删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

播期和品种变化对马铃薯产量的耦合效应

本站小编 Free考研考试/2022-01-01

李扬,
王靖,,
唐建昭,
黄明霞,
白慧卿,
王娜,
贺付伟
中国农业大学资源与环境学院 北京 100193
基金项目: 中央高校基本科研业务费专项资金2018TC042
国家自然科学基金项目41475104

详细信息
作者简介:李扬, 主要从事农业生产系统模拟研究。E-mail:doudoucau@163.com
通讯作者:王靖, 主要从事农业生产系统模拟与气候变化影响评估研究。E-mail:wangj@cau.edu.cn
中图分类号:S162.5+7

计量

文章访问数:889
HTML全文浏览量:1
PDF下载量:604
被引次数:0
出版历程

收稿日期:2018-07-29
录用日期:2018-09-27
刊出日期:2019-02-01

Coupling impacts of planting date and cultivar on potato yield

LI Yang,
WANG Jing,,
TANG Jianzhao,
HUANG Mingxia,
BAI Huiqing,
WANG Na,
HE Fuwei
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Funds: the Fundamental Research Funds for the Central Universities of China2018TC042
the National Natural Science Foundation of China41475104

More Information
Corresponding author:WANG Jing, E-mail:wangj@cau.edu.cn


摘要
HTML全文
(4)(2)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:马铃薯作为北方农牧交错带的主栽作物,随着气候向暖干化发展,其产量的稳定对保证该地区粮食安全有重要意义。为探究播期和品种耦合对农牧交错带马铃薯产量的影响,基于分期播种和品种比较试验的生育期和产量数据对APSIM-Potato模型进行调参和验证,利用验证后的模型设置连续模拟情景,比较不同耦合方式的产量及保证率,分析农牧交错带雨养马铃薯的最佳播期和品种耦合方式。结果表明:APSIM-Potato模型可以较好地模拟不同熟性马铃薯品种的生育期和产量,不同品种生育期实测值和模拟值的均方根误差(RMSE)均小于6.3 d,不同品种产量实测值和模拟值的归一化均方根误差(NRMSE)均小于7.6%。雨养条件下,农牧交错带不同播期和品种耦合下马铃薯的多年平均鲜重产量为10 494 kg·hm-2;中熟品种‘克新一号’晚播(6月1日播种)的平均产量最高,为12 153 kg·hm-2,且可以保证在66.7%的年份产量高于不同耦合方式的平均值,较早播(4月26日播种)和中播(5月15日播种)的平均鲜重产量分别高16.3%和7.0%,较同一时期播种的早熟品种‘费乌瑞它’和晚熟品种‘底西芮’分别高18.7%和17.2%。本研究揭示了农牧交错带马铃薯播期、品种和环境存在显著的交互作用,播期推迟和选种中熟马铃薯品种是应对气候暖干化的重要方式,为该地区马铃薯适应气候变化和保证稳产高产提供了科学依据。
Abstract:Potato is one of the major food crops in agro-pastoral ecotone (APE) in North China, with a total yield accounting for 46.8% of total grain yield in the region. Therefore, yield stability of potato is of significance for food security in the region. Due to the shortage of surface water and groundwater resources, potato is mostly produced under rainfed condition in the APE. Thus, there is large variation in rainfed potato yield due to high variability of annual and season precipitation. Adjustment in planting date and selection of cultivars were both effective ways of adapting to climate change, but there were few studies on the exploration of the impacts of coupling planting date and cultivar type on potato yield under rainfed condition in the APE. In this study, the APSIM-Potato model were calibrated and validated by serial planting date and cultivar experiments of potato in 1981-2010 to analyze the optimal combinations of planting date and cultivar by focusing on yield and guaranteeing rate of yield of rainfed potato. The results showed that APSIM-Potato model performed well in simulating phenology and fresh yield under different planting dates and cultivars of potato. The range of root mean square errors (RMSE) between the observed and simulated phenology was 0-6.3 days for the calibration years and 2.1-4.2 days for the validation years under different combinations of planting date and cultivar type. The range of normalized root mean square error (NRMSE) between the observed and simulated yields under different combinations of planting date and cultivar type was 0.3%-3.9% for the calibration years and 0.9%-7.6% for the validation years. Under rainfed condition, the range of simulated fresh yield of potato under different combinations of planting date and cultivar was 0-28 914 kg·hm-2 for the period 1981-2010, with an average of 10 494 kg·hm-2. Planting mid-maturing cultivar 'Kexin_1' in late planting date (1st June) produced fresh yield of 12 153 kg·hm-2, which was respectively 16.3% and 7.0% higher than that under early planting season (26th April) and the middle planting (15th May) in the APE during 1981-2010. Moreover, the simulated fresh potato yield of 'Kexin_1' under late planting date was respectively 18.7% and 17.2% higher than that of early-maturing cultivar 'Favorita' and late-maturing cultivar 'Desiree'. Planting mid-maturing cultivar at late planting date (1st June) guaranteed higher simulated fresh yield than the average in 66.7% years of 1981-2010. The study showed significant interaction among planting date, cultivar and environment in potato production in the APE in North China. Under rainfed condition, postponing planting date and selecting mid-maturity cultivar of potato was the most effective way of adapting to the warming and drying climatic conditions. This provided a reference for adapting to climate change and ensuring stable and high potato yield in the region.

HTML全文


图1不同品种马铃薯生育期(a, b)和产量(c, d)的调参(a, c)和验证(b, d)结果(图a, b中的虚线为1:1线, 图c, d中产量实测值上的误差线为重复间的标准差)
Figure1.Comparison between observed and simulated phenology (a, b) and yield (c, d) of potato for calibration (a, c) and validation years (b, d) (in figure a and b, the dash lines is 1:1 line; in figure c, d, the bar of observed yield shows the standard error of the replicates)


下载: 全尺寸图片幻灯片


图21981—2010年APSIM模型模拟的马铃薯鲜重产量的保证率[图a、b、c表示在同一播种期下(a: 4月26日; b: 5月15日; c: 6月1日)不同品种的产量保证率; 图d、e、f表示同一品种(d:早熟; e:中熟; f:晚熟)在不同播期下的产量保证率]
E、M、L分别表示早熟品种、中熟品种和晚熟品种。
Figure2.Guarantee rate of simulated fresh yield of potato by APSIM model during 1981 to 2010 [figure a, b, c show the guarantee rates of yield for various varieties with the same planting dates (a: April 26; b: May 15; c: June 1); and figure d, e, f show the guarantee rates of yield for the same variety (d: early maturing; e: middle maturing; f: late maturing) under different planting dates]
E, M, L represent potato varieties of early-maturing, mid-maturing and late-maturing, respectively.


下载: 全尺寸图片幻灯片


图3不同播期和品种耦合下不同马铃薯品种的产量(kg·hm-2)水平
E、M、L分别表示早熟品种、中熟品种和晚熟品种; 04-26、05-15、06-01分别表示早播(4月26日)、中播(5月15日)和晚播(6月1日)。
Figure3.Potato fresh yield (kg·hm-2) levels for various combinations of planting date and cultivars
E, M, L represent potato varieties of early-maturing, mid-maturing and late-maturing, respectively. 04-26, 05-15, 06-01 represent planting on April 26, May 15 and June 1, respectively.


下载: 全尺寸图片幻灯片


图4马铃薯中熟品种早播(a, c: 4月26日播种)和晚播(b, d: 6月1日播种)的水分和温度胁迫因子
Figure4.Water and temperature stress factors of mid-maturing potato cultivar under early (a, c: planting on April 26) and late planting (b, d: planting on June 1)


下载: 全尺寸图片幻灯片

表1研究站点土壤基础参数
Table1.Parameters of soil profiles at the study site
土层
Soil layer (cm)
容重
Bulk density (g·cm-3)
饱和含水量
Saturated water content (mm·mm-1)
田间持水量
Field capacity (mm·mm-1)
凋萎含水量
Wilting water content (mm·mm-1)
0~20 1.47 0.43 0.38 0.070
20~40 1.59 0.39 0.34 0.070
40~60 1.63 0.37 0.32 0.070
60~80 1.69 0.36 0.32 0.085
80~100 1.74 0.34 0.28 0.085


下载: 导出CSV
表2不同熟性马铃薯品种的主要遗传参数(E:早熟; M:中熟; L:晚熟)
Table2.Derived cultivar parameters of different potato varieties for APSIM-Potato (E, M, L represent early, middle and late maturing varieties, respectively)
参数
Parameter
费乌瑞它(E)
Favorita
克新一号(M)
Kexin_1
底西芮(L)
Desiree
播种到出苗所需有效积温
Degree days from planting to emergence (y-tt-emergence, ℃·d)
240 450 590
出苗到形成块茎所需有效积温
Degree days from emergence to early tuber formation (tt-earlytuber, ℃·d)
190 280 200
块茎形成到衰老所需有效积温
Degree days from early tuber formation to senescing (tt-senescing, ℃·d)
490 300 355
苗期光周期
Photoperiod for emergence (x_pp_emergence, h)
12 12 12


下载: 导出CSV

参考文献(27)
[1]胡琦, 潘学标, 杨宁.北方农牧交错带马铃薯沟垄集雨技术适宜性研究[J].干旱区地理, 2015, 38(3):585-591 http://d.old.wanfangdata.com.cn/Periodical/ghqdl201503020
HU Q, PAN X B, YANG N. Suitability of rainwater harvesting technology for potato farmland ridge and furrow in northern agro-pastoral zone of China[J]. Arid Land Geography, 2015, 38(3):585-591 http://d.old.wanfangdata.com.cn/Periodical/ghqdl201503020
[2]TANG J Z, WANG J, WANG E L, et al. Identifying key meteorological factors to yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China[J]. Agricultural and Forest Meteorology, 2018, 256/257:283-291 doi: 10.1016/j.agrformet.2018.03.022
[3]TANG J Z, WANG J, HE D, et al. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China[J]. Journal of Meteorological Research, 2016, 30(6):983-997 doi: 10.1007/s13351-016-6023-0
[4]侯琼, 郭瑞清, 杨丽桃.内蒙古气候变化及其对主要农作物的影响[J].中国农业气象, 2009, 30(4):560-564 http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200904017
HOU Q, GUO R Q, YANG L T. Climate change and its impact on main crops in Inner Mongolia[J]. Chinese Journal of Agrometeorology, 2009, 30(4):560-564 http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200904017
[5]TANG J Z, WANG J, FANG Q X, et al. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China[J]. European Journal of Agronomy, 2018, 98:82-94 doi: 10.1016/j.eja.2018.05.008
[6]贾立国, 陈玉珍, 樊明寿, 等.干旱对马铃薯光合特性及块茎形成的影响[J].干旱区资源与环境, 2018, 32(2):188-193 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201802029
JIA L G, CHEN Y Z, FAN M S, et al. Influence of drought stress on potato photosynthetic characteristics and tuberization and its possible mechanism[J]. Journal of Arid Land Resources and Environment, 2018, 32(2):188-193 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201802029
[7]董旭生, 牛俊义, 高玉红, 等.半干旱区马铃薯品种性状比较试验[J].中国马铃薯, 2015, 29(3):129-132 doi: 10.3969/j.issn.1672-3635.2015.03.001
DONG X S, NIU J Y, GAO Y H, et al. Comparative test of characteristics for potato varieties in semi-arid region[J]. Chinese Potato Journal, 2015, 29(3):129-132 doi: 10.3969/j.issn.1672-3635.2015.03.001
[8]张丽芳.包头地区马铃薯引种筛选试验[J].现代农业科技, 2016, (24):83-84 doi: 10.3969/j.issn.1007-5739.2016.24.046
ZHANG L F. Potato introduction and screening test in Baotou area[J]. Modern Agricultural Science and Technology, 2016, (24):83-84 doi: 10.3969/j.issn.1007-5739.2016.24.046
[9]于婷婷, 王凤新.内蒙古地区不同品种马铃薯适水种植研究[J].中国农学通报, 2015, 31(36):70-77 doi: 10.11924/j.issn.1000-6850.casb15080083
YU T T, WANG F X. Planting of different potato cultivars adapted to water availability in Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2015, 31(36):70-77 doi: 10.11924/j.issn.1000-6850.casb15080083
[10]沈姣姣, 王靖, 潘学标, 等.播种期对农牧交错带马铃薯生长发育和产量形成及水分利用效率的影响[J].干旱地区农业研究, 2012, 30(2):137-144 doi: 10.3969/j.issn.1000-7601.2012.02.024
SHEN J J, WANG J, PAN X B, et al. Effect of sowing date on the growth and yield formation and water use efficiency of potato in Agro-pastoral Ecotone[J]. Agricultural Research in the Arid Areas, 2012, 30(2):137-144 doi: 10.3969/j.issn.1000-7601.2012.02.024
[11]张凯, 王润元, 李巧珍, 等.播期对陇中黄土高原半干旱区马铃薯生长发育及产量的影响[J].生态学杂志, 2012, 31(9):2261-2268 http://d.old.wanfangdata.com.cn/Periodical/stxzz201209015
ZHANG K, WANG R Y, LI Q Z, et al. Effects of sowing date on the growth and tuber yield of potato in semi-arid area of Loess Plateau in central Gansu Province of Northwest China[J]. Chinese Journal of Ecology, 2012, 31(9):2261-2268 http://d.old.wanfangdata.com.cn/Periodical/stxzz201209015
[12]赵沛义, 妥德宝, 段玉, 等.内蒙古后山旱农区马铃薯适宜播种密度和播期研究[J].华北农学报, 2005, 20(S1):10-14 doi: 10.7668/hbnxb.2005.S1.003
ZHAO P Y, TUO D B, DUAN Y, et al. Studies on suitable planting density and time of sowing of potato on dry land in Houshan area, Inner Monglia[J]. Acta Agriculturae Boreali-Sinica, 2005, 20(S1):10-14 doi: 10.7668/hbnxb.2005.S1.003
[13]KLEINWECHTER U, GASTELO M, RITCHIE J, et al. Simulating cultivar variations in potato yields for contrasting environments[J]. Agricultural Systems, 2016, 145:51-63 doi: 10.1016/j.agsy.2016.02.011
[14]沈姣姣.农牧交错带主要农作物适宜播期及气候适应性研究[D].北京: 中国农业大学, 2011
SHEN J J. Study on optimalization of sowing date and climate suitability of main crops in Agro-pastoral Ecotone[D]. Beijing: China Agricultural University, 2011
[15]任永峰, 赵举, 张永平, 等.阴山北麓地区马铃薯品种抗旱特性的研究[J].作物杂志, 2011, (6):53-56 doi: 10.3969/j.issn.1001-7283.2011.06.013
REN Y F, ZHAO J, ZHANG Y P, et al. Drought resistance properties of Yinshan Moutain potato varieties in Wuchuan[J]. Crops, 2011, (6):53-56 doi: 10.3969/j.issn.1001-7283.2011.06.013
[16]肖特.温光对马铃薯植株生长及块茎形成发育影响的研究[D].呼和浩特: 内蒙古农业大学, 2013: 18-27
XIAO T. Effects of temperature and light on plant growth, tuber formation and development of potato cultivars (Solanum tuberosum L.)[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2013: 18-27
[17]戴彤, 王靖, 赫迪, 等. APSIM模型在西南地区的适应性评价——以重庆冬小麦为例[J].应用生态学报, 2015, 26(4):1237-1243 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201504036
DAI T, WANG J, HE D, et al. Adaptability of APSIM model in Southwestern China:A case study of winter wheat in Chongqing City[J]. Chinese Journal of Applied Ecology, 2015, 26(4):1237-1243 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201504036
[18]奥海玮, 谢应忠, 宋乃平, 等.基于APSIM模型的宁夏半干旱区苜蓿灌溉模拟验证和应用[J].广东农业科学, 2014, 41(7):175-179 doi: 10.3969/j.issn.1004-874X.2014.07.044
AO H W, XIE Y Z, SONG N P, et al. Validation and application of Lucerne irrigation simulation based on APSIM model in semiarid area of Ningxia[J]. Guangdong Agricultural Sciences, 2014, 41(7):175-179 doi: 10.3969/j.issn.1004-874X.2014.07.044
[19]李广, 李玥, 黄高宝, 等.基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应[J].中国生态农业学报, 2012, 20(8):1088-1095 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012821&flag=1
LI G, LI Y, HUANG G B, et al. Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8):1088-1095 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012821&flag=1
[20]KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3/4):267-288 doi: 10.1016-S1161-0301(02)00108-9/
[21]BROWN H E, HUTH N, HOLZWORTH D. A potato model built using the APSIM plant. NET Framework[C]//Proceedings of the 19th International Congress on Modelling and Simulation. Perth, Australia, 2011: 961-967
[22]WANG J, WANG E L, FENG L P, et al. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain[J]. Field Crops Research, 2013, 144:135-144 doi: 10.1016/j.fcr.2012.12.020
[23]陈超.华北平原作物水分生产力-农田水平衡-气候波动/变化的系统分析[D].北京: 中国科学院地理科学与资源研究所, 2009
CHEN C. Response of crop water productivity and water balance to climate variability/change in the North China Plain[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 2009
[24]CHEN C, WANG E L, YU Q, et al. Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain[J]. Climatic Change, 2010, 100(3/4):559-578 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43fb188b9b3afa403f8d689242c54f8f
[25]李艳, 薛昌颖, 杨晓光, 等.基于APSIM模型的灌溉降低冬小麦产量风险研究[J].农业工程学报, 2009, 25(10):35-44 doi: 10.3969/j.issn.1002-6819.2009.10.007
LI Y, XUE C Y, YANG X G, et al. Reduction of yield risk of winter wheat by appropriate irrigation based on APSIM model[J]. Transactions of the CSAE, 2009, 25(10):35-44 doi: 10.3969/j.issn.1002-6819.2009.10.007
[26]夏哲超, 潘志华, 张璐阳, 等.基于水分的北方农牧交错带植被生态系统退化机理研究——以武川县为例[J].资源科学, 2010, 32(2):317-322 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000151969
XIA Z C, PAN Z H, ZHANG L Y, et al. Examining mechanisms of vegetation ecosystems degradation based on water in North Farming-Pastoral Zone:a case study on Wuchuan County[J]. Resources Science, 2010, 32(2):317-322 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000151969
[27]任稳江, 任亮, 刘生学.黄土高原旱地马铃薯田土壤水分动态变化及供需研究[J].中国马铃薯, 2015, 29(6):355-361 doi: 10.3969/j.issn.1672-3635.2015.06.012
REN W J, REN L, LIU S X. Moisture dynamics and 'supply and demand' on potato fields in arid areas of southern Loess Plateau[J]. Chinese Potato Journal, 2015, 29(6):355-361 doi: 10.3969/j.issn.1672-3635.2015.06.012

相关话题/生育 图片 资源 北京 作物