汪景宽,
王思引,
孙雪冰,
李君薇,
张明垚,
高晓丹,
沈阳农业大学土地与环境学院/农业部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室 沈阳 110866
基金项目: 国家自然科学基金项目41601230
国家自然科学基金项目41671293
国家自然科学基金项目41601307
详细信息
作者简介:徐英德, 主要从事土壤肥力与土壤生态研究。E-mail:yingdexu@126.com
通讯作者:高晓丹, 主要从事土壤肥力与土壤化学研究。E-mail:wataxi221@126.com
中图分类号:S158.5计量
文章访问数:769
HTML全文浏览量:15
PDF下载量:469
被引次数:0
出版历程
收稿日期:2017-11-24
录用日期:2018-02-03
刊出日期:2018-07-01
Effects of maize residue decomposition on aggregate composition and organic carbon distribution of different fertilities Brown soils
XU Yingde,WANG Jingkuan,
WANG Siyin,
SUN Xuebing,
LI Junwei,
ZHANG Mingyao,
GAO Xiaodan,
College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Arable Land Conservation(Northeast China), Ministry of Agriculture/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
Funds: the National Natural Science Foundation of China41601230
the National Natural Science Foundation of China41671293
the National Natural Science Foundation of China41601307
More Information
Corresponding author:GAO Xiaodan, E-mail: wataxi221@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:以棕壤肥料长期定位试验(29 a)形成的高、低两种肥力水平棕壤为研究对象,采用不同部位玉米残体为试验试材,分别向两种土壤中加入玉米根茬和茎叶,进行田间原位培养试验,试验设置6个处理:低肥力土壤添加玉米根茬(LF+R)、低肥力土壤添加玉米茎叶(LF+S)、高肥力土壤添加玉米根茬(HF+R)、高肥力土壤添加玉米茎叶(HF+S)和未添加玉米残体的对照处理(LF,HF)。本研究旨在探明玉米根茬、茎叶添加后不同肥力土壤团聚体组成及有机碳分布的变化规律,为构建合理的秸秆还田与施肥措施,减少土壤侵蚀提供理论依据。结果表明:1)添加玉米残体后低肥力棕壤团聚体稳定性、较大级别团聚体(> 2 mm和1~2 mm)有机碳贡献率的提升幅度比高肥力棕壤大,说明低肥力土壤对外源有机质的响应更敏感,向大团聚体转化的速率更快。2)培养结束时,高肥力棕壤添加茎叶处理团聚体稳定性显著高于添加根茬处理,而添加根茬处理各粒级团聚体有机碳含量显著高于添加茎叶处理;低肥力棕壤中根茬和茎叶添加处理团聚体稳定性及有机碳含量之间差异不明显。3)在田间原位培养过程中,棕壤> 2 mm和1~2 mm团聚体所占比例和团聚体稳定性呈现出前期(0~360 d)快速增加,后期(360~720 d)趋于稳定的趋势。可以看出,玉米残体对土壤团聚体团聚化过程的作用强度逐渐减弱。以上结果表明,作物残体输入对棕壤团聚体组成及有机碳分布的影响与棕壤肥力水平和不同残体部位间的差异关系密切。
关键词:棕壤/
土壤肥力/
玉米残体/
根茬/
茎叶/
土壤团聚体/
土壤有机碳
Abstract:Soil aggregate and organic carbon are two major indices for assessing soil fertility. Besides, crop residue return is an effective agricultural way to supplement soil carbon pool and promote soil aggregate formation. However, how soil fertility level and residue type affect soil aggregate stability and organic carbon distribution is not clearly understood yet. In this study, a field incubation experiment was carried out by adding maize (Zea mays L.) root or stem and leaf to brown soil of different fertility levels. The samples of low fertility (LF) and high fertility (HF) soils were collected from a long-term (29 years) fertilization experiment. Six treatments were set, which were low fertility soil with maize root (LF+R), low fertility soil with maize stem and leaf (LF+S), high fertility soil with maize root (HF+R), high fertility soil with maize stem and leaf (HF+S), low or high fertility soil without maize residues (LF or HF). The objective of the study was to explore the dynamics of soil aggregate composition and allocation of organic carbon after residue incorporation. The study could have significant implications for developing residue management and reduce soil erosion in agro-ecosystems. The results showed that soil fertility significantly affected aggregates composition and organic carbon allocation of soil with crop residue incorporation. The addition of maize residue increased mean weight diameter, geometric mean diameter of soil aggregates and contribution rate of organic carbon in larger aggregates (> 2 mm and 1-2 mm) in LF soil compared to those in HF soil. The results suggested that LF soil was more sensitive to organic matter input and had a rapid rate of transformation to macro-aggregate. 2) At the end of experiment, the addition of maize stem and leaf to HF soil had a more pronounced effect on soil aggregate stability compared to the addition of root. Then the addition of root had a more pronounced effect on organic carbon content in soil aggregates than the addition of stem and leaf. However, there was no significant difference between soil aggregate stability and organic carbon content in LF soil aggregate supplemented with different maize parts. The results further suggested that soil fertility level could change the effects of different parts of crop residues addition on soil aggregate stability and organic carbon distribution. 3) The proportion of > 2 mm, 1-2 mm aggregates and soil aggregate stability sharply increased during the first 360 days. This then tended to stable during the later incubation period of 360-720 days. This indicated that the effect of maize residue on the formation of soil aggregate gradually weakened with time. It was concluded that the effects of maize residue addition on soil aggregates composition and organic carbon distribution were dependent on both soil fertility and residue part. Besides, crop residue addition had more obvious effect on improving the structure and stability of aggregates in LF soils.
Key words:Brown soil/
Soil fertility/
Maize residue/
Root/
Stem and leaf/
Soil aggregate/
Soil organic carbon
HTML全文

图1不同肥力棕壤添加不同部位玉米残体不同时间后土壤团聚体平均重量直径(MWD)和几何平均直径(GMD)值的变化
LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。不同小写字母表示同一处理不同时间差异显著(P < 0.05), 不同大写字母表示同一时间不同处理差异显著(P < 0.05)。
Figure1.Changes of mean weight diameter (MWD) and geometric mean diameter (GMD) values of soil aggregates in different fertility brown soils added with different parts of maize residues for different times
LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf. Different lowercase letters mean significant differences at 5% level among different incubation times for the same treatment; different capital letters mean significant differences at 5% level among different treatments at the same incubation time.


图2不同肥力棕壤添加不同部位玉米残体不同时间后土壤团聚体分形维数(D)值的变化
LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。不同小写字母表示同一处理不同时间差异显著(P < 0.05), 不同大写字母表示同一时间不同处理差异显著(P < 0.05)。
Figure2.Changes of fractal dimension values (D) of soil aggregates in different fertility brown soils added with different parts of maize residues for different times
LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf. Different lowercase letters mean significant differences at 5% level among different incubation times for the same treatment; different capital letters mean significant differences at 5% level among different treatments at the same incubation time.


图3不同肥力棕壤添加不同部位玉米残体后不同时间土壤有机碳含量的变化
LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。不同小写字母表示同一处理不同时间差异显著(P < 0.05), 不同大写字母表示同一时间不同处理差异显著(P < 0.05)。
Figure3.Changes of soil organic carbon contents in different fertility brown soils added with different parts of maize residues for different times
LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf. Different lowercase letters mean significant differences at 5% level among different incubation times for the same treatment; different capital letters mean significant differences at 5% level among different treatments at the same incubation time.


图4不同肥力棕壤添加不同部位玉米残体不同时间后土壤各粒级团聚体有机碳的相对贡献率
LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。
Figure4.Relative contribution rates of organic carbon in different sizes of aggregates in different fertility brown soils added with different parts of maize residues for different times
LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf.

表1供试棕壤、玉米残体基本理化性质
Table1.Basic characteristics of soil samples and maize residues
项目 Item | 有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C/N |
低肥力棕壤 Low fertility brown soil | 11.21±0.14b | 1.11±0.05b | 10.16±0.58a |
高肥力棕壤 High fertility brown soil | 17.61±0.40a | 2.19±0.00a | 8.04±0.04b |
玉米根茬 Maize root | 400.76±0.20B | 12.55±0.30A | 31.94±0.77A |
玉米茎叶 Maize stem and leaf | 430.79±0.03A | 13.89±0.27A | 31.02±0.56A |
??同列不同小写字母表示不同肥力水平棕壤间差异显著(P < 0.05), 同列不同大写字母表示不同部位玉米残体间差异显著(P < 0.05)。Different lowercase letters mean significant differences at 5% level between different brown soils; different capital letters mean significant differences at 5% level between different residue parts of maize. |

表2不同肥力棕壤添加不同部位玉米残体不同时间后土壤团聚体的组成变化
Table2.Dynamic changes of soil aggregates composition in different fertility brown soils added with different parts of maize residues for different times
% | |||||
培养时间 Incubation time (d) | 处理 Treatment | 团聚体级别Aggregates size (mm) | |||
> 2 | 1~2 | 0.25~1 | < 0.25 | ||
0 | LF | 14.07±0.86cH | 23.27±0.32bCD | 55.31±0.61aA | 7.34±0.14dC |
HF | 24.37±0.11bF | 22.11±0.69cEF | 43.15±1.27aCD | 10.37±0.16dAB | |
LF+R | 14.23±1.20cH | 22.36±1.24bEF | 54.19±1.09aAB | 9.22±0.51dB | |
LF+S | 14.53±0.36cH | 21.49±0.41bF | 53.98±0.16aAB | 10.00±0.34dB | |
HF+R | 25.00±0.99bF | 22.87±0.12cDE | 42.82±0.55aCD | 9.31±0.31dB | |
HF+S | 24.17±1.01bF | 22.11±0.81cEF | 41.99±0.57aCD | 11.73±0.28dA | |
360 | LF | 19.12±0.96cG | 24.50±0.85bCD | 51.38±1.10aB | 4.99±0.57dD |
HF | 28.22±0.19bE | 24.61±1.25cCD | 43.71±1.16aC | 3.47±0.21dEF | |
LF+R | 30.41±0.55bDE | 26.06±0.15cAB | 41.07±0.79aCD | 2.46±0.50dFG | |
LF+S | 33.57±0.11bC | 27.57±0.05cAB | 36.74±0.54aEF | 2.12±0.64dFG | |
HF+R | 37.71±1.48bA | 24.61±1.03cCD | 34.45±1.42aFG | 3.23±0.54dEF | |
HF+S | 36.61±1.00bAB | 24.40±0.52cCD | 34.86±0.69aF | 4.14±0.56dDE | |
720 | LF | 20.30±0.77cG | 22.29±0.30bEF | 53.31±1.47aAB | 4.10±0.56dDE |
HF | 28.66±1.88bE | 28.03±0.89bAB | 40.82±1.86aCD | 2.49±0.99cFG | |
LF+R | 31.60±1.26bCD | 26.18±0.45cAB | 40.06±1.52aCD | 2.16±0.10dFG | |
LF+S | 33.14±1.34bCD | 25.47±0.44cAB | 39.61±1.26aDE | 1.78±0.23dGH | |
HF+R | 33.97±0.81bBC | 29.95±2.48cA | 34.24±2.29aFG | 2.17±0.64cFG | |
HF+S | 37.79±0.40bA | 29.54±0.55cA | 31.12±0.71aG | 1.55±1.04dH | |
??LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。同行不同小写字母表示同一处理不同团聚体级别差异显著(P < 0.05), 同列不同大写字母表示同一团聚体级别不同处理不同时间差异显著(P < 0.05)。LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf. Different lowercase letters mean significant differences at 5% level among different sizes of aggregates for the same treatment; different capital letters mean significant differences at 5% level among different treatments at different incubation times for the same aggregates size. |

表3不同肥力棕壤添加不同部位玉米残体不同时间后土壤团聚体有机碳含量的变化
Table3.Changes of aggregate-associated organic carbon contents in different fertility brown soils added with different parts of maize residues for different times
g·kg-1 | |||||
培养时间 Incubation time (d) | 处理 Treatment | 团聚体级别Aggregates size (mm) | |||
> 2 | 1~2 | 0.25~1 | < 0.25 | ||
360 | LF | 10.36±0.36bF | 10.40±0.21bF | 10.81±0.17abD | 10.94±0.12aE |
HF | 13.81±0.24cD | 14.06±0.61bcD | 14.80±0.46bC | 15.89±0.44aB | |
LF+R | 10.89±0.37bcE | 10.50±0.06cF | 11.16±0.20bD | 11.98±0.13aDE | |
LF+S | 11.18±0.27abE | 10.88±0.36bEF | 11.26±0.77abD | 13.04±3.79aD | |
HF+R | 16.36±0.96bA | 16.65±0.25bA | 17.58±0.13abA | 18.04±0.77aA | |
HF+S | 15.45±0.32bC | 15.29±0.24bB | 16.76±0.50aAB | 15.77±0.26bB | |
720 | LF | 10.70±0.33bEF | 10.51±0.44bF | 10.88±0.41bD | 12.11±0.30aD |
HF | 14.11±0.24cD | 13.59±0.09dD | 14.51±0.23bC | 15.00±0.21aBC | |
LF+R | 11.31±0.18bE | 11.48±0.45bE | 11.48±0.46bD | 12.28±0.28aD | |
LF+S | 11.10±0.31bE | 11.36±0.80abE | 11.40±0.14abD | 12.18±0.26aD | |
HF+R | 16.02±0.46abB | 15.78±0.50bB | 16.51±1.03abB | 17.17±0.62aA | |
HF+S | 14.93±0.40abC | 14.89±0.22abC | 15.31±0.56aC | 14.40±0.28bC | |
??LF:低肥力棕壤; HF:高肥力棕壤; R:玉米根茬; S:玉米茎叶。同行不同小写字母表示同一处理不同团聚体级别差异显著(P < 0.05), 同列不同大写字母表示同一团聚体级别不同处理不同时间差异显著(P < 0.05)。LF: low fertility brown soil; HF: high fertility brown soil; R: maize root; S: maize stem and leaf. Different lowercase letters mean significant differences at 5% level among different sizes of aggregates for the same treatment; different capital letters mean significant differences at 5% level among different treatments at different incubation times for the same aggregates size. |

参考文献
[1] | 侯晓娜, 李慧, 朱刘兵, 等.生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J].中国农业科学, 2015, 48(4):705-712 doi: 10.3864/j.issn.0578-1752.2015.04.08 HOU X N, LI H, ZHU L B, et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica, 2015, 48(4):705-712 doi: 10.3864/j.issn.0578-1752.2015.04.08 |
[2] | LAL R. Physical management of soils of the tropics:Priorities for the 21st century[J]. Soil Science, 2000, 165(3):191-207 doi: 10.1097/00010694-200003000-00002 |
[3] | BANDYOPADHYAY K K, LAL R. Effect of land use management on greenhouse gas emissions from water stable aggregates[J]. Geoderma, 2014, 232/234:363-372 doi: 10.1016/j.geoderma.2014.05.025 |
[4] | 潘根兴, 赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展, 2005, 20(4):384-393 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200504002.htm PAN G X, ZHAO Q G. Study on evolution of organic carbon stock in agricultural soils of China:Facing the challenge of global change and food security[J]. Advances in Earth Science, 2005, 20(4):384-393 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200504002.htm |
[5] | 闫峰陵, 史志华, 蔡崇法, 等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报, 2007, 44(4):577-583 doi: 10.11766/trxb200603220401 YAN F L, SHI Z H, CAI C F, et al. Effects of topsoil aggregate stability on soil erosion at hillslope on ultisoils[J]. Acta Pedologica Sinica, 2007, 44(4):577-583 doi: 10.11766/trxb200603220401 |
[6] | VANHALA P, KARHU K, TUOMI M, et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone[J]. Soil Biology and Biochemistry, 2008, 40(7):1758-1764 doi: 10.1016/j.soilbio.2008.02.021 |
[7] | 徐国鑫, 王子芳, 高明, 等.秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J].环境科学, 2018, 39(1):355-362 http://mall.cnki.net/magazine/Article/TURA201802015.htm XU G X, WANG Z F, GAO M, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1):355-362 http://mall.cnki.net/magazine/Article/TURA201802015.htm |
[8] | 赵红, 袁培民, 吕贻忠, 等.施用有机肥对土壤团聚体稳定性的影响[J].土壤, 2011, 43(2):306-311 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102027.htm ZHAO H, YUAN P M, LYU Y Z, et al. Effects of organic manure application on stability of soil aggregates[J]. Soils, 2011, 43(2):306-311 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102027.htm |
[9] | 刘哲, 孙增慧, 吕贻忠.长期不同施肥方式对华北地区温室和农田土壤团聚体形成特征的影响[J].中国生态农业学报, 2017, 25(8):1119-1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017803&flag=1 LIU Z, SUN Z H, LYU Y Z. Effect of long-term fertilization on soil aggregate formation in greenhouse and farmland conditions in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8):1119-1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017803&flag=1 |
[10] | CELIK I, GUNAL H, BUDAK M, et al. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions[J]. Geoderma, 2010, 160(2):236-243 doi: 10.1016/j.geoderma.2010.09.028 |
[11] | 邢旭明, 王红梅, 安婷婷, 等.长期施肥对棕壤团聚体组成及其主要养分赋存的影响[J].水土保持学报, 2015, 29(2):267-273 http://www.cnki.com.cn/Article/CJFDTotal-TRQS201502050.htm XING X M, WANG H M, AN T T, et al. Effects of long-term fertilization on distribution of aggregate size and main nutrient accumulation in brown earth[J]. Journal of Soil and Water Conservation, 2015, 29(2):267-273 http://www.cnki.com.cn/Article/CJFDTotal-TRQS201502050.htm |
[12] | 王清奎, 汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报, 2005, 36(3):415-421 http://www.cnki.com.cn/Article/CJFDTotal-TRTB20050300U.htm WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3):415-421 http://www.cnki.com.cn/Article/CJFDTotal-TRTB20050300U.htm |
[13] | FONTE S J, YEBOAH E, OFORI P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates[J]. Soil Science Society of America Journal, 2009, 73(3):961-966 doi: 10.2136/sssaj2008.0204 |
[14] | 詹其厚, 袁朝良, 张效朴.有机物料对砂姜黑土的改良效应及其机制[J].土壤学报, 2003, 40(3):420-425 doi: 10.11766/trxb200105080315 ZHAN Q H, YUAN C L, ZHANG X P. Ameliorative effect and mechanism of organic materials on vertisol[J]. Acta Pedologica Sinica, 2003, 40(3):420-425 doi: 10.11766/trxb200105080315 |
[15] | 杨志臣, 吕贻忠, 张凤荣, 等.秸秆还田和腐熟有机肥对水稻土培肥效果对比分析[J].农业工程学报, 2008, 24(3):214-218 http://www.cqvip.com/qk/90712X/200803/26954042.html YANG Z C, LYU Y Z, ZHANG F R, et al. Comparative analysis of the effects of straw-returning and decomposed manure on paddy soil fertility betterment[J]. Transactions of the CSAE, 2008, 24(3):214-218 http://www.cqvip.com/qk/90712X/200803/26954042.html |
[16] | REDIN M, RECOUS S, AITA C, et al. How the chemical composition and heterogeneity of crop residue mixtures decomposing at the soil surface affects C and N mineralization[J]. Soil Biology and Biochemistry, 2014, 78:65-75 doi: 10.1016/j.soilbio.2014.07.014 |
[17] | LIANG W J, LOU Y L, LI Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China[J]. Soil Biology and Biochemistry, 2009, 41(5):883-890 doi: 10.1016/j.soilbio.2008.06.018 |
[18] | 安婷婷, 汪景宽, 李双异, 等.用13C脉冲标记方法研究施肥与地膜覆盖对玉米光合碳分配的影响[J].土壤学报, 2013, 50(5):948-955 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trxb201305012&dbname=CJFD&dbcode=CJFQ AN T T, WANG J K, LI S Y, et al. Effect of fertilization and plastic film mulching on distribution of photosynthetically fixed carbon in maize:Explored with 13C pulse labeling technique[J]. Acta Pedologica Sinica, 2013, 50(5):948-955 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trxb201305012&dbname=CJFD&dbcode=CJFQ |
[19] | WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111:65-72 doi: 10.1016/j.apsoil.2016.11.015 |
[20] | 杨培岭, 罗远培, 石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20):1896-1899 doi: 10.3321/j.issn:0023-074X.1993.20.010 YANG P L, LUO Y P, SHI Y C. Soil fractal characterization by weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20):1896-1899 doi: 10.3321/j.issn:0023-074X.1993.20.010 |
[21] | 高飞, 贾志宽, 韩清芳, 等.有机肥不同施用量对宁南土壤团聚体粒级分布和稳定性的影响[J].干旱地区农业研究, 2010, 28(3):100-106 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201201024.htm GAO F, JIA Z K, HAN Q F, et al. Effects of different organic fertilizer treatments on distribution and stability of soil aggregates in the semiarid area of South Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(3):100-106 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201201024.htm |
[22] | 张鹏, 贾志宽, 王维, 等.秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J].中国农业科学, 2012, 45(8):1513-1520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201208007 ZHANG P, JIA Z K, WANG W, et al. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8):1513-1520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201208007 |
[23] | 安婉丽, 高灯州, 潘婷, 等.水稻秸秆还田对福州平原稻田土壤水稳性团聚体分布及稳定性影响[J].环境科学学报, 2016, 36(5):1833-1840 http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201605042.htm AN W L, GAO D Z, PAN T, et al. Effect of rice straw returning on paddy soil water-stable aggregate distribution and stability in the paddy field of Fuzhou Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(5):1833-1840 http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201605042.htm |
[24] | SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5):1367-1377 doi: 10.2136/sssaj1998.03615995006200050032x |
[25] | 朱姝, 窦森.秸秆深还对土壤团聚体中胡敏素结构特征的影响[J].土壤学报, 2016, 53(1):127-136 doi: 10.11766/trxb201504220476 ZHU S, DOU S. Effect of corn stover deep incorporation on composition of humin in soil aggregates[J]. Acta Pedologica Sinica, 2016, 53(1):127-136 doi: 10.11766/trxb201504220476 |
[26] | 徐英德, 丁雪丽, 李双异, 等.不同肥力棕壤全氮和微生物量氮对外源玉米残体氮的响应[J].生态学报, 2017, 37(20):6818-6826 http://www.cnki.com.cn/Article/CJFDTotal-TRQS200704026.htm XU Y D, DING X L, LI S Y, et al. Effect of maize-derived nitrogen supplementation on the total and microbial biomass nitrogen of brown earths with different fertility levels[J]. Acta Ecologica Sinica, 2017, 37(20):6818-6826 http://www.cnki.com.cn/Article/CJFDTotal-TRQS200704026.htm |
[27] | 吕元春, 薛丽佳, 尹云锋, 等.外源新碳在不同类型土壤团聚体中的分配规律[J].土壤学报, 2013, 50(3):534-539 http://mall.cnki.net/magazine/Article/TRXB201303014.htm LYU Y C, XUE L J, YIN Y F, et al. Distribution of fresh carbon in aggregate fractions of different soil types[J]. Acta Pedologica Sinica, 2013, 50(3):534-539 http://mall.cnki.net/magazine/Article/TRXB201303014.htm |
[28] | PEI J B, LI H, LI S Y, et al. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level[J]. PLoS One, 2015, 10(3):e0120825 doi: 10.1371/journal.pone.0120825 |
[29] | 孙元宏, 高雪莹, 赵兴敏, 等.添加玉米秸秆对白浆土重组有机碳及团聚体组成的影响[J].土壤学报, 2017, 54(4):1009-1017 http://www.doc88.com/p-4874904464722.html SUN Y H, GAO X Y, ZHAO X M, et al. Effects of corn stalk incorporation on organic carbon of heavy fraction and composition of soil aggregates in albic soil[J]. Acta Pedologica Sinica, 2017, 54(4):1009-1017 http://www.doc88.com/p-4874904464722.html |
[30] | BERTRAND I, CHABBERT B, KUREK B, et al. Can the biochemical features and histology of wheat residues explain their decomposition in soil?[J]. Plant and Soil, 2006, 281(1/2):291-307 doi: 10.1007/s11104-005-4628-7 |
[31] | SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil[J]. Front Microbiology, 2012, 3:348 http://www.ncbi.nlm.nih.gov/pubmed/23055998 |
[32] | KUZYAKOV Y, BOL R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry, 2006, 38(4):747-758 doi: 10.1016/j.soilbio.2005.06.025 |
[33] | WANG X J, BUTTERLY C R, BALDOCK J A, et al. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH[J]. Science of the Total Environment, 2017, 587/588:502-509 doi: 10.1016/j.scitotenv.2017.02.199 |
[34] | JOHNSON J M F, BARBOUR N W, WEYERS S L. Chemical composition of crop biomass impacts its decomposition[J]. Soil Science Society of America Journal, 2007, 71(1):155-162 doi: 10.2136/sssaj2005.0419 |
[35] | BROWN S, NICKLING W G, GILLIES J A. A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions[J]. Journal of Geophysical Research:Earth Surface, 2008, 113(F2):F02S06 doi: 10.1029/2007JF000790/abstract |
[36] | KUZYAKOV Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371 doi: 10.1016/j.soilbio.2010.04.003 |
[37] | 李江舟, 代快, 张立猛, 等.施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响[J].环境科学学报, 2016, 36(6):2114-2120 http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=20151013004&flag=1&journal_id=hjkxxb&year_id=2016 LI J Z, DAI K, ZHANG L M, et al. Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae, 2016, 36(6):2114-2120 http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=20151013004&flag=1&journal_id=hjkxxb&year_id=2016 |
[38] | RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1/2):341-356 doi: 10.1007/s11104-004-0907-y |
[39] | PUGET P, DRINKWATER L. Short-term dynamics of root-and shoot-derived carbon from a leguminous green manure[J]. Soil Science Society of America Journal, 2001, 65(3):771-779 doi: 10.2136/sssaj2001.653771x |