±2.89 hijklmn 76.17±3.40 abcde 6.67±0.61 efghi 3.07±0.12 efg 88.27±5.02 defghijklm 200.47± 6.90op 49.20±6.47 b 18.00±0.87 fghij 4.296±0.091 fghijkl 27.09±1.04 efghijkl
晚33 L33 216.20± 0.80hijkl 90.37±2.93 r 78.97±1.56 ab 6.27±0.76hi 0.80±0.10 opqr 85.20±1.44 fghijklmno 198.27± 9.99op 2.87±1.03 lmno 17.73±0.70 fghij 5.275±0.033ab 28.89±0.42 cdefgh
晚34 L34 218.07± 3.58efghij 99.60±3.42 jklmnop 71.60±2.09 defghijklm 7.07±0.58 efgh 0.53±0.15 pqr 95.60±2.95 abcd 202.07± 3.83op 2.53±0.99 mno 17.93±0.50 fghij 5.569±0.162a 29.70±1.10 cdef
晚35 L35 205.13± 4.70opqr 93.67±1.22 opqr 64.07±3.33 no 6.67±0.42 efghi 0.53±0.31 pqr 78.40±2.96 nopqr 216.20± 7.08 jklmnop 4.00±2.12 klmno 15.93±0.90 jk 4.515±0.038 defghi 22.33±1.16 op
晚36 L36 201.83± 1.31qr 94.63±1.93 nopqr 66.17±2.58 jklmno 7.00±0.20 efgh 1.73±0.31 klmn 75.53±3.30 pqr 195.80± 8.72op 8.20±2.25 ijklmno 19.20±0.92 cdefghi 4.569±0.093 defgh 25.75±1.54 hijklmno
晚37 L37 203.67± 3.41opqr 80.00±2.55 s 72.73±1.92 cdefghijk 7.93±0.46 cdefg 3.47±0.23 def 80.53±2.01 klmnopqr 247.33± 14.13 cdefghijk 36.53±5.94 c 20.00±0.35 bcdef 4.605±0.066 defgh 33.41±1.07 b
晚38 L38 199.40± 7.03r 76.80±1.11 s 78.20±1.93 abc 7.13±0.31 efgh 1.00±0.35 nopq 88.33±2.73 defghijklm 244.07± 10.65 defghijklm 5.53±3.06 jklmno 17.67±0.99 fghij 4.917±0.237bcde 29.16±1.86 cdefgh
同列不同小写字母表示不同油菜品种在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different rape materials at 0.05 level.


下载: 导出CSV
表2供试早熟(早)和晚熟(晚)油菜组合材料的产量因素归一化处理结果
Table2.Normalized results of yield factors for the tested early-maturing (E) and later-maturing (L) materials of rape
试验材料
Tested material
株高(x1)
Height
有效分枝
部位(x2)
Effective
branching
position
主序长(x3)
Length of main
inflorescence
有效分枝数
Effective branches
有效角果数
Effective pods
每角粒数
(x9)
Seeds per
horn
千粒重(x10)
1000-grain
weight
一次(x4) Primary 二次(x5) Second 主序(x6) Main inflorescence 一次枝(x7) Primary tiller 二次枝(x8) Second tiller
早1 E1 0.364 0.367 0.758 0.464 0.783 0.774 0.882 0.764 1.000 0.623
早2 E2 0.110 0.621 0.609 0.250 0.145 0.279 0.082 0.081 0.318 0.732
早3 E3 0.362 0.424 0.773 0.357 0.101 1.000 0.796 0.000 0.012 1.000
早4 E4 0.025 0.654 0.458 0.286 0.348 0.472 0.940 0.194 0.365 0.409
早5 E5 0.380 0.376 0.441 0.000 0.290 0.581 0.000 0.345 0.000 0.323
早6 E6 0.057 0.644 0.311 0.429 0.232 0.405 0.547 0.148 0.447 0.510
早7 E7 1.000 0.583 0.891 0.107 0.667 0.483 0.678 0.541 0.212 0.972
早8 E8 0.511 0.000 0.000 0.000 0.391 0.592 0.225 0.280 0.482 0.000
早9 E9 0.176 0.827 0.671 0.357 0.768 0.243 0.621 0.595 0.576 0.415
早10 E10 0.000 1.000 0.276 1.000 1.000 0.000 1.000 1.000 0.176 0.681
早11 E11 0.834 0.522 1.000 0.107 0.159 0.628 0.221 0.155 0.129 0.645
早12 E12 0.250 0.513 0.658 0.250 0.000 0.475 0.452 0.066 0.494 0.325
晚1L1 0.836 0.000 0.122 0.305 0.053 1.000 0.611 0.016 0.827 0.440
晚2 L2 0.717 0.041 0.264 0.378 0.284 0.480 0.679 0.264 0.318 0.250
晚3 L3 0.596 0.570 0.606 0.195 0.000 0.233 0.323 0.000 0.218 0.725
晚4 L4 0.913 0.329 0.711 0.354 0.421 0.644 0.696 0.299 0.291 0.000
晚5 L5 0.623 0.373 0.461 0.280 0.063 0.328 0.577 0.061 0.227 0.709
晚6 L6 0.616 0.252 0.122 0.463 0.105 0.940 0.784 0.088 0.000 0.509
晚7 L7 0.620 0.516 0.579 0.354 0.463 0.312 0.353 0.563 0.482 0.322
晚8 L8 1.000 0.141 0.441 0.354 0.379 0.573 0.284 0.247 0.473 0.367
晚9 L9 0.875 0.652 0.809 0.610 0.516 0.473 0.814 0.460 0.345 0.282
晚10 L10 0.845 0.228 0.437 0.293 0.305 0.487 0.268 0.236 0.845 0.275
晚11 L11 0.378 0.930 0.868 0.000 0.411 0.000 0.065 0.297 0.255 0.758
晚12 L12 0.449 0.952 0.699 0.451 0.516 0.610 0.816 0.532 0.682 0.111
晚13 L13 0.588 0.423 0.533 0.305 0.253 0.633 0.301 0.172 0.455 0.411
晚14 L14 0.616 0.438 0.354 0.220 0.095 0.238 0.383 0.051 0.345 0.450
晚15 L15 0.492 0.735 0.677 0.390 0.368 0.670 0.716 0.201 0.345 0.341
晚16 L16 0.513 0.684 0.478 0.500 0.379 0.758 1.000 0.257 0.427 0.335
晚17 L17 0.699 0.621 0.571 0.329 0.368 0.730 0.714 0.271 0.936 0.107
晚18 L18 0.767 0.609 0.543 0.720 0.684 0.968 0.615 0.675 0.582 0.121
晚19 L19 0.801 0.136 0.311 0.439 0.568 0.164 0.445 0.568 0.500 0.034
晚20 L20 0.716 0.492 0.467 0.378 0.400 0.517 0.206 0.353 0.436 0.306
晚21 L21 0.671 0.489 0.378 0.256 0.221 0.236 0.480 0.250 0.900 0.210
晚22 L22 0.468 0.700 0.480 0.512 0.358 0.363 0.796 0.295 0.245 0.311
晚23 L23 0.730 0.278 0.150 1.000 0.495 0.356 0.561 0.416 0.409 0.288
晚24 L24 0.779 0.271 0.317 0.415 0.168 0.266 0.361 0.147 0.318 0.278
晚25 L25 0.669 0.439 0.583 0.220 0.168 0.753 0.368 0.092 1.000 0.129
晚26 L26 0.666 0.069 0.000 0.244 0.147 0.351 0.285 0.132 0.418 0.113
晚27 L27 0.521 0.284 0.197 0.244 0.105 0.778 0.553 0.096 0.145 0.990
晚28 L28 0.326 0.955 0.431 0.341 1.000 0.226 0.415 1.000 0.409 0.621
晚29 L29 0.000 0.678 0.585 0.037 0.021 0.155 0.000 0.007 0.355 0.512
晚30 L30 0.535 0.303 0.000 0.366 0.379 0.423 0.337 0.361 0.318 0.585
晚31 L31 0.783 0.503 1.000 0.207 0.284 0.952 0.440 0.096 0.364 0.419
晚32 L32 0.595 0.422 0.766 0.256 0.474 0.517 0.279 0.851 0.418 0.371
晚33 L33 0.672 0.682 0.931 0.183 0.116 0.411 0.264 0.047 0.382 0.854
晚34 L34 0.711 0.466 0.496 0.329 0.074 0.771 0.290 0.042 0.409 1.000
晚35 L35 0.440 0.605 0.051 0.256 0.074 0.176 0.384 0.067 0.136 0.479
晚36 L36 0.370 0.582 0.175 0.317 0.263 0.076 0.248 0.140 0.582 0.506
晚37 L37 0.409 0.925 0.563 0.488 0.537 0.249 0.592 0.631 0.691 0.524
晚38 L38 0.319 1.000 0.886 0.341 0.147 0.520 0.570 0.094 0.373 0.678


下载: 导出CSV
表3早晚熟油菜产量因素分析方法比较
Table3.Comparison of yield factors analysis methods of early-maturing and late-maturing rape materials
分析方法
Analysis method
材料类型
Material type
产量因素影响值Influence value of yield factor
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
投影寻踪
Projection pursuit model
早熟
Early maturing
0.08 0.51 0.02 0.20 0.24 0.78 0.02 0.03 0.09 0.14
晚熟
Late maturing
0.04 0.34 0.18 0.16 0.23 0.21 0.08 0.03 0.73 0.43
灰色关联度
Grey correlation
早熟
Early maturing
3.34 3.19 3.37 3.39 2.35 3.30 3.35 2.11 3.31 3.56
晚熟
Late maturing
4.88 4.49 5.06 4.73 3.27 5.02 4.71 2.30 5.06 4.74
主成分
分析
Principal
component
analysis
第1主成分
Principal component 1
早熟
Early maturing
-0.25 -0.38 -0.09 0.45 0.40 -0.33 0.35 0.40 0.13 0.09
第2主成分
Principal component 2
0.36 -0.17 0.58 0.04 0.04 0.22 0.20 0.03 -0.20 0.61
第3主成分
Principal component 3
0.35 0.41 0.04 -0.14 0.38 0.30 0.16 0.37 0.52 -0.16
第4主成分
Principal component 4
-0.44 0.09 0.05 0.24 -0.30 0.43 0.44 -0.33 0.39 0.09
第1主成分
Principal component 1
晚熟
Late maturing
0.27 0.04 0.00 0.45 0.44 0.20 0.35 0.40 0.22 -0.41
第2主成分
Principal component 2
0.42 0.58 -0.34 0.05 -0.36 0.30 0.08 -0.37 0.03 -0.12
第3主成分
Principal component 3
-0.01 -0.30 0.45 0.06 -0.17 0.56 0.48 -0.25 -0.14 0.22
第4主成分
Principal component 4
0.21 -0.04 0.45 -0.40 -0.05 0.13 -0.29 -0.07 0.65 -0.25
投影寻踪中产量影响因素值指投影方向值, 灰色关联度中指关联度, 主成分分析中指主成分; x1-x10分别代表株高、有效分枝部位、主序长、一次有效分枝数、二次有效分枝数、主序角果数、一次枝有效角果数、二次枝有效角果数、每角粒数、千粒重。The influence value refers to the projection direction value for the projection pursuit model, the correlation degree for the gray correlation degree, and the principal component for the principal component analysis. x1-x10 represent plant height, effective branching position, main sequence length, primary effective branching number, secondary effective branching number, effective pods number of the main sequence, primary effective pods number, secondary effective pods number, seed number per horn, and 1000-grain weight, respectively.


下载: 导出CSV

参考文献(35)
[1]刘芳, 刘睿洋, 官春云. BnFAD2BnFAD3BnFATB基因的共干扰对油菜种子脂肪酸组分的影响[J].植物遗传资源学报, 2017, 18(2):290-297 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201702015
LIU F, LIU R Y, GUAN C Y. Effect of silencing of BnFAD2, BnFAD3, BnFATB genes on fatty acid component in rapeseed (Brassica napus)[J]. Journal of Plant Genetic Resources, 2017, 18(2):290-297 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201702015
[2]易斌, 陈伟, 马朝芝, 等.甘蓝型油菜产量及相关性状的QTL分析[J].作物学报, 2006, 32(5):676-682 doi: 10.3321/j.issn:0496-3490.2006.05.009
YI B, CHEN W, MA C Z, et al. Mapping of quantitative trait loci for yield and yield components in Brassica napus L.[J]. Acta Agronomica Sinica, 2006, 32(5):676-682 doi: 10.3321/j.issn:0496-3490.2006.05.009
[3]卢坤, 申鸽子, 梁颖, 等.适合不同产量的环境下油菜高收获指数的产量构成因素分析[J].作物学报, 2017, 43(1):82-96 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201701009
LU K, SHEN G Z, LIANG Y, et al. Analysis of yield components with high harvest index in Brassica napus under environments fitting different yield levels[J]. Acta Agronomica Sinica, 2017, 43(1):82-96 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201701009
[4]钟丽.油菜产量与主要性状的灰色关联度分析[J].南方农业学报, 2012, 43(4):421-424 doi: 10.3969/j:issn.2095-1191.2012.04.421
ZHONG L. Gray relational grade analysis between the rapeseed yield and related traits[J]. Journal of Southern Agriculture, 2012, 43(4):421-424 doi: 10.3969/j:issn.2095-1191.2012.04.421
[5]白鹏, 冉春燕, 谢小玉.干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响[J].中国农业科学, 2014, 47(18):3566-3576 doi: 10.3864/j.issn.0578-1752.2014.18.005
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.)[J]. Scientia Agricultura Sinica, 2014, 47(18):3566-3576 doi: 10.3864/j.issn.0578-1752.2014.18.005
[6]郑本川, 张锦芳, 李浩杰, 等.甘蓝型油菜生育期天数与产量构成性状的相关分析[J].中国油料作物学报, 2013, 35(3):240-245 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201303002
ZHENG B C, ZHANG J F, LI H J, et al. Correlation between duration of growth periods and yield components of Brassica napus L.[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(3):240-245 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201303002
[7]黄益国, 张学昆, 张毅, 等.不同熟期油菜品种农艺性状与产量的相关分析[J].作物研究, 2017, 31(3):260-264 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj201703010
HUANG Y G, ZHANG X K, ZHANG Y, et al. Correlation analysis about agronomic traits and yield of rape varieties with different maturity stages[J]. Crop Research, 2017, 31(3):260-264 http://d.old.wanfangdata.com.cn/Periodical/zuowuyj201703010
[8]靳力争, 马洪英.白菜型油菜单株产量与相关性状的灰色关联度分析[J].长江蔬菜, 2018, (8):50-52 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjsc201808018
JIN L Z, MA H Y. Gray relational degree analysis between per-plant yield and relative characters of turnip type rape[J]. Journal of Changjiang Vegetables, 2018, (8):50-52 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjsc201808018
[9]倪正斌, 王陈燕, 孙雪辉, 等.甘蓝型油菜主要农艺性状相关性及主成分分析[J].江西农业学报, 2018, 30(3):7-10 http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201803002
NI Z B, WANG C Y, SUN X H, et al. Correlation and principal component analyses of main agronomic traits in Brassica napus[J]. Acta Agriculturae Jiangxi, 2018, 30(3):7-10 http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201803002
[10]王柏, 张忠学, 李芳花, 等.基于改进双链量子遗传算法的投影寻踪调亏灌溉综合评价[J].农业工程学报, 2012, 28(2):84-89 doi: 10.3969/j.issn.1002-6819.2012.02.016
WANG B, ZHANG Z X, LI F H, et al. Comprehensive evaluation of regulated deficit irrigation using projection pursuit model based on improved double chains quantum genetic algorithm[J]. Transactions of the CSAE, 2012, 28(2):84-89 doi: 10.3969/j.issn.1002-6819.2012.02.016
[11]姜秋香, 付强, 王子龙.基于粒子群优化投影寻踪模型的区域土地资源承载力综合评价[J].农业工程学报, 2011, 27(11):319-324 doi: 10.3969/j.issn.1002-6819.2011.11.060
JIANG Q X, FU Q, WANG Z L. Comprehensive evaluation of regional land resources carrying capacity based on projection pursuit model optimized by particle swarm optimization[J]. Transactions of the CSAE, 2011, 27(11):319-324 doi: 10.3969/j.issn.1002-6819.2011.11.060
[12]KRUSKAL J B. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new index of condensation[M]//MILTONR C, NELDERJ A. Statistical Computation. New York: Academia Press, 1969
[13]KRUSKAL J B. Linear transformation of multivariate data to reveal clustering[M]//SHEPARDR N. Multidimensional Scaling: Theory and Applications in the Behavioral Science. NewYork and London: Semimar Press, 1972
[14]汪嘉杨, 宋培争, 张碧, 等.社会-经济-自然复合生态系统生态位评价模型——以四川省为例[J].生态学报, 2016, 36(20):6628-6635 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201620030
WANG J Y, SONG P Z, ZHANG B, et al. An ecological niche evaluation model of social, economic, and natural complex ecosystems:a case study in Sichuan Province[J]. Acta Ecologica Sinica, 2016, 36(20):6628-6635 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201620030
[15]何汝艳, 蒋金豹, 郭海强, 等.用投影寻踪降维方法估测冬小麦叶绿素密度[J].麦类作物学报, 2014, 34(10):1447-1452 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201410020
HE R Y, JIANG J B, GUO H Q, et al. Using projection pursuit dimension reduction to estimate canopy chlorophyll density of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(10):1447-1452 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201410020
[16]原君静, 李洪文.基于投影寻踪技术的保护性耕作效益评价[J].农业工程学报, 2010, 26(4):175-179 doi: 10.3969/j.issn.1002-6819.2010.04.029
YUAN J J, LI H W. Benefit evaluation of conservation tillage based on projection pursuit[J]. Transactions of the CSAE, 2010, 26(4):175-179 doi: 10.3969/j.issn.1002-6819.2010.04.029
[17]封志明, 郑海霞, 刘宝勤.基于遗传投影寻踪模型的农业水资源利用效率综合评价[J].农业工程学报, 2005, 21(3):66-70 doi: 10.3321/j.issn:1002-6819.2005.03.015
FENG Z M, ZHENG H X, LIU B Q. Comprehensive evaluation of agricultural water use efficiency based on genetic projection pursuit model[J]. Transactions of the CSAE, 2005, 21(3):66-70 doi: 10.3321/j.issn:1002-6819.2005.03.015
[18]赵小勇, 付强, 刑贞相, 等.投影寻踪模型的改进及其在生态农业建设综合评价中的应用[J].农业工程学报, 2006, 22(5):222-225 doi: 10.3321/j.issn:1002-6819.2006.05.051
ZHAO X Y, FU Q, XING Z X, et al. Improvement of projection pursuit model and its application in integrated evaluation of eco-agricultural construction[J]. Transactions of the CSAE, 2006, 22(5):222-225 doi: 10.3321/j.issn:1002-6819.2006.05.051
[19]王斌, 张展羽, 魏永霞, 等.基于投影寻踪的农业基本旱情评估[J].农业工程学报, 2009, 25(4):157-162 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200904030
WANG B, ZHANG Z Y, WEI Y X, et al. Assessment of agricultural basic drought based on projection pursuit[J]. Transactions of the CSAE, 2009, 25(4):157-162 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200904030
[20]徐淑琴, 付强, 董淑喜, 等.基于RAGA的PPC模型评价水分胁迫对寒区水稻生长和产量的影响[J].农业工程学报, 2009, 25(S2):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902645515
XU S Q, FU Q, DONG S X, et al. Evaluation of effects of water stress on growing and yield of paddy based on RAGA-PPC model in cold area[J]. Transactions of the CSAE, 2009, 25(S2):29-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902645515
[21]李祚泳, 徐源蔚, 汪嘉杨, 等.基于投影寻踪回归的规范指标的气象灾情评估[J].应用气象学报, 2016, 27(4):480-487 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201604011
LI Z Y, XU Y W, WANG J Y, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression[J]. Journal of Applied Meteorological Science, 2016, 27(4):480-487 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201604011
[22]杜欣, 黄晓霞, 李红旮, 等.基于投影寻踪学习网络算法的植物群落高分遥感分类研究[J].地球信息科学学报, 2016, 18(1):124-132 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201601015
DU X, HUANG X X, LI H G, et al. Research on classification of plant community using projection pursuit learning network algorithm on high resolution remote sensing images[J]. Journal of Geo-information Science, 2016, 18(1):124-132 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201601015
[23]饶均辉. GSA-PP模型在区域水资源承载力评价中的应用[J].水资源与水工程学报, 2016, 27(6):95-100 http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201606017
RAO J H. Application of GSA-PP model in water resources carrying capacity evaluation[J]. Journal of Water Resources and Water Engineering, 2016, 27(6):95-100 http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201606017
[24]付强, 赵小勇.投影寻踪模型原理及其应用[M].北京:科学出版社, 2006:46-51
FU Q, ZHAO X Y. Principle and Application of Projection Pursuit Model[M]. Beijing:Science Press, 2006:46-51
[25]王顺久, 杨志峰.区域农业生态环境质量综合评价投影寻踪模型研究[J].中国生态农业学报, 2006, 14(1):173-175 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006152&flag=1
WANG S J, YANG Z F. A projection pursuit model for comprehensive assessment on eco-environmental quality of regional agriculture[J]. Chinese Journal of Eco-Agriculture, 2006, 14(1):173-175 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006152&flag=1
[26]赵西宁, 王玉宝, 马学明.基于遗传投影寻踪模型的黑河中游地区农业节水潜力综合评价[J].中国生态农业学报, 2014, 22(1):104-110 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014115&flag=1
ZHAO X N, WANG Y B, MA X M. Comprehensive evaluation of agricultural water-saving potential in the middle reaches of Hei River using genetic projection pursuit model[J]. Chinese Journal of Eco-Agriculture, 2014, 22(1):104-110 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014115&flag=1
[27]郭倩, 汪嘉杨, 张碧.基于DPSIRM框架的区域水资源承载力综合评价[J].自然资源学报, 2017, 32(3):484-493 http://d.old.wanfangdata.com.cn/Periodical/zrzyxb201703011
GUO Q, WANG J Y, ZHANG B. Comprehensive evaluation of the water resource carrying capacity based on DPSIRM[J]. Journal of Natural Resources, 2017, 32(3):484-493 http://d.old.wanfangdata.com.cn/Periodical/zrzyxb201703011
[28]金菊良, 丁晶.遗传算法及其在水科学中的应用[M].成都:四川大学出版社, 2000
JIN J L, DING J. Genetic Algorithm and its Applications to Water Science[M]. Chengdu:Sichuan University Press, 2000
[29]刘冰洋, 张小全, 张鋆鋆, 等.气象因子对高香气烤烟品种主要香味前体物含量的影响[J].中国生态农业学报, 2016, 24(9):1214-1222 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016908&flag=1
LIU B Y, ZHANG X Q, ZHANG Y Y, et al. Effects of meteorological factors onaroma precursors contents of high aroma flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9):1214-1222 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016908&flag=1
[30]熊黑钢, 付金花, 王凯龙.基于熵权法的新疆奇台绿洲水资源承载力评价研究[J].中国生态农业学报, 2012, 20(10):1382-1387 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121019&flag=1
XIONG H G, FU J H, WANG K L. Evaluation of water resource carrying capacity of Qitai Oasis in Xinjiang by entropy method[J]. Chinese Journal of Eco-Agriculture, 2012, 20(10):1382-1387 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121019&flag=1
[31]宋稀, 刘凤兰, 郑普英, 等.高密度种植专用油菜重要农艺性状与产量的关系分析[J].中国农业科学, 2010, 43(9):1800-1806 doi: 10.3864/j.issn.0578-1752.2010.09.005
SONG X, LIU F L, ZHENG P Y, et al. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting[J]. Scientia Agricultura Sinica, 2010, 43(9):1800-1806 doi: 10.3864/j.issn.0578-1752.2010.09.005
[32]白桂萍, 刘克钊, 谭永强, 等.油菜高产群体各农艺性状对产量的影响[J].作物杂志, 2015, (6):33-38 http://d.old.wanfangdata.com.cn/Periodical/zwzz201506006
BAI G P, LIU K Z, TAN Y Q, et al. Effect of agronomic traits on seed yield in high-yielding rapeseed populations[J]. Crops, 2015, (6):33-38 http://d.old.wanfangdata.com.cn/Periodical/zwzz201506006
[33]王毅, 庞进平, 董云, 等.油菜产量与主要农艺性状的灰色关联度分析[J].种子, 2011, 30(7):99-101 doi: 10.3969/j.issn.1001-4705.2011.07.030
WANG Y, PANG J P, DONG Y, et al. Gray relation analysis on yield and main agronomic traits of rape[J]. Seed, 2011, 30(7):99-101 doi: 10.3969/j.issn.1001-4705.2011.07.030
[34]邓伟, 肖华贵.杂交油菜产量与相关农艺性状的灰色关联度分析[J].安徽农业科学, 2009, 37(5):1961-1962 doi: 10.3969/j.issn.0517-6611.2009.05.044
DENG W, XIAO H G. Grey correlation analysis on the yield of hybrid rape and its related agronomic characters[J]. Journal of Anhui Agricultural Sciences, 2009, 37(5):1961-1962 doi: 10.3969/j.issn.0517-6611.2009.05.044
[35]毛鸿才, 杨力行.黄准棉区皮棉产量组分的投影寻踪回归(PPR)分析及与通径分析的比较[J].新疆农业大学学报, 2001, 24(3):44-49 doi: 10.3969/j.issn.1007-8614.2001.03.010
MAO H C, YANG L X. Comparison between projection pursuit regression (PPR) analysis and path analysis of yield components in cotton yield in Huangzhun cotton area[J]. Journal of Xinjiang Agricultural University, 2001, 24(3):44-49 doi: 10.3969/j.issn.1007-8614.2001.03.010

相关话题/农业 材料 作物 遗传 资源