张晓云,
张磊磊,
李旺,
吴开贤,
云南农业大学农学与生物技术学院 昆明 650201
基金项目: 云南省自然科学基金项目2014FB142
国家自然科学基金项目31401336
详细信息
作者简介:李永贤, 主要从事可持续栽培技术研究。E-mail:liyongxian_ynau@outlook.com
通讯作者:吴开贤, 主要从事可持续栽培技术研究。E-mail:wukaixian2004@163.com
中图分类号:F323计量
文章访问数:863
HTML全文浏览量:1
PDF下载量:914
被引次数:0
出版历程
收稿日期:2017-06-27
录用日期:2017-11-06
刊出日期:2018-06-01
Effects of fungicide application and heterogeneous fertilization on the growth and yield of maize and potato
LI Yongxian,ZHANG Xiaoyun,
ZHANG Leilei,
LI Wang,
WU Kaixian,
College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
Funds: the Natural Science Foundation Project of Yunnan Province, China2014FB142
the National Natural Science Foundation of China31401336
More Information
Corresponding author:WU Kaixian,E-mail:wukaixian2004@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农业生产中,肥料和抑菌性农药施用是两种重要的农业生产技术。在施肥过程中,点状和条状施肥是主要的施肥方式,易导致作物生长期内土壤养分以斑块状分布,因此根系趋肥性对农田中作物获取养分具有重要性。而在施用抑菌性农药时,药剂能够通过淋溶等过程进入土体中,对土壤生态环境和根-土过程产生直接或间接的影响。然而目前有关农药施用是否影响作物根系趋肥性,进而改变产量表现还不清楚。本研究选用旱地主要粮食作物玉米和马铃薯为研究对象,通过等量肥料下隔行施用的方式构建土壤养分斑块,在此基础上进行广谱性杀菌剂浇施土壤,研究抑菌性农药对作物利用异质性养分的影响。两年的大田试验数据表明,一定程度上,抑菌剂浇施和隔行施肥能够显著地影响作物的植株生物量、产量,根系生物量及分布,且对玉米生物量影响具显著交互效应,表现为隔行施肥对生物量的显著提高发生在抑菌剂浇施条件下,而抑菌剂对玉米生物量的提高则主要表现在隔行施肥条件下。同时,抑菌剂浇施能够提高作物的根系觅养精确度,其中在马铃薯上达到显著水平,表明抑菌剂浇施对作物适应土壤养分斑块具有一定的促进作用。当然,抑菌农药和养分斑块在影响作物生长过程中的显著性受作物类型和种植年份的影响,具有复杂性。因此,进一步针对不同作物、生态环境和栽培措施,探讨抑菌剂农药在作物适应养分斑块中的作用以及对作物根系趋肥的影响机制,对于了解农药施用对化肥利用的影响具有潜在的价值。
关键词:养分异质性/
抑菌剂/
根系趋肥性/
土壤微生物/
马铃薯/
玉米
Abstract:In agriculture, fertilizer and fungicide applications are critical for high yield. For the fertilization, it is known that block and strip fertilizations are common practices. These methods can result in the formation of pockets of soil nutrients. In this case, the orientation of root growth towards soil nutrients is important for absorbing heterogeneous nutrients. Fungicides can permeate into the soil through leaching, which directly or indirectly affects soil environment and root-soil interaction. However, it is not clear if soil micro-organisms change caused by fungicides adding affects crop root growth orientation and yield. A field experiment was conducted in 2015 and 2016, in which maize and potato were planted to explore the effects of fungicides adding and nutrient patches on crop growth and yield. We first generated soil nutrient patch by interlaced fertilization. Then broad-spectrum fungicides were applied through watering. Next, crop yield, shoot biomass, root biomass and root foraging precision were measured. The two-year field experiment demonstrated that watering fungicides and nutrient patches significantly affected plant biomass, yield, root biomass and root growth orientation. Importantly, we observed significant positive interaction between fungicides and nutrient patches. The significant increase in maize plant biomass was due to the application of fungicides under heterogeneous fertilization. Also the significant increase in maize plant biomass was promoted by nutrient patches after fungicide application. Besides, the results suggested that the application of fungicide benefited the adaptation of crops to heterogeneous fertilization. This was because that root foraging precision of maize and potato was promoted by the application of fungicides. Moreover, there was significant increase in root foraging precision of potato. However, the effect of fungicide and nutrient patches on plant growth was significantly affected by the complex interaction between crop type and planting year. Therefore, further studies were necessary to explore the role of fungicides in adaption of crops to nutrient patches and the mechanisms of growth orientation of roots towards soil nutrients. Such study should be based on various crops, ecological environments and cultivation practices, increasing the potential for in-depth understanding of the effects of pesticides on the use of chemical fertilizers.
Key words:Nutrient heterogeneity/
Fungicide/
Root growth orientation/
Soil microorganism/
Potato/
Maize
HTML全文

图1施肥方式及土壤养分斑块构建示意图(以玉米为例, 两种施肥方式肥料等量)
Figure1.Schematic diagrams of fertilizer application and soil nutrient patch (using maize as an example, equal amount of fertilizer between two treatments)


图2抑菌剂浇施与隔行施肥对玉米和马铃薯产量的影响
不同小写字母表示不同处理间差异显著(Duncan, P≤0.05)。
Figure2.Effects of watering fungicide and heterogeneous fertilization on yields of maize and potato
Different lowercase letters indicate significant differences among treatments (Duncan, P≤ 0.05).


图3抑菌剂浇施与隔行施肥对玉米和马铃薯根系生物量的影响(2016年)
不同小写字母表示处理间差异显著(Duncan, P≤0.05)。
Figure3.Effects of watering fungicide and heterogeneous fertilization on root biomasses of maize and potato (2016)
Different lowercase letters indicate significant differences among treatments (Duncan, P ≤ 0.05).


图4抑菌剂浇施对玉米和马铃薯根系觅养精确度的影响(2016年)
不同小写字母表示处理间差异显著(Duncan, P≤0.05)。
Figure4.Effects of watering fungicide on the root foraging precision of maize and potato (2016)
Different lowercase letters indicate significant differences among treatments (Duncan, P ≤ 0.05).

表1抑菌剂浇施与隔行施肥对玉米和马铃薯生长及产量影响的方差分析(P值)表
Table1.Variance analysis for the effects of watering fungicide and heterogeneous fertilization on the growth and yield of maize and potato (P value)
观测指标 Parameter | 作物 Crop | 年份 Year | 试验因素 Experimental factor | ||
微生物抑菌剂 Fungicide (S) | 养分异质性 Nutrient heterogeneity (N) | 微生物抑菌剂x养分异质性 S × N | |||
觅养精确度 Foraging precision | 马铃薯Potato | 2016 | 0.049 | / | / |
玉米 Maize | 2015 | 0.889 | / | / | |
根系生物量 Root biomass | 马铃薯 Potato | 2016 | 0.034 * | 0.972 | 0.860 |
玉米 Maize | 2015 | 0.297 | 0.348 | 0.343 | |
植株生物量 Plant biomass | 马铃薯 Potato | 2016 | 0.013 * | 0.808 | 0.664 |
2015 | 0.018 * | 0.225 | 0.913 | ||
玉米 Maize | 2016 | < 0.001 * | 0.133 | 0.006 | |
2015 | 0.028 * | 0.741 | 0.686 | ||
产量 Yield | 马铃薯 Potato | 2016 | 0.019 * | 0.052 | 0.914 |
2015 | 0.520 | 0.013 | 0.784 | ||
玉米 Maize | 2016 | 0.168 | 0.556 | 0.373 | |
2015 | 0.001 * | 0.343 | 0.582 | ||
*表示P≤0.05水平影响显著。* indicates significant effect at P ≤ 0.05 level. |

表2抑菌剂浇施与隔行施肥对玉米马铃薯生物量的影响
Table2.Effects of watering fungicide and heterogeneous fertilization on biomasses of maize and potato
g | ||||||
作物 Crop | 年份 Year | 均匀施肥Homogeneous fertilization | 不均匀施肥 Heterogeneous fertilization | |||
对照 Control | 微生物抑菌剂 Fungicide watering | 对照 Control | 微生物抑菌剂 Fungicide watering | |||
马铃薯 Potato | 2016 | 68.59±8.40a | 85.94±8.79b | 66.62±10.40a | 83.77±6.91b | |
2015 | 94.62±5.05a | 104.55±3.84b | 99.44±3.47a | 110.31±4.59b | ||
玉米 Maize | 2016 | 117.01±8.55a | 126.42±8.84a | 105.96±7.90a | 163.64±10.77b | |
2015 | 187.86±7.72a | 202.83±7.23c | 188.34±5.17a | 204.69±7.49c | ||
同行不同小写字母表示处理间差异显著(Duncan, P≤0.05)。Different lowercase letters in the same row indicate significant differences among treatments (Duncan, P ≤ 0.05). |

参考文献
[1] | 中华人民共和国国家统计局[DB/OL]. http://data.stats.gov.cn/. 2017-06-22 National Bureau of Statistics of the People's Republic of China[DB/OL]. http://data.stats.gov.cn/. 2017-06-22 |
[2] | 谢慧, 朱鲁生, 谭梅英.哌虫啶在土壤中的降解动态及对土壤微生物的影响[J].土壤学报, 2016, 53(1):232-240 doi: 10.11766/trxb201501170575 XIE H, ZHU L S, TAN M Y. Degradation dynamics of IPP in soil and its effects on soil microorganisms[J]. Acta Pedologica Sinica, 2016, 53(1):232-240 doi: 10.11766/trxb201501170575 |
[3] | SCHUSTER E, SCHR?DER D. Side-effects of sequentially-applied pesticides on non-target soil microorganisms:Field experiments[J]. Soil Biology and Biochemistry, 1990, 22(3):367-373 doi: 10.1016/0038-0717(90)90115-G |
[4] | 韦莉莉, 卢昌熠, 丁晶, 等.丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J].生态学报, 2016, 36(14):4233-4243 http://www.ecologica.cn/stxb/ch/html/2016/14/stxb201412042407.htm WEI L L, LU C Y, DING J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system[J]. Acta Ecologica Sinica, 2016, 36(14):4233-4243 http://www.ecologica.cn/stxb/ch/html/2016/14/stxb201412042407.htm |
[5] | WEIDNER S, KOLLER R, LATZ E, et al. Bacterial diversity amplifies nutrient-based plant-soil feedbacks[J]. Functional Ecology, 2015, 29(10):1341-1349 doi: 10.1111/fec.2015.29.issue-10 |
[6] | CAVAGNARO T R, SMITH F A, SMITH S E, et al. Functional diversity in arbuscular mycorrhizas:Exploitation of soil patches with different phosphate enrichment differs among fungal species[J]. Plant, Cell & Environment, 2005, 28(5):642-650 http://cn.bing.com/academic/profile?id=ca87b97d41e1dda2a91c4e693df57ff5&encoded=0&v=paper_preview&mkt=zh-cn |
[7] | HODGE A. The plastic plant:Root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1):9-24 doi: 10.1111/nph.2004.162.issue-1 |
[8] | SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth:New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62:227-250 doi: 10.1146/annurev-arplant-042110-103846 |
[9] | DODD I C, RUIZ-LOZANO J M. Microbial enhancement of crop resource use efficiency[J]. Current Opinion in Biotechnology, 2012, 23(2):236-242 doi: 10.1016/j.copbio.2011.09.005 |
[10] | JIN H, PFEFFER P E, DOUDS D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005, 168(3):687-696 doi: 10.1111/nph.2005.168.issue-3 |
[11] | JACKSON R B, CALDWELL M M. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics[J]. Ecology, 1993, 74(2):612-614 doi: 10.2307/1939320 |
[12] | WIJESINGHE D K, JOHN E A, HUTCHINGS M J. Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation[J]. Journal of Ecology, 2005, 93(1):99-112 doi: 10.1111/jec.2005.93.issue-1 |
[13] | 吴开贤, 安瞳昕, 范志伟, 等.土壤氮异质性与种间地上竞争对玉米和马铃薯生长的影响[J].中国生态农业学报, 2012, 20(12):1571-1578 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121202&flag=1 WU K X, AN T X, FAN Z W, et al. Maize and potato growth responses to heterogeneous nitrogen and shoot competition[J]. Chinese Journal of Eco-Agriculture, 2012, 20(12):1571-1578 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121202&flag=1 |
[14] | HEINZE J, GENSCH S, WEBER E, et al. Soil temperature modifies effects of soil biota on plant growth[J]. Journal of Plant Ecology, 2016, 10(5):808-821 http://cn.bing.com/academic/profile?id=ce40da8efabbe670d58bbf0123415052&encoded=0&v=paper_preview&mkt=zh-cn |
[15] | PATERSON E, SIM A, STANDING D, et al. Root exudation from Hordeum vulgare in response to localized nitrate supply[J]. Journal of Experimental Botany, 2006, 57(10):2413-2420 doi: 10.1093/jxb/erj214 |
[16] | SIKES B A, COTTENIE K, KLIRONOMOS J N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas[J]. Journal of Ecology, 2009, 97(6):1274-1280 doi: 10.1111/jec.2009.97.issue-6 |
[17] | HOEKSEMA J D, CHAUDHARY V B, GEHRING C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi[J]. Ecology Letters, 2010, 13(3):394-407 doi: 10.1111/ele.2010.13.issue-3 |
[18] | DELGADO-Baquerizo M, REICH P B, KHACHANE A N, et al. It is elemental:Soil nutrient stoichiometry drives bacterial diversity[J]. Environmental Microbiology, 2017, 19(3):1176-1188 doi: 10.1111/1462-2920.13642 |
[19] | BOLDT-BURISCH K, NAETH M A. Heterogeneous soil conditions influence fungal alkaline phosphatase activity in roots of Lotus corniculatus[J]. Applied Soil Ecology, 2017, 116:55-63 doi: 10.1016/j.apsoil.2017.03.024 |
[20] | 杜丽亚, 章钢娅, 靳伟.土壤含水量和胡敏酸对有机氯农药降解的影响[J].土壤学报, 2006, 43(2):332-336 doi: 10.11766/trxb200409300225 DU L Y, ZHANG G Y, JIN W. Effects of soil water content and humic acid on degradation of organochlorine pesticides[J]. Acta Pedologica Sinica, 2006, 43(2):332-336 doi: 10.11766/trxb200409300225 |
[21] | LIU B T, LI H B, ZHU B, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species[J]. New Phytologist, 2015, 208(1):125-136 doi: 10.1111/nph.13434 |
[22] | NEWSHAM K K, FITTER A H, WATKINSON A R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field[J]. Journal of Ecology, 1995, 83(6):991-1000 doi: 10.2307/2261180 |
[23] | MAESTRE F T, BRADFORD M A, REYNOLDS J F. Soil heterogeneity and community composition jointly influence grassland biomass[J]. Journal of Vegetation Science, 2006, 17(3):261-270 doi: 10.1111/j.1654-1103.2006.tb02445.x |
[24] | LI H B, MA Q H, LI H G, et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits[J]. Plant and Soil, 2014, 376(1/2):151-163 http://cn.bing.com/academic/profile?id=9a8f5b79ac187b56cd3e6f0d3cd78e93&encoded=0&v=paper_preview&mkt=zh-cn |