张丽萍1,,,
魏明峰1,
刘珍1,
范巧兰1,
吕贝贝1,
姚众1,
柴跃进2
1.山西省农业科学院棉花研究所 运城 044000
2.山西省临汾市农机局 临汾 041000
基金项目: 山西省自然科学基金项目2014011029-3
山西省农业科学院博士基金项目YBSJJ1405
山西省重点研发计划项目201703D321009-3
详细信息
作者简介:张贵云, 主要从事植物营养学和菌根学研究。E-mail:guiyunzhang@126.com
通讯作者:张丽萍, 主要从事农作物病虫害综合治理和植物营养学研究。E-mail:lipingzh2006@126.com
中图分类号:S34计量
文章访问数:698
HTML全文浏览量:0
PDF下载量:557
被引次数:0
出版历程
收稿日期:2017-12-01
录用日期:2018-02-14
刊出日期:2018-07-01
Effect of long-term conservation tillage on arbuscular mycorrhizal fungi diversity
ZHANG Guiyun1,,ZHANG Liping1,,,
WEI Mingfeng1,
LIU Zhen1,
FAN Qiaolan1,
LYU Beibei1,
YAO Zhong1,
CHAI Yuejin2
1. Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
2. Agricultural Machinery Bureau in Linfen City of Shanxi Province, Linfen 041000, China
Funds: the Natural Science Foundation of Shanxi Provicne, China2014011029-3
the Doctor Fund Project of Shanxi Academy of Agricultural Sciences, ChinaYBSJJ1405
the Key Research and Development Project of Shanxi Provicne, China201703D321009-3
More Information
Corresponding author:ZHANG Liping, E-mail: lipingzh2006@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了明确我国北方干旱地区长期保护性耕作以及深松对丛枝菌根真菌(AMF)多样性的影响,笔者于2014年在山西省临汾市连续22年实施保护性耕作的长期定位试验基地,针对免耕覆盖(NTS)、深松免耕覆盖(SNTS)及传统耕作(TT)3种处理方式,进行了不同耕作条件下土壤AMF物种丰度、孢子密度、Shannon多样性指数以及AMF侵染率等因素的比较研究。结果显示,长期保护性耕作(NTS和SNTS)共分离鉴定出AMF 7属9种,其中根孢囊霉属(Rhizophagus)和斗管囊霉属(Funneliformis)各2种,球囊霉属(Glomus)、近明球囊霉属(Claroideoglomus)、无梗囊霉属(Acaulospora)、硬囊霉属(Sclerocystis)和隔球囊霉属(Septoglomus)各1种;而传统耕作(TT)共分离鉴定出AMF 6属8种,没有检测到无梗囊霉属。NTS、SNTS和TT处理在不同土层的AMF优势种基本一致,0~40 cm土层为摩西斗管囊霉(Fu.mosseae)和变形球囊霉(G.versiforme),40~80 cm土层为摩西斗管囊霉、变形球囊霉和聚丛根孢囊霉(Rh.aggregatum),80~120 cm土层为聚丛根孢囊霉,120 cm土层以下只有NTS和SNTS处理中存在聚丛根孢囊霉,说明保护性耕作措施促进了AMF向土壤深层发展。NTS和SNTS处理在同一土层的AMF物种丰度、孢子密度和Shannon多样性指数均高于TT处理,SNTS处理高于NTS处理。同一耕作措施不同土层的AMF物种丰度、孢子密度和Shannon多样性指数均随土层加深而逐渐降低;NTS和SNTS处理在小麦各生育期的丛枝侵染率和孢子密度均高于TT处理;各处理在小麦拔节期的AMF侵染率最高,分别为14.9%、16.1%和10.6%,而在收获期的土壤孢子密度最高,分别为111.7个·(100g)-1、125.0个·(100g)-1和90.3个·(100g)-1。研究认为,长期免耕覆盖、尤其深松免耕覆盖,提高了AMF多样性。该研究结果可为中国北方旱作农田生态系统中AMF自然潜力的充分发挥,以及保护性耕作技术的合理应用提供科学依据。
关键词:丛枝菌根真菌(AMF)/
免耕深松/
物种丰度/
多样性/
侵染率/
孢子密度
Abstract:To verify the effect of long-term conservation tillage and subsoiling on arbuscular mycorrhizal fungi (AMF) diversity in dry areas in northern China, a comparative analysis of species richness, spore density, Shannon diversity index and colonization rate of AMF among no-till with straw mulching (NTS), no-till with straw mulching after subsoiling (SNTS) and traditional tillage treatment (TT) were conducted in 2014 at a long-term (22 years) positioning test base for conservation tillage in Linfen, Shanxi Province. In the study, 9 AMF species belonging to 7 genera were isolated and identified in soil samples of NTS and SNTS treatments, including two species each of Rhizophagus and Funneliformis and one species each of Glomus, Claroideoglomus, Acaulospora, Sclerocystis and Septoglomus. Also 8 AMF species belonging to 6 genera were isolated and identified in soil samples of TT treatment. The AMF species in the TT treatment were the same with those in NTS and SNTS treatments, except that there was no Acaulospora.The dominant species of AMF in NTS, SNTS and TT treatments were the same. The dominant species of AMF in the 0-40 cm soil layer were mainly Fu. mosseae and G. versiforme, the 40-80 cm soil layer were Fu. mosseae, G. versiforme and Rh. aggregatum, and the 80-120 cm soil layer was Rh. aggregatum. Below the 120 cm soil layer, the dominant AMF species was Rh. aggregatum, which was found only under NTS and SNTS treatments. Species richness, spore density and Shannon diversity index of AMF in NTS and SNTS treatments in the same soil layers were higher than those in TT treatment, and those in SNTS treatment were higher than those in NTS treatment. Species richness, spore density and Shannon diversity index of AMF decreased with increasing of soil depth under the same treatment. The maximum species richness, spore density and Shannon diversity index of AMF were all in the 0-20 cm shallow soil layer. The colonization rate and spore density of AMF at different growth stages of wheat in NTS and SNTS treatments were all significantly higher than that in TT treatment. Colonization rate of AMF in NTS, SNTS and TT treatments was the highest at jointing stage of wheat and was respectively 14.9%, 16.1% and 10.6%. AMF spore density of soil was the highest at maturity stage of wheat and was respectively 111.7 spores·(100g)-1, 125.0 spores·(100g)-1 and 90.3 spores·(100g)-1. The study showed that long-term no-till with straw mulching improved AM fungi diversity, especially under no-till with straw mulching after subsoiling. The results provided the scientific basis for the full play of AMF role and reasonable application of conservation tillage in dry farmland ecosystems in northern China.
Key words:Arbuscular mycorrhizal fungi (AMF)/
No-till with straw mulching after subsoiling/
AMF species richness/
AMF diversity/
Colonization rate/
Spore density
HTML全文
表1不同耕作方式土壤的理化性状
Table1.Soil physical-chemical characteristics under different tillage treatments
处理 Treatment | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali-hydrolysis N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 土壤容重 Soil bulk density (g·cm-3) | |
0~10 cm | 10~20 cm | |||||||
TT | 8.48±0.02a | 14.56±0.63b | 0.75±0.01b | 57.74±2.40b | 49.34±1.48b | 214.35±9.82b | 1.29±0.31 | 1.35±0.40 |
NTS | 8.35±0.01b | 18.23±0.43b | 1.02±0.01a | 91.00±7.00a | 63.60±3.28a | 362.73±17.66a | 1.21±0.26 | 1.47±0.42 |
SNTS | 8.36±0.01b | 23.82±1.76a | 1.10±0.03a | 86.75±2.83a | 74.21±1.20a | 318.16±15.22a | 1.19±0.22 | 1.45±0.42 |
??NTS:免耕覆盖; SNTS:深松免耕覆盖; TT:传统耕作。同列数字后不同小写字母表示处理间差异显著(P < 0.05)。TT: traditional tillage; NTS: no-till with straw mulching; SNTS: no-till with straw mulching after subsoiling. Different lowercase letters in the same column indicate significant differences at 0.05 level among different treatments. |

表2小麦成熟期不同耕作措施下不同土层丛枝菌根真菌(AMF)种类分布及相对多度
Table2.Species distribution and relative abundance of arbuscular mycorrhizal fungi (AMF) in different soil depths at wheat maturation period under different tillage treatments
% | |||||||||||||||||||||||||||||||||||
土层深度 Soil depth (cm) | 无梗囊霉属 Acaulospora | 近明球囊霉属 Claroideoglomus | 斗管囊霉属 Funneliformis | 球囊霉属 Glomus | 根孢囊霉属 Rhizophagus | 硬囊霉属 Sclerocystis | 隔球囊霉属 Septoglomus | ||||||||||||||||||||||||||||
细凹无梗囊霉 Ac. scrobiculata | 幼套近明球囊霉 Cl. etunicatum | 摩西斗管囊霉 Fu. mosseae | 地斗管囊霉 Fu. geosporus | 变形球囊霉 G. versiforme | 聚丛根孢囊霉 Rh. aggregatum | 根内根孢囊霉 Rh. intraradices | 弯丝硬囊霉 Sc. sinuosus | 缩隔球囊霉 Se. constrictum | |||||||||||||||||||||||||||
NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | |||||||||
0~20 | 0.3bB | 0.5cA | 0.0aC | 9.8aA | 8.8aB | 6.9aC | 32.2aA | 31.3aA | 32.0aA | 3.4aB | 3.6bB | 5.6bA | 30.3aA | 27.2aB | 31.4aA | 10.1dAB | 12.8eA | 7.8cB | 10.4aB | 9.3aC | 12.4aA | 0.6bB | 1.4cA | 0.2aC | 2.9bC | 5.1aA | 3.7aB | ||||||||
20~40 | 0.3bB | 0.5cA | 0.0aC | 9.8aA | 8.8aB | 6.9aC | 32.2aA | 31.3aA | 32.0aA | 3.4aB | 3.6bB | 5.6bA | 30.3aA | 27.2aB | 31.4aA | 10.1dAB | 12.8eA | 7.8cB | 10.4aB | 9.3aC | 12.4aA | 0.6bB | 1.4cA | 0.0bC | 2.9bC | 5.1aA | 3.7aB | ||||||||
40~60 | 0.6aB | 1.7aA | 0.0aC | 7.2bA | 3.8bC | 5.6bB | 24.3bA | 24.6bA | 25.7bA | 4.0aB | 6.1aA | 6.5aC | 24.1bA | 23.9bA | 19.5bB | 25.8cA | 27.9dA | 32.4bB | 8.3bA | 8.1bA | 7.3bB | 1.3aB | 3.0aA | 0.0bC | 4.4aA | 4.1bA | 3.0bB | ||||||||
60~80 | 0.0cB | 1.2bA | 0.0aB | 7.2bA | 2.7cC | 5.6bB | 24.3bA | 17.7cB | 25.7bA | 4.0aA | 4.4bA | 6.5aB | 24.1bA | 23.2bA | 19.5bB | 25.8cB | 39.8cA | 32.4bC | 8.3bA | 5.8cB | 7.3bC | 1.3aB | 2.2bA | 0.0bC | 4.4aA | 3.0cB | 3.0bC | ||||||||
80~100 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 18.3cB | 16.5cB | 24.0bA | 0.0bA | 0.0cA | 0.0cA | 0.0c B | 8.5cA | 0.0c B | 72.4bA | 66.0bB | 76.0aA | 9.3bA | 9.0aA | 0.0cB | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
100~120 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 18.3cB | 16.5cB | 25.0bA | 0.0bA | 0.0cA | 0.0cA | 0.0c B | 8.5cA | 0.0c B | 72.3bB | 66.0bC | 75.0aA | 9.3bA | 9.0aA | 0.0cB | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
120~140 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 0.0dA | 0.0dA | 0.0cA | 0.0bA | 0.0cA | 0.0cA | 0.0cA | 0.0dA | 0.0cA | 100.0aA | 100.0aA | 0.0aB | 0.0cA | 0.0dA | 0.0cA | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
140~160 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 0.0dA | 0.0dA | 0.0cA | 0.0bA | 0.0cA | 0.0cA | 0.0cA | 0.0dA | 0.0cA | 0.0eB | 100.0aA | 0.0dB | 0.0cA | 0.0dA | 0.0cA | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
160~180 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 0.0dA | 0.0dA | 0.0cA | 0.0bA | 0.0cA | 0.0cA | 0.0cA | 0.0dA | 0.0cA | 0.0eA | 0.0fA | 0.0dA | 0.0cA | 0.0dA | 0.0cA | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
180~200 | 0.0cA | 0.0dA | 0.0aA | 0.0cA | 0.0dA | 0.0cA | 0.0dA | 0.0dA | 0.0cA | 0.0bA | 0.0cA | 0.0cA | 0.0cA | 0.0dA | 0.0cA | 0.0eA | 0.0fA | 0.0dA | 0.0cA | 0.0dA | 0.0cA | 0.0cA | 0.0dA | 0.0bA | 0.0cA | 0.0dA | 0.0cA | ||||||||
??NTS:免耕覆盖; SNTS:深松免耕覆盖; TT:传统耕作。同列不同小写字母表示不同土层间差异显著(P < 0.05);同行不同大写字母表示同一土层不同处理间差异显著(P < 0.05)。NTS: no-till with straw mulching; SNTS: no-till with straw mulching after subsoiling; TT: traditional tillage. Different small letters in the same column mean significant differences among different soil layers in the same treatment at P < 0.05, and different capital letters in the same row mean significant differences in the same soil layer among different treatments at P < 0.05. |

表3小麦成熟期不同耕作措施下丛枝菌根真菌(AMF)物种丰度、孢子密度和多样性指数
Table3.Species richness, spore density and diversity index of arbuscular mycorrhizal fungi (AMF) in different soil depths at wheat maturation period under different tillage treatments
土样深度 Soil depth (cm) | 物种丰度 Species richness | 孢子密度 Spore density [spores·(100g)-1(soil)] | Shannon多样性指数 Shannon diversity index | ||||||||
NTS | SNTS | TT | NTS | SNTS | TT | NTS | SNTS | TT | |||
0~20 | 7.3aA | 7.7aA | 5.3aB | 111.7aAB | 125.0aA | 90.3aC | 1.79aA | 1.83aA | 1.67aB | ||
20~40 | 7.0aA | 7.3aA | 5.0aB | 47.7bAB | 57.3bA | 43.7bC | 1.75aA | 1.77abA | 1.65aA | ||
40~60 | 3.7bB | 4.7bA | 3.0bC | 22.3cAB | 28.7cA | 15.7cC | 1.69aA | 1.77abA | 1.08bB | ||
60~80 | 3.3bB | 4.0bA | 2.3cC | 11.0dA | 11.7dA | 7.3dB | 1.69aA | 1.65bA | 1.08bB | ||
80~100 | 2.7cB | 3.3cA | 1.7dC | 7.7eAB | 12.0dA | 4.3eB | 0.77bB | 1.0cA | 0.55cC | ||
100~120 | 1.0dA | 1.0dA | 0.7eB | 4.7efB | 11.0dA | 1.7eB | 0.77bB | 1.0cA | 0.54cC | ||
120~140 | 0.7dA | 1.0dA | 0.0fA | 2.3fgAB | 4.0eA | 0.0eB | 0.0cA | 0.0dA | 0.0dA | ||
140~160 | 0.0eA | 0.7dA | 0.0fA | 0.0gA | 3.0efA | 0.0eA | 0.0cA | 0.0dA | 0.0dA | ||
160~180 | 0.0eA | 0.0eA | 0.0fA | 0.0gA | 0.0fA | 0.0eA | 0.0cA | 0.0dA | 0.0dA | ||
180~200 | 0.0eA | 0.0eAS | 0.0fA | 0.0gA | 0.0fA | 0.0eA | 0.0cA | 0.0dA | 0.0dA | ||
??NTS:免耕覆盖; SNTS:深松免耕覆盖; TT:传统耕作。同列不同小写字母表示不同土层间差异显著(P < 0.05);同行不同大写字母表示同一土层不同处理间差异显著(P < 0.05)。NTS: no-till with straw mulching; SNTS: no-till with straw mulching after subsoiling; TT: traditional tillage. Different small letters in the same column mean significant differences among different soil layers in the same treatment at P < 0.05, and different capital letters in the same row mean significant differences in the same soil layer among different treatments at P < 0.05. |

表4不同耕作措施下小麦不同生育期丛枝菌根真菌(AMF)侵染率和土壤孢子密度
Table4.Colonization rate and soil spore density of arbuscular mycorrhizal fungi (AMF) under different tillage treatment at different growth periods of wheat
生育期 Growing period | AMF侵染率Colonization rate of AMF (%) | 孢子密度Spore density [spores?(100g)-1(soil)] | |||||
NTS | SNTS | TT | NTS | SNTS | TT | ||
苗期Seedling | 6.6bA | 7.6bA | 6.1bA | 76.7cA | 82.0dA | 46.0cB | |
返青期Returning green | 7.2bAB | 8.6bA | 6.3bB | 70.7cA | 80.7dA | 43.7cB | |
拔节期Jointing | 14.9aAB | 16.1aA | 10.6aB | 81.3cAB | 94.3cA | 53.3cC | |
灌浆期Filling | 13.8aAB | 15.6aA | 10.1aB | 97.7bA | 108.7bA | 73.0bB | |
成熟期Maturity | 0.0cA | 0.0cA | 0.0cA | 111.7aAB | 125.0aA | 90.3aC | |
??NTS:免耕覆盖; SNTS:深松免耕覆盖; TT:传统耕作。同列不同小写字母表示不同土层间差异显著(P < 0.05);同行不同大写字母表示同一土层不同处理间差异显著(P < 0.05)。NTS: no-till with straw mulching; SNTS: no-till with straw mulching after subsoiling; TT: traditional tillage. Different small letters in the same column mean significant differences among different soil layers in the same treatment at P < 0.05, and different capital letters in the same row mean significant differences in the same soil layer among different treatments at P < 0.05. |

参考文献
[1] | 韦莉莉, 卢昌熠, 丁晶, 等.丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J].生态学报, 2016, 36(14):4233-4243 http://www.ecologica.cn/stxb/ch/html/2016/14/stxb201412042407.htm WEI L L, LU C Y, DING J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system[J]. Acta Ecologica Sinica, 2016, 36(14):4233-4243 http://www.ecologica.cn/stxb/ch/html/2016/14/stxb201412042407.htm |
[2] | 徐丽娟, 刁志凯, 李岩, 等.菌根真菌的生理生态功能[J].应用生态学报, 2012, 23(1):285-292 http://highlights.paper.edu.cn/index/paper_detail/6581 XU L J, DIAO Z K, LI Y, et al. Eco-physiological functions of mycorrhizal fungi[J]. Chinese Journal of Applied Ecology, 2012, 23(1):285-292 http://highlights.paper.edu.cn/index/paper_detail/6581 |
[3] | SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. 3rd ed. Amsterdam Boston:Academic Press, 2008 |
[4] | VAN DER HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 369(6706):69-72 http://ci.nii.ac.jp/naid/80010658419 |
[5] | 盛萍萍, 李敏, 刘润进.农业技术措施对AM真菌群落结构的影响研究进展[J].应用生态学报, 2011, 22(6):1639-1645 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201106038.htm SHENG P P, LI M, LIU R J. Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(6):1639-1645 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201106038.htm |
[6] | SASVáRI Z, HORNOK L, POSTA K. The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture[J]. Biology and Fertility of Soils, 2011, 47(2):167-176 doi: 10.1007/s00374-010-0519-z |
[7] | WANG M Y, HU L B, WANG W H, et al. Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi[J]. Pedosphere, 2009, 19(5):663-672 doi: 10.1016/S1002-0160(09)60161-2 |
[8] | WANG F Y, HU J L, LIN X G, et al. Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization:A field case from China[J]. World Journal of Microbiology and Biotechnology, 2011, 27(1):67-74 doi: 10.1007/s11274-010-0427-2 |
[9] | 马琨, 陶媛, 杜茜, 等.不同土壤类型下AM真菌分布多样性及与土壤因子的关系[J].中国生态农业学报, 2011, 19(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110101&flag=1 MA K, TAO Y, DU Q, et al. Arbuscular mycorrhizal fungi diversity and its relationship with soil environmental factors in different soil types[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110101&flag=1 |
[10] | KITTIWORAWAT S, YOUPENSUK S, RERKASEM B. Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis[J]. Chiang Mai Journal of Science, 2010, 37(3):517-527 https://www.researchgate.net/publication/288592354_Diversity_of_Arbuscular_Mycorrhizal_Fungi_in_Mimosa_invisa_and_Effect_of_the_Soil_pH_on_the_Symbiosis |
[11] | 吴玉红, 田霄鸿, 池文博, 等.机械化保护性耕作条件下土壤质量的数值化评价[J].应用生态学报, 2010, 21(6):1468-1476 http://www.cnki.com.cn/Article/CJFDTOTAL-SXNJ1998S1018.htm WU Y H, TIAN X H, CHI W B, et al. Numerical evaluation of soil quality under different conservation tillage patterns[J]. Chinese Journal of Applied Ecology, 2010, 21(6):1468-1476 http://www.cnki.com.cn/Article/CJFDTOTAL-SXNJ1998S1018.htm |
[12] | TREONIS A M, AUSTIN E E, BUYER J S, et al. Effects of organic amendment and tillage on soil microorganisms and microfauna[J]. Applied Soil Ecology, 2010, 46(1):103-110 doi: 10.1016/j.apsoil.2010.06.017 |
[13] | 王碧胜, 蔡典雄, 武雪萍, 等.长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响[J].植物营养与肥料学报, 2015, 21(6):1455-1464 doi: 10.11674/zwyf.2015.0610 WANG B S, CAI D X, WU X P, et al. Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1455-1464 doi: 10.11674/zwyf.2015.0610 |
[14] | 李萍, 郝兴宇, 宗毓铮, 等.不同耕作措施对雨养冬小麦碳足迹的影响[J].中国生态农业学报, 2017, 25(6):839-847 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170607&flag=1 LI P, HAO X Y, ZONG Y Z, et al. Effect of tillage practice on carbon footprint of rainfed winter wheat[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6):839-847 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170607&flag=1 |
[15] | ROSENDAHL S, MATZEN H B. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils[J]. New Phytologist, 2008, 179(4):1154-1161 doi: 10.1111/nph.2008.179.issue-4 |
[16] | OEHL F, SIEVERDING E, INEICHEN K, et al. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems[J]. New Phytologist, 2005, 165(1):273-283 http://www.ncbi.nlm.nih.gov/pubmed/15720639 |
[17] | KABIR Z, O'HALLORAN I P, WIDDEN P, et al. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems[J]. Mycorrhiza, 1998, 8(1):53-55 doi: 10.1007/s005720050211 |
[18] | 李玉洁, 王慧, 赵建宁, 等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报, 2015, 26(3):939-948 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201205014.htm LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J]. Chinese Journal of Applied Ecology, 2015, 26(3):939-948 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201205014.htm |
[19] | 胡君利, 杨安娜, 林先贵, 等. 保护性耕作对潮土AM真菌群落结构与功能的影响[C]//面向未来的土壤科学(中册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集. 成都: 中国土壤学会, 2012 HU J L, YANG A N, LIN X G, et al. Conservation tillage effects on the community structure and function of arbuscular mycorrhizal fungi in a fluvo-aquic soil[C]//Proceedings of the 12th National Congress of the Chinese Soil Association and the Ninth Cross-Strait Symposium on Soil Fertilisers. Chengdu: Soil Society of China, 2012 |
[20] | 高萍, 闫飞扬, 蒙程, 等.黄土高原不同耕作措施下AM真菌的多样性[J].草业科学, 2016, 33(10):1917-1923 http://mall.cnki.net/magazine/article/STXB200701013.htm GAO P, YAN F Y, MENG C, et al. Diversity of arbuscular mycorrhizal fungi under different agricultural practices in loess plateau in China[J]. Pratacultural Science, 2016, 33(10):1917-1923 http://mall.cnki.net/magazine/article/STXB200701013.htm |
[21] | 郭新荣.土壤深松技术的应用研究[J].山西农业大学学报, 2005, 25(1):74-77 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmzfzy201224037 GUO X R. Application study on technique of the soil deep loosening[J]. Journal of Shanxi Agricultural University, 2005, 25(1):74-77 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmzfzy201224037 |
[22] | PIKUL J L, AASE J K. Water infiltration and storage affected by subsoiling and subsequent tillage[J]. Soil Science Society of America Journal, 2003, 67(3):859-866 doi: 10.2136/sssaj2003.0859 |
[23] | CRESSWELL H P, PAINTER D J, CAMERON K C. Tillage and water content effects on surface soil hydraulic properties and shortwave albedo[J]. Soil Science Society of America Journal, 1993, 57(3):816-824 doi: 10.2136/sssaj1993.03615995005700030031x |
[24] | 何进, 李洪文, 高焕文.中国北方保护性耕作条件下深松效应与经济效益研究[J].农业工程学报, 2006, 22(10):62-67 doi: 10.3321/j.issn:1002-6819.2006.10.013 HE J, LI H W, GAO H W. Subsoiling effect and economic benefit under conservation tillage mode in northern China[J]. Transactions of the CSAE, 2006, 22(10):62-67 doi: 10.3321/j.issn:1002-6819.2006.10.013 |
[25] | 何润兵, 李传友, 王明武.深松对土壤理化性质和冬小麦生长特性的影响[J].中国农机化学报, 2014, 35(2):119-122 http://cdmd.cnki.com.cn/Article/CDMD-10157-1012442475.htm HE R B, LI C Y, WANG M W. Effects of subsoiling on soil physical and chemical properties and growth characteristics of winter wheat[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2):119-122 http://cdmd.cnki.com.cn/Article/CDMD-10157-1012442475.htm |
[26] | VERE D. Research into Conservation Tillage for Dryland Cropping in Australia and China. Impact Assessment Series Report No. 33[R]. Canberra: The Australian Centre for International Agricultural Research, 2005: 8-46 |
[27] | GERDEMANN J W, NICOLSON T H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting[J]. Transactions of the British Mycological Society, 1963, 46(2):235-244 doi: 10.1016/S0007-1536(63)80079-0 |
[28] | SCHENCK N C, PéRéZ Y. Manual for the Identification of VA Mycorrhizal Fungi[M]. 2nd ed. Gainesville, USA:University of Florida, 1988 |
[29] | REDECKER D, SCHü?LER A, STOCKINGER H, et al. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)[J]. Mycorrhiza, 2013, 23(7):515-531 doi: 10.1007/s00572-013-0486-y |
[30] | 王幼珊, 刘润进.球囊菌门丛枝菌根真菌最新分类系统菌种名录[J].菌物学报, 2017, 36(7):820-850 http://manu40.magtech.com.cn/Jwxb/CN/abstract/abstract3495.shtml WANG Y S, LIU R J. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7):820-850 http://manu40.magtech.com.cn/Jwxb/CN/abstract/abstract3495.shtml |
[31] | GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980, 84(3):489-500 doi: 10.1111/j.1469-8137.1980.tb04556.x |
[32] | GUO X H, GONG J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem[J]. Mycorrhiza, 2014, 24(2):79-94 doi: 10.1007/s00572-013-0516-9 |
[33] | BRITO I, GOSS M J, DE CARVALHO M, et al. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions[J]. Soil and Tillage Research, 2012, 121:63-67 doi: 10.1016/j.still.2012.01.012 |
[34] | LUGO M A, GONZáLEZ MAZA M E, CABELLO M N. Arbuscular mycorrhizal fungi in a mountain grassland Ⅱ:Seasonal variation of colonization studied, along with its relation to grazing and metabolic host type[J]. Mycologia, 2003, 95(3):407-415 doi: 10.1080/15572536.2004.11833085 |
[35] | RUOTSALAINEN A L, V?RE H, VESTBERG M. Seasonality of root fungal colonization in low-alpine herbs[J]. Mycorrhiza, 2002, 12(1):29-36 doi: 10.1007/s00572-001-0145-6 |
[36] | 李凌飞, 杨安娜, 赵之伟.丛枝菌根真菌种群的孢子季相动态研究[J].生态学杂志, 2005, 24(10):1155-1158 doi: 10.3321/j.issn:1000-4890.2005.10.009 LI L F, YANG A N, ZHAO Z W. Seasonal dynamics of arbuscular mycorrhizal fungal spores[J]. Chinese Journal of Ecology, 2005, 24(10):1155-1158 doi: 10.3321/j.issn:1000-4890.2005.10.009 |