周涛1,
刘婷1,
武云霞2,
杜勇利1,
李淑贤1,
高阳1,
覃思思1,
温冰消1,
黄家乐1,
刘卫国1,,,
杨文钰1,,
1.四川农业大学农学院 成都 611130
2.四川农业大学水稻研究所 成都 611130
基金项目: 国家自然科学基金项目31771728
国家自然科学基金项目31671626
详细信息
作者简介:王莉, 主要从事作物高产优质高效栽培与技术研究。E-mail:724368238@qq.com
通讯作者:刘卫国, 主要从事作物高产优质高效栽培理论与技术研究, E-mail:lwgsy@126.com
杨文钰, 主要从事作物高产优质高效栽培理论与技术研究, E-mail:mssiyanawy@sicau.edu.cn
中图分类号:S158计量
文章访问数:733
HTML全文浏览量:2
PDF下载量:561
被引次数:0
出版历程
收稿日期:2018-03-29
录用日期:2018-05-19
刊出日期:2018-08-01
Decomposition characteristics of mixed maize and soybean root residues
WANG Li1,,ZHOU Tao1,
LIU Ting1,
WU Yunxia2,
DU Yongli1,
LI Shuxian1,
GAO Yang1,
QIN Sisi1,
WEN Bingxiao1,
HUANG Jiale1,
LIU Weiguo1,,,
YANG Wenyu1,,
1. College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
2. Institute of Rice Science, Sichuan Agricultural University, Chengdu 611130, China
Funds: the National Natural Science Foundation of China31771728
the National Natural Science Foundation of China31671626
More Information
Corresponding author:LIU Weiguo, E-mail: lwgsy@126.com;YANG Wenyu, E-mail: mssiyanawy@sicau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:玉米/大豆套作可显著提高粮食产量和养分利用效率。研究间套作作物根茬分解、养分释放规律及其对土壤生物学特性的影响,对阐释该系统中作物养分高效利用具有重要意义。本研究采用室内培养方式,控制根茬总量为2%(2 g根茬+98 g土壤),分别设置单独的大豆根茬(S)和玉米根茬(M)及两种根茬按3:1、1:1和1:3混合(分别表示为SM 3:1、SM 1:1和SM 1:3)共5个不同根茬配比处理和1个不加根茬处理(CK),动态测定根茬矿化速率,碳、氮含量和土壤微生物量碳等指标。研究结果表明:培养前9 d,根茬矿化速率最快,而后矿化速率逐渐降低,到培养60 d后所有处理根茬矿化速率趋于稳定。整个培养周期内玉米根茬CO2累积释放量显著高于大豆根茬处理,但SM 1:3处理的CO2累积释放量始终高于其他处理。培养结束后,SM 1:3处理的有机碳矿化量显著高于其他处理。根茬总碳含量在前10 d无显著变化,10~60 d时显著降低,后趋于平稳。培养结束后SM 1:3处理的根茬碳含量相比初始值降低最多,降幅达到24.8%,其次是玉米根茬(M)处理,降幅为21.4%,大豆根茬(S)处理碳含量降低最少,为9.7%。根茬总氮含量在前10 d显著降低,10~100 d总氮含量显著增加。培养结束后大豆根茬(S)总氮含量最高,SM 1:3处理总氮含量最低。土壤微生物量碳含量在培养周期内呈先增加后降低而后趋于平稳的变化规律。培养结束后与CK相比,SM 1:3、SM 1:1、M、S和SM 3:1处理的土壤微生物量碳含量分别增加89.4%、58.8%、47.1%、41.2%和37.5%。因此,玉米、大豆根茬混合后在土壤中的矿化速率、养分释放速率明显高于单一根茬处理,且有利于土壤微生物的繁殖。在本试验所选的3种配比中,SM 1:3的配置效果最佳。
关键词:玉米/
大豆/
根茬腐解/
养分释放/
土壤微生物量碳
Abstract:Maize/soybean intercropping system could potentially improve crop yield and nutrient-use efficiency. It is pivotal to elucidate nutrient efficiency of crop root residue decomposition, nutrient release and the related effects on soil biological characteristics in intercropping processes. In this laboratory incubation study, we set different combined ratios of maize and soybean root residues, including sole soybean (S), sole maize (M) root residues, S:M=3:1(SM 3:1), S:M=1:1 (SM 1:1), S:M=1:3 (SM 1:3), with soil without residues (CK) as the control. The ratio of total weight of residues to soil in each treatment was 2:98, in unit of gram (g). We dynamically measured the mineralization rate of residues, contents of total carbon and nitrogen of remained root residues and SMBC (soil microbial biomass carbon) content. The results showed that the mineralization rate of root residues was fastest during 0-9 days after incubation, which then gradually decreased after 9 days. After 60 days of incubation, the mineralization rate of root residues in all the treatments stabilized. During the whole incubation period, the cumulative release of CO2 from maize roots was higher than that from soybean roots, but the cumulative release of CO2 under SM 1:3 treatment was always higher than the other treatments. The cumulative release of CO2 under SM 1:3 treatment was significantly higher than that under other treatments at the end of incubation. The content of total carbon in root residues had no significant change in the first 10 days, but decreased significantly during 10-60 days of incubation, after which it stabilized. At the end of incubation, total carbon content under SM 1:3 treatment decreased by a maximum of 24.8% from the initial value, followed by maize root residue treatment (which decreased by 21.4%), and the decrease in carbon content of the soybean root residue treatment was minimum, which was 9.7%. Total nitrogen content decreased significantly in the first 10 days of incubation, and then increased significantly until the end of incubation. Total nitrogen content of soybean root residues was highest at the end of incubation, and SM 1:3 treatment had the lowest. SMBC content first increased and then decreased during the incubation, followed by a steady change. At the end of incubation, SMBC content of SM 1:3, SM 1:1, M, S and SM 3:1 were 89.4%, 58.8%, 47.1%, 41.2% and 37.5% higher than CK, respectively. Hence, the mixtures of maize and soybean root residues had higher mineralization and nutrient release than sole maize and soybean root residues. This was beneficial to the reproduction of soil microorganisms. Among the three ratios selected in this experiment, the SM 1:3 had the best effects.
Key words:Maize/
Soybean/
Root residue decomposition/
Nutrition release/
Soil microbial biomass carbon
HTML全文

图1不同根茬配比处理土壤CO2释放速率和有机碳矿化量的动态变化
S:大豆根茬; M:玉米根茬; SM 3:1:大豆根茬:玉米根茬=3:1; SM 1:1:大豆根茬:玉米根茬=1:1; SM 1:3:大豆根茬:玉米根茬=1:3; CK:未加根茬。曲线上方浮动靶(LSD值)表示各处理的P < 0.05水平差异显著。
Figure1.Dynamics of CO2 release rate and cumulative organic carbon mineralization amount of soil with different mixture ratios of maize and soybean root residues
S: soybean root residue; M: maize root residue; SM 3:1: mixture of soybean root residue and maize root residue in the weight ratio of 3:1; SM 1:1: mixture of soybean root residue and maize root residue in the weight ratio of 1:1; SM 1:3: mixture of soybean root residue and maize root residue in the weight ratio of 1:3; CK: soil incubated without crop root residue. LSD (0.05) among different treatments is shown by floating bars.


图2不同配比处理根茬腐解过程中总碳含量动态变化
S:大豆根茬; M:玉米根茬; SM 3:1:大豆根茬:玉米根茬=3:1; SM 1:1:大豆根茬:玉米根茬=1:1; SM 1:3:大豆根茬:玉米根茬=1:3; CK:未加根茬。曲线上方浮动靶(LSD值)表示各处理的P < 0.05水平差异显著。
Figure2.Dynamics of total carbon contents of remaining root residues of mixtures with different ratios of maize and soybean root residues
S: soybean root residue; M: maize root residue; SM 3:1: mixture of soybean root residue and maize root residue in the weight ratio of 3:1; SM 1:1: mixture of soybean root residue and maize root residue in the weight ratio of 1:1; SM 1:3: mixture of soybean root residue and maize root residue in the weight ratio of 1:3; CK: soil incubated without crop root residue. LSD (0.05) among different treatments is shown by floating bars.


图3不同配比处理根茬腐解过程中根茬的总氮含量动态变化
S:大豆根茬; M:玉米根茬; SM 3:1:大豆根茬:玉米根茬=3:1; SM 1:1:大豆根茬:玉米根茬=1:1; SM 1:3:大豆根茬:玉米根茬=1:3; CK:未加根茬。曲线上方浮动靶(LSD值)表示各处理的P < 0.05水平差异显著。
Figure3.Dynamics of total nitrogen contents of remaining root residues of mixtures with different ratios of maize and soybean root residues
S: soybean root residue; M: maize root residue; SM 3:1: mixture of soybean root residue and maize root residue in the weight ratio of 3:1; SM 1:1: mixture of soybean root residue and maize root residue in the weight ratio of 1:1; SM 1:3: mixture of soybean root residue and maize root residue in the weight ratio of 1:3; CK: soil incubated without crop root residue. LSD (0.05) among different treatments is shown by floating bars.


图4不同根茬配比处理下土壤微生物量碳含量(SMBC)动态变化
S:大豆根茬; M:玉米根茬; SM 3:1:大豆根茬:玉米根茬=3:1; SM 1:1:大豆根茬:玉米根茬=1:1; SM 1:3:大豆根茬:玉米根茬=1:3; CK:未加根茬。曲线上方浮动靶(LSD值)表示各处理的P < 0.05水平差异显著。
Figure4.Dynamics of microbial biomass carbon (SMBC) contents of soil with different mixture ratios of maize and soybean root residues
S: soybean root residue; M: maize root residue; SM 3:1: mixture of soybean root residue and maize root residue in the weight ratio of 3:1; SM 1:1: mixture of soybean root residue and maize root residue in the weight ratio of 1:1; SM 1:3: mixture of soybean root residue and maize root residue in the weight ratio of 1:3; CK: soil incubated without crop root residue. LSD (0.05) among different treatments is shown by floating bars.

表1试验用作物根茬的基本特性
Table1.Initial chemical characters of crop root residues used in the experiment
根茬 Root residue | 总碳 Total carbon (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | C/N比 C/N ratio | 纤维素 Cellulose (mg·g-1) | 木质素 Lignin (mg·g-1) |
玉米根茬Maize root residue | 356 | 13.7 | 26.06 | 404.8 | 224.8 |
大豆根茬Soybean root residue | 401 | 13.1 | 30.71 | 400.0 | 290.7 |

参考文献
[1] | BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping:A synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1):107-117 doi: 10.1111/nph.13132 |
[2] | LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding:Insights from belowground facilitation of intercropping in agriculture[J]. New Phytologist, 2014, 203(1):63-69 doi: 10.1111/nph.12778 |
[3] | XIA H Y, WANG Z G, ZHAO J H, et al. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems[J]. Field Crops Research, 2013, 154:53-64 doi: 10.1016/j.fcr.2013.07.011 |
[4] | LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2):280-290 doi: 10.1007/s00442-005-0256-4 |
[5] | LI Q Z, SUN J H, WEI X J, et al. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley[J]. Plant and Soil, 2011, 339(1/2):147-161 |
[6] | TANG X Y, PLACELLA S A, DAYDé F, et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient[J]. Plant and Soil, 2016, 407(1/2):119-134 |
[7] | CONG W F, HOFFLAND E, LI L, et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4):1715-1726 doi: 10.1111/gcb.12738 |
[8] | CHAPMAN K, WHITTAKER J B, HEAL O W. Metabolic and faunal activity in litter of tree mixtures compared with pure stands[J]. Agriculture, Ecosystems & Environment, 1988, 24:33-40 http://www.sciencedirect.com/science/article/pii/0167880988900540 |
[9] | WARDLE D A, BONNER K I, NICHOLSON K S. Biodiversity and plant litter:Experimental evidence which does not support the view that enhanced species richness improves ecosystem function[J]. Oikos, 1997, 79(2):247-258 doi: 10.2307/3546010 |
[10] | H?TTENSCHWILER S, TIUNOV A V, SCHEU S. Biodiversity and litter decomposition in terrestrial ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36:191-218 doi: 10.1146/annurev.ecolsys.36.112904.151932 |
[11] | HARGUINDEGUY N P, BLUNDO C M, GURVICH D E, et al. More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry[J]. Plant and Soil, 2008, 303(1/2):151-159 |
[12] | VOS V C A, VAN RUIJVEN J, BERG M P, et al. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores[J]. Oecologia, 2013, 173(1):269-280 doi: 10.1007/s00442-012-2588-1 |
[13] | HANDA I T, AERTS R, BERENDSE F, et al. Consequences of biodiversity loss for litter decomposition across biomes[J]. Nature, 2014, 509(7499):218-221 doi: 10.1038/nature13247 |
[14] | 文启孝.土壤有机质研究法[M].北京:农业出版社, 1984:318 WEN Q X. Research Method of Soil Organic Matter[M]. Beijing:China Agriculture Press, 1984:318 |
[15] | 吴金水, 林启美, 黄巧云, 等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社, 2006:150 WU J S, LIN Q M, HUANG Q Y, et al. Soil Microbial Biomass-Methods and Application[M]. Beijing:China Meteorological Press, 2006:150 |
[16] | 胡希远, KUEHNE R F.秸秆在土壤内分解初期氮素矿化与固持的模拟测定[J].应用生态学报, 2005, 16(2):243-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200502010 HU X Y, KUEHNE R F. Simulation of nitrogen mineralization and immobilization of crop straw during its initial decomposition in soil[J]. Chinese Journal of Applied Ecology, 2005, 16(2):243-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200502010 |
[17] | MARY B, RECOUS S, DARWIS D, et al. Interactions between decomposition of plant residues and nitrogen cycling in soil[J]. Plant and Soil, 1996, 181(1):71-82 doi: 10.1007/BF00011294 |
[18] | 蔡苗, 董燕婕, 李佰军, 等.不同施氮处理玉米根茬在土壤中矿化分解特性[J].生态学报, 2013, 33(14):4248-4256 http://www.cqvip.com/QK/90772X/201314/46525299.html CAI M, DONG Y J, LI B J, et al. Decomposition characteristics of maize roots derived from different nitrogen fertilization fields under laboratory soil incubation conditions[J]. Acta Ecologica Sinica, 2013, 33(14):4248-4256 http://www.cqvip.com/QK/90772X/201314/46525299.html |
[19] | 王芸, 李增嘉, 韩宾, 等.保护性耕作对土壤微生物量及活性的影响[J].生态学报, 2007, 27(8):3384-3390 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200604028.htm WANG Y, LI Z J, HAN B, et al. Effects of conservation tillage on soil microbial biomass and activity[J]. Acta Ecologica Sinica, 2007, 27(8):3384-3390 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200604028.htm |
[20] | SHARMA A R, BEHERA U K. Recycling of legume residues for nitrogen economy and higher productivity in maize (Zea mays)-wheat (Triticum aestivum) cropping system[J]. Nutrient Cycling in Agroecosystems, 2009, 83(3):197-210 doi: 10.1007/s10705-008-9212-0 |
[21] | SALAMANCA E F, KANEKO N, KATAGIRI S. Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods[J]. Ecological Engineering, 1998, 10(1):53-73 doi: 10.1016/S0925-8574(97)10020-9 |
[22] | BOOTH M S, STARK J M, RASTETTER E. Controls on nitrogen cycling in terrestrial ecosystems:A synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75(2):139-157 doi: 10.1890/04-0988 |
[23] | VACHON K, OELBERMANN M. Crop residue input and decomposition in a temperate maize-soybean intercrop system[J]. Soil Science, 2011, 176(4):157-163 doi: 10.1097/SS.0b013e3182104213 |
[24] | SCHMATZ R, RECOUS S, AITA C, et al. Crop residue quality and soil type influence the priming effect but not the fate of crop residue C[J]. Plant and Soil, 2017, 414(1/2):229-245 |
[25] | MCDANIEL M D, GRANDY A S, TIEMANN L K, et al. Crop rotation complexity regulates the decomposition of high and low quality residues[J]. Soil Biology and Biochemistry, 2014, 78:243-254 doi: 10.1016/j.soilbio.2014.07.027 |
[26] | CONG W F, HOFFLAND E, LI L, et al. Intercropping affects the rate of decomposition of soil organic matter and root litter[J]. Plant and Soil, 2015, 391(1/2):399-411 |