删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原缺水区保护性耕作技术

本站小编 Free考研考试/2022-01-01

胡春胜,,
陈素英,
董文旭
中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
基金项目: 国家重点研发计划专项2016YFD0300808
国家公益性行业(农业)科研专项201503117
国家自然科学基金项目31371578

详细信息
作者简介:胡春胜, 主要从事农田生态系统碳、氮、水循环及土壤生态过程研究。E-mail:cshu@sjziam.ac.cn
中图分类号:S341

计量

文章访问数:660
HTML全文浏览量:2
PDF下载量:468
被引次数:0
出版历程

收稿日期:2018-06-25
录用日期:2018-07-04
刊出日期:2018-10-01

Conservation tillage technology for water-deficit areas in the North China Plain

HU Chunsheng,,
CHEN Suying,
DONG Wenxu
Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
Funds: the National Key Research and Development Project of China2016YFD0300808
the Special Fund for Agro-scientific Research in the Public Interest of China201503117
the National Natural Science Foundation of China31371578

More Information
Corresponding author:HU Chunsheng, E-mail: cshu@sjziam.ac.cn


摘要
HTML全文
(1)(1)
参考文献(21)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:针对华北平原缺水地区农田生产效益偏低和地下水严重超采导致的生态环境问题,以建立节水、高产、固碳的华北平原缺水区保护性耕作集成技术为目标,在国家科技支撑计划长期支持下,建立了华北平原历时最长的保护性耕作长期定位试验平台(2001年-),开展了小麦/玉米两熟制保护性耕作理论和关键技术研究,集成了农机农艺结合的高产节水型保护性耕作技术体系,并在河北省进行广泛示范推广。主要结果:1)华北平原冬小麦/夏玉米一年两熟区保护性耕作具有固碳、减排、节水、提高土壤质量等生态效应。长期保护性耕作具有土壤养分分层表聚现象:0~5 cm土层的土壤C、N、P、K、有机质含量高于5~10 cm土层,旋耕(RT)和免耕(NT1:秸秆直立免耕;NT2:秸秆粉碎免耕;NT3:整秸秆覆盖免耕)处理土壤有机碳(SOC)的层化比率为1.74~2.04,显著高于翻耕处理(CK和CT)的1.37~1.45。保护性耕作的固碳效应与机制:保护性耕作实施9年后不同耕作方式年固碳量(0~30 cm)NT2处理为840 kg·hm-2·a-1、RT处理为780 kg·hm-2·a-1、CT处理为600 kg·hm-2·a-1,14年后土壤有机碳(0~30 cm)发生了变化,NT2处理为540 kg·hm-2·a-1、RT处理为720 kg·hm-2·a-1、CT处理为710 kg·hm-2·a-1;长期免耕减少了土壤的扰动而降低了土壤碳的矿化率,土壤碳的累积主要固定在土壤大团聚体的颗粒有机碳中,固定态碳首先进入活性易分解有机碳库,然后缓慢转入稳定碳库。保护性耕作的减排效应:不同耕作系统全球增温潜力的计算结果表明,免耕是大气增温的碳汇,而其他耕作系统为碳源。NT处理每年农田生态系统净截留碳947~1 070 kg(C)·hm-2;CK、CT和RT每年向大气分别排放等当量碳3 364 kg(C)·hm-2、989 kg(C)·hm-2和343 kg(C)·hm-2。保护性耕作的土壤微生物多样性机制:保护性耕作显著提高了土壤中真菌、细菌、氨氧化古菌和亚硝酸还原酶(nirK)基因的反硝化微生物的多样性,但对氨氧化细菌与含nirS基因的反硝化微生物的多样性影响不大。保护性耕作节水保墒的土壤结构与水力学机制:常规耕作对土壤有压实的作用,而保护性耕作改善了土壤结构,有效提高了储水孔隙、导水率、田间持水量和有效水含量,秸秆覆盖又能有效减少土壤蒸发,具有开源与节流双重节水机制。2)建立了趋零蒸发的麦田玉米整秸覆盖全免耕种植模式。在小麦/玉米一年两熟种植区,首次提出了玉米整秸秆覆盖小麦全免耕播种的种植模式,实现了小麦玉米全程全量秸秆机械化覆盖,形成土壤无效蒸发趋于零的保护性耕作体系与方法;研制了实现趋零蒸发的4JS-2型梳压机和2BMF-6型小麦全免耕播种机组,比目前推广的2BMFS-6/12小麦免耕播种机减少作业动力45.2%,降低作业费用33.3%。3)建立了3年一深松(翻)的少免耕-深松轮耕模式,集成了节水高产保护性耕作技术体系。制定了华北平原冬小麦/夏玉米一年两熟区保护性耕作技术体系等河北省地方标准,与农业、农机部门联合示范,推动了河北省保护性耕作技术的推广和应用。成果在河北平原冬小麦/夏玉米一年两熟区进行了示范推广,社会效益和生态效益显著,2013年获河北省科技进步一等奖。
关键词:华北平原/
水资源短缺/
冬小麦/夏玉米一年两作/
保护性耕作/
秸秆覆盖/
免耕
Abstract:The intensive exploitation of groundwater for farmland irrigation has led to the decline of groundwater level and the development of eco-environmental problems in the North China Plain (NCP). In order to establish water saving, high yield, carbon sequestration and conservation tillage integration technology system in NCP, a long-term conservation tillage experimental platform was established from Oct. 2001 in the Luancheng Agro-Ecosystem Experiment Station, Chinese Academy of Sciences, which included six treatments, CK (deep plowing and wheat row seeding without maize straw return), CT (deep plowing and wheat row seeding with smashed maize straw incorporation), TR (rotary tillage and wheat row seeding with smashed maize straw incorporation), NT1 (non-tillage and wheat furrow seeding with maize straw incorporation), NT2 (non-tillage and wheat furrow seeding with smashed maize straw incorporation) and NT3 (non-tillage and wheat row seeding with maize straw mulching). Studies on conservation tillage theory and key technologies of winter wheat-summer maize double cropping system integrated with agricultural machinery were conducted at the platform. The agronomic water-saving conservation tillage techniques of high yield systems were widely demonstrated in NCP. The results showed that 1) conservation tillage had obvious effects on carbon sequestration, emission reduction, water saving and soil quality improvement. Long-term conservation tillage induced soil nutrient accumulation at the soil surface. Also C, N, P, K and organic matter contents were higher in the 0-5 cm soil layer than in the 5-10 cm soil layer. Soil organic carbon (SOC) stratification ratio under RT and NT1, NT2 and NT3 treatments was in the range of 1.74-2.04, which was significantly higher than that of CK and CT (1.37-1.45). After 9 years of conservation tillage, soil carbon sequestrations (0-30 cm) were 840 kg·hm-2·a-1, 780 kg·hm-2·a-1 and 600 kg·hm-2·a-1 under NT2, RT and CT treatments, respectively. Then after 14 years of conservation tillage, soil carbon sequestrations were respectively 540 kg·hm-2·a-1, 720 kg·hm-2·a-1 and 710 kg·hm-2·a-1. Long-term non-tillage reduced soil disturbance and consequently decreased the mineralization rate of soil carbon. Soil carbon was mainly fixed in organic carbon particles of soil aggregates. The fixed carbon first changed into readily decomposable organic carbon and then slowly turned into stable carbon. Calculations of global warming potential under different tillage systems showed that farmland ecosystems under non-tillage with straw return served as carbon sink, with annual carbon retention of 947-1 070 kg(C)·hm-2 after subtracting directly or indirectly carbon emitted equivalent. Other treatments were carbon resource, with CK, CT and RT treatments annually discharging equivalent carbon of 3 364 kg(C)·hm-2, 989 kg(C)·hm-2 and 343 kg(C)·hm-2 respectively into the atmosphere. The mechanism of soil microbial diversity under conservation tillage was as follows:conservation tillage significantly improved the diversity indexes of soil fungi communities, bacteria communities, ammonia-oxidizing bacteria communities and denitrifying micro-organism communities with nirK gene. However, it had little effect on the diversity index of ammonia-oxidized bacteria communities and denitrifying micro-organisms communities with nirS gene. Conservation tillage showed significant water-saving effect, which resulted from improvements in soil structure, water-reservoir porosity and saturated hydraulic conductivity. Straw mulching also effectively reduced soil evaporation. 2) Non-tillage plus straw mulching with minimum soil evaporation model was established in winter-wheat/summer-maize double cropping system area. The unit of 4JS-2 straw combing press machine and 2BMF-6 non-tillage sowing machine with zero evaporation were developed, which reduced the operating rate by 45.2% and operation cost by 33.3%, compared with 2BMF-6/12 non-tillage sowing machine currently promoted. 3) A new soil rotation tillage model of deep plowing and deep sub-soiling every 3 years in non-tillage soil was established and integrated with water-saving, high-yielding and protective tillage technology system. A series of technical regulations of Hebei local standards in terms of conservation tillage of winter wheat/summer maize double cropping system were suggested. Cooperated with the Agricultural Bureau and Agricultural Machinery Bureau of Hebei Province, we demonstrated and promoted conservation tillage technologies in Hebei Province with remarkable social and ecological benefits. The main results won the first prize of Hebei Science and Technology Progress Award in 2013.
Key words:North China Plain/
Water resources shortage/
Winter wheat/summer maize double cropping/
Conservation tillage/
Straw mulching/
Non-tillage

HTML全文


图1中国科学院栾城农业生态系统试验站保护性耕作定位试验处理(2001年起)
Figure1.Treatments of the long-term located tillage experiment (from 2001) of the Platform of Located Experiment of Conservation Tillage in Luancheng Agro-Ecosystem Experimental Station, Chinese Academy of Sciences


下载: 全尺寸图片幻灯片

表1长期不同耕作措施对0~30 cm土层土壤碳储量的影响
Table1.Effects of long-term different tillage practices on carbon storage of 0-30 cm soil layer
CK CT RT NT2 NT3
不同年份碳储量Carbon storage in different years (Mg·hm-2) 2001 38.1a 37.1a 36.4a 36.9a 35.3a
2006 38.0bc 39.9abc 41.1ab 41.8a 36.1c
2009 38.1b 41.9ab 42.7ab 43.6a 42.1ab
2015 43.4b 47.1a 46.5ab 44.5b 43.8b
碳储量变化量Change in carbon storage 2001—2006年增加量Change from 2001 to 2006 (Mg·hm-2) -0.1 2.8** 4.7** 4.9*** 0.8
2001—2006年平均年截留量Average annual change from 2001 to 2006 (Mg·hm-2·a-1) -0.01 0.56 0.94 0.99 0.28
2001—2009年增加量Change from 2001 to 2009 (Mg·hm-2) 0.05 4.8* 6.3** 6.7** 5.3*
2001—2009年平均年截留量Average annual change from 2001 to 2009 (Mg·hm-2·a-1) 0.01 0.60 0.78 0.84 0.66
2001—2015年增加量Change from 2001 to 2015 (Mg·hm-2) 5.3 10.0** 10.1** 7.6* 8.5*
2001—2015年平均年截留量Average annual change from 2001 to 2015 (Mg·hm-2·a-1) 0.38 0.71 0.72 0.54 0.61
不同小写字母表示不同耕作处理间差异显著(P < 0.05); *、**和***分别表示变化在P < 0.05、P < 0.01和P < 0.005水平显著。Different lowercase letters mean significant differences among tillage treatments at P < 0.05 level. *, ** and *** mean significant changes at P < 0.05, P < 0.01 and P < 0.005 levels, respectively.


下载: 导出CSV

参考文献(21)
[1]高旺盛, 论保护性耕作技术的基本原理与发展趋势[J].中国农业科学, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006
GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006
[2]张海林, 高旺盛, 陈阜, 等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报, 2005, 10(1):16-20 doi: 10.3321/j.issn:1007-4333.2005.01.005
ZHANG H L, GAO W S, CHEN F, et al. Prospects and present situation of conservation tillage[J]. Journal of China Agricultural University, 2005, 10(1):16-20 doi: 10.3321/j.issn:1007-4333.2005.01.005
[3]逯非, 王效科, 韩冰, 等.农田土壤固碳措施的温室气体泄漏和净减排潜力[J].生态学报, 2009, 29(9):4993-5003 doi: 10.3321/j.issn:1000-0933.2009.09.048
LU F, WANG X K, HAN B, et al. Researches on the greenhouse gas leakage and net mitigation potentials of soil carbon sequestration measures in croplands[J]. Actae Ecologica Sinica, 2009, 29(9):4993-5003 doi: 10.3321/j.issn:1000-0933.2009.09.048
[4]谢瑞芝, 李少昆, 李小君, 等.中国保护性耕作研究分析——保护性耕作与作物生产[J].中国农业科学, 2007, 40(9):1914-1924 doi: 10.3321/j.issn:0578-1752.2007.09.010
XIE R Z, LI S K, LI X J, et al., The analysis of conservation tillage in China-Conservation tillage and crop production:reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9):1914-1924 doi: 10.3321/j.issn:0578-1752.2007.09.010
[5]陈四龙, 陈素英, 孙宏勇, 等.耕作方式对冬小麦棵间蒸发及水分利用效率的影响[J].土壤通报, 2006, 37(4):817-821 doi: 10.3321/j.issn:0564-3945.2006.04.044
CHEN S L, CHEN S Y, SUN H Y, et al. Effect of different tillages on soil evaporation and water use efficiency of winter wheat in the field[J]. Chinese Journal of Soil Science, 2006, 37(4):817-821 doi: 10.3321/j.issn:0564-3945.2006.04.044
[6]杜章留, 高伟达, 陈素英, 等.保护性耕作对太行山前平原土壤质量的影响[J].中国生态农业学报, 2011, 19(5):1134-1142 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110524&flag=1
DU Z L, GAO W D, CHEN S Y, et al. Effect of conservation tillage on soil quality in the piedmont plain of Mount Taihang[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1134-1142 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110524&flag=1
[7]DU Z L, REN T S, HU C S. Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain[J]. Soil Science Society of America Journal, 2010, 74(1):196-202 doi: 10.2136/sssaj2009.0048
[8]MUELLER L, SHEPHERD G, SCHINDLER U, et al. Evaluation of soil structure in the framework of an overall soil quality rating[J]. Soil & Tillage Research, 2013, 127(1):74-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229017373
[9]杨培培, 杨明欣, 董文旭, 等.保护性耕作对土壤养分分布及冬小麦吸收与分配的影响[J].中国生态农业学报, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1
YANG P P, YANG M X, DONG W X, et al. Effect of conservation tillage on wheat and soil nutrient distribution and absorption[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1
[10]DONG W X, HU C S, CHEN S Y, et al. Tillage and residue management effects on soil carbon and CO2 emission in a wheat-corn double-cropping system[J]. Nutrients Cycling in Agroecosystems, 2009, 83:27-37 doi: 10.1007/s10705-008-9195-x
[11]Ussiri D A N, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J]. Soil and Tillage research, 2009, 104(1):39-47 doi: 10.1016/j.still.2008.11.008
[12]Blanco-Canqui H, Lal R. No-tillage and soil-profile carbon sequestration:an on-farm assessment[J]. Soil Science Society of America Journal, 2008, 72(3):693-701 doi: 10.2136/sssaj2007.0233
[13]QIN S P, HU C S, HE X H, et al. Soil organic carbon, nutrients and relevant enzyme activities in particle-size fractions under conservational versus traditional agricultural management[J]. Applied Soil Ecology, 2010, 45:152-159 doi: 10.1016/j.apsoil.2010.03.007
[14]DONG W X, HU C S, ZHANG Y M, et al. Gross mineralization, nitrification and N2O emission under different tillage in the North China Plain[J]. Nutrients Cycling in Agroecosystems, 2012, 94:237-247 doi: 10.1007/s10705-012-9536-7
[15]WANG Y Y, HU C S, DONG W X. Relationship between soil nutrients and soil microbial biomass, structure and diversity under different tillage[J]. Fresenius Environmental Bulletin, 2011, 20(7):1711-1718 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224409269/
[16]张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1
ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1
[17]闫翠萍, 张玉铭, 胡春胜, 等.不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
[18]胡春胜, 陈素英, 张西群, 等.玉米整秸覆盖小麦全免耕播种方法与设备: 中国ZL200310109679.X[P]. 2014-11-14
HU C S, CHEN S Y, ZHANG X Q, et al. Sowing methods and equipment for wheat no-tillage with maize straw mulching: China ZL200310109679.X[P]. 2014-11-14
[19]张西群, 陈素英, 胡春胜, 等.玉米整秸覆盖下小麦免耕播种技术研究与试验[J].农机化研究, 2008, (12):100-103 doi: 10.3969/j.issn.1003-188X.2008.12.031
ZHANG X Q, CHEN S Y, HU C S, et al. Studies on the machinery and techniques of zero-tillage seeding under the whole maize straw mulch to winter wheat fields[J]. Agricultural Mechanization Research, 2008, (12):100-103 doi: 10.3969/j.issn.1003-188X.2008.12.031
[20]杨莉琳, 刘小京, 毛任钊, 等.一种还田夏玉米秸秆快速腐熟方法: 中国ZL201010539332.9[P].
2011-01-20 YANG L L, LIU X J, MAO R Z, et al. A method of quickly thorough decomposition of summer maize straw: China ZL201010539332.9[P]. 2011-04-20
[21]王文岩, 董文旭, 陈素英, 等.连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J].农业工程学报, 2016, 32(增刊2):135-141 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2018.htm
WANG W Y, DONG W X, CHEN S Y, et al. Effect of continuously applying controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the CSAE, 2016, 32(Supp. 2):135-141 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2018.htm

相关话题/土壤 农田 农业 技术 中国科学院