删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施氮量对间作小麦蚕豆根系分泌大豆异黄酮的影响

本站小编 Free考研考试/2022-01-01

刘英超1,,
肖靖秀1,
汤利1,
郑毅1, 2,,
1.云南农业大学资源与环境学院 昆明 650201
2.云南省教育厅 昆明 650223
基金项目: 国家自然科学基金项目31460551
国家自然科学基金项目31260504


详细信息
作者简介:刘英超, 主要从事土壤与植物营养研究。E-mail:liuyingchao_1988@163.com
通讯作者:郑毅, 主要从事土壤与植物营养研究。E-mail:yzheng@ynau.edu.cn
中图分类号:S311

计量

文章访问数:765
HTML全文浏览量:4
PDF下载量:760
被引次数:0
出版历程

收稿日期:2017-10-07
录用日期:2017-12-02
刊出日期:2018-06-01

Effect of nitrogen application rate on root soy isoflavone exudate of wheat/faba bean intercropping system

LIU Yingchao1,,
XIAO Jingxiu1,
TANG Li1,
ZHENG Yi1, 2,,
1. College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650201, China
2. Yunnan Provincial Department of Education, Kunming 650223, China
Funds: the National Natural Science Foundation of China31460551
the National Natural Science Foundation of China31260504


More Information
Corresponding author:ZHENG Yi, E-mail:yzheng@ynau.edu.cn


摘要
HTML全文
(2)(2)
参考文献(24)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:通过盆栽和水培试验,采用小麦蚕豆间作、蚕豆单作、小麦单作3种种植方式,研究了不同生育期不同氮水平(低氮、常规氮和高氮)处理下,单、间作小麦和蚕豆根系大豆异黄酮分泌量的变化,为进一步探明间作增产和控病机制提供依据。结果表明,随作物生育期推移,小麦根系分泌大豆异黄酮数量明显减少,蚕豆根系大豆异黄酮的分泌量先增加后减少。随施氮量增加,小麦蚕豆根系大豆异黄酮分泌量均减少,且多达显著水平。与低氮处理相比,常规氮和高氮处理下,单、间作小麦大豆异黄酮分泌量分别显著减少,且多达显著水平。间作可以显著提高作物大豆异黄酮的分泌量,但间作优势仅在低氮和常规氮处理下明显,高氮处理下,单、间作小麦和蚕豆根系分泌大豆异黄酮数量差异不显著,并且这种间作效应会随生育期的推移逐渐消失。总之,间作种植和施氮量均影响作物根系大豆异黄酮分泌量,且低施氮量的影响更明显。
Abstract:Through pot and hydroponics experiments of wheat/faba-bean, mono-cropped faba-bean and mono-cropped wheat, soy isoflavone exudate of faba-bean and wheat were studied under different nitrogen (deficient, adequate and excessive) conditions at different growth stages. The study aimed at providing the basis for further understanding of yield increase and disease control mechanisms of intercropping systems. The results showed that with the growth of crops, soy isoflavone exudate of wheat roots decreased, while that of faba-bean first increased before decreased. With the increase of nitrogen application rate, soy isoflavone exudate of both wheat and faba-bean decreased, and most changes were significant. Compared with deficient nitrogen treatment, soy isoflavone exudates of intercropped wheat were increased respectively by 18.9% and 122.1% at stem elongation stage (60 d after sowing) under adequate and excessive nitrogen conditions. Accordingly, soy isoflavone exudate of mono-cropped wheat was increased by 28.9% and 72.7% under adequate and excessive nitrogen conditions. Crops intercropping increased soy isolavone secretion of crops, which was significant only at lower nitrogen level. Compared with mono-cropped wheat under deficient and adequate nitrogen condition at stem elongation stage of wheat (60 d after sowing), soy isoflavone exudate of intercropped wheat was significantly increased by 26.9% and 12.0%, respectively, in pot experiment, and 15.3% and 59.2% in hydroponics. Compared with mono-cropped faba-bean under deficit and adequate nitrogen rates at branching stage (60 d after sowing), root soy isoflavone secretion of intercropped faba-bean was significantly increased by 64.6%, and 11.4% in pot experiment, and 23.8% and 14.1% in hydroponics experiment, respectively. At flowering and filling stages of wheat, and flowering and pod-bearing stages of faba-bean, the similar tendency was observed. In short, both intercropping and nitrogen fertilization changed root secretion of soy isoflavone by wheat and faba-bean, which was more obvious under lower nitrogen application rate.

HTML全文


图1盆栽(a)和水培(b)试验不同氮水平下单、间作蚕豆根系分泌大豆异黄酮PLS-EDA分析
IF:间作蚕豆, MF:单作蚕豆。N/2:低氮; N:常规氮; 3N/2:高氮。
Figure1.PLS-EDA analysis of soy isoflavone secreted by mono- and inter-cropped faba bean root under different N rates in pot experiment (a) and hydroponic experiment (b)
IF: intercropped faba bean; MF: monocropped faba bean; N/2: deficient nitrogen; N: adequate nitrogen; 3N/2: excessive nitrogen.


下载: 全尺寸图片幻灯片


图2盆栽(上)和水培(下)试验不同氮水平下单、间作蚕豆根系分泌大豆异黄酮的差异
IF:间作蚕豆; MF:单作蚕豆。N/2:低氮; N:常规氮; 3N/2:高氮。图中不同小写字母表示在P≤0.05水平差异性显著。
Figure2.Soy isoflavone secreted by mono- and inter-cropped faba bean root under different N rates in pot experiment (upper) and hydroponic experiment at different growth stages (lower)
IF: intercropped faba bean; MF: monocropped faba bean; IW: intercropped wheat; MW: monocropped wheat; N/2: deficient nitrogen; N: adequate nitrogen; 3N/2: excessive nitrogen. Different lowercase letters mean significant differences at 5% level.


下载: 全尺寸图片幻灯片

表1不同施氮量对小麦蚕豆间作系统籽粒产量的影响
Table1.Grain yields of wheat and faba bean intercropping system under different nitrogen application rates
g·plant-1
作物
Crop
处理
Treatment
盆栽
Pot experiment
水培
Hydroponic experiment
N/2 N 3N/2 N/2 N 3N/2
蚕豆
Faba bean
间作
Intercropping
4.26±0.15c 5.48±0.22b 5.98±0.24a 4.84±0.19c 5.62±0.11b 6.06±0.07a
单作
Monocropping
3.22±0.13d 4.19±0.15c 5.27±0.11b 4.26±0.20d 5.08±0.12c 5.68±0.07b
小麦
Wheat
间作
Intercropping
3.47±0.14bc 4.19±0.17a 4.42±0.11a 5.22±0.12c 5.95±0.06b 6.29±0.12a
单作
Monocropping
2.42±0.13d 3.30±0.17c 3.66±0.03c 4.45±0.09d 5.21±0.11c 5.41±0.12c
N/2:低氮; N:常规氮; 3N/2:高氮。不同小写字母表示同种作物不同处理间差异达到5%显著水平。N/2: deficient nitrogen; N: adequate nitrogen; 3N/2: excessive nitrogen. Different lowercase letters mean significant differences at 5% level among different treatments for the same crop at the same experiment.


下载: 导出CSV
表2不同施氮量对单、间作小麦不同生育期根系分泌大豆异黄酮的影响
Table2.Soy isoflavone secreted by mono- and inter-cropped wheat root under different N rates at different growth stages
ng·plant-1·h-1
处理
Treatment
盆栽
Pot experiment
水培
Hydroponic experiment
拔节期
Jointing stage
开花期
Flower stage
灌浆期
Filling stage
拔节期
Jointing stage
开花期
Flower stage
灌浆期
Filling stage
N/2 间作
Intercropping
105.83±3.26a 85.00±2.40a 45.00±1.84a 98.75±2.36a 87.50±2.55a 22.50±2.44a
单作
Monocropping
81.67±2.60b 49.58±2.76cd 47.08±1.82a 85.63±1.40b 84.38±1.30a 15.75±1.59a
N 间作
Intercropping
77.50±2.07b 59.17±2.71b 31.25±2.21b 97.50±1.81a 55.00±1.60b
单作
Monocropping
69.17±2.77c 57.08±1.27bc 30.42±1.21b 61.25±2.79c 48.75±2.38b
3N/2 间作
Intercropping
51.67±1.48d 48.33±2.51d 41.25±2.43d
单作
Monocropping
54.58±2.22d 42.92±2.95d 43.75±2.09d
N/2:低氮; N:常规氮; 3N/2:高氮。同列数据后不同字母表示在P≤0.05水平下差异性显著, —表示未检测到目标。N/2: deficient nitrogen; N: adequate nitrogen; 3N/2: excessive nitrogen. Different lowercase letters in the same line mean significant differences at 5% level. — means that the target is not detected.


下载: 导出CSV

参考文献(24)
[1]董艳, 董坤, 汤利, 等.蚕豆根系分泌物中氨基酸含量与枯萎病的关系[J].土壤学报, 2015, 52(4):919-925 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201403007.htm
DONG Y, DONG K, TANG L, et al. Relationship of free amino acids in root exudates with wilt disease (Fusarium oxysporum) of faba bean[J]. Acta Pedologica Sinica, 2015, 52(4):919-925 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201403007.htm
[2]FAN F L, ZHANG F S, SONG Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil, 2006, 283(1/2):275-286 doi: 10.1007%2Fs11104-006-0019-y
[3]刘晓燕, 何萍, 金继运.氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系[J].植物营养与肥料学报, 2008, 14(5):929-934 http://plantnutrifert.org/CN/abstract/abstract1060.shtml
LIU X Y, HE P, JIN J Y. Effect of potassium chloride on the exudation of sugars and phenolic acids by maize root and its relation to growth of stalk rot pathogen[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5):929-934 http://plantnutrifert.org/CN/abstract/abstract1060.shtml
[4]MAJ D, WIELBO J, MAREK-KOZACZUK M, et al. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum[J]. Microbiological Research, 2010, 165(1):50-60 doi: 10.1016/j.micres.2008.06.002
[5]LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27):11192-11196 doi: 10.1073/pnas.0704591104
[6]NOVáK K, CHOVANEC P, ?KRDLETA V, et al. Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.)[J]. Journal of Experimental Botany, 2002, 53(375):1735-1745 doi: 10.1093/jxb/erf016
[7]LI B, KRUMBEIN A, NEUGART S, et al. Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean[J]. Journal of Plant Interactions, 2012, 7(4):333-340 doi: 10.1080/17429145.2012.714407
[8]NEUMANN G, R?MHELD V. The release of root exudates as affected by the plant physiological status[M]//PINTON R, VARANINI Z, NANNIPIERI P. The Rhizosphere: Biochem-istry and Organic Substances at the Soil-Plant Interface. 2nd ed. Boca Raton, FL, USA: CRC Press, 2007
[9]LANDINI S, GRAHAM M Y, GRAHAM T L. Lactofen in-duces isoflavone accumulation and glyceollin elicitation competency in soybean[J]. Phytochemistry, 2003, 62(6):865-874 doi: 10.1016/S0031-9422(02)00709-4
[10]DELMONTE P, PERRY J, RADER J I. Determination of iso-flavones in dietary supplements containing soy, red clover and kudzu:Extraction followed by basic or acid hydrolysis[J]. Journal of Chromatography A, 2006, 1107(1/2):59-69 https://www.researchgate.net/publication/6871774_Analysis_of_isoflavones_in_foods_and_dietary_supplements
[11]高荣海, 张春红, 赵秀红, 等.大豆异黄酮研究进展[J].粮食与油脂, 2009, (5):1-4 http://www.cnki.com.cn/Article/CJFDTotal-JZZY201301030.htm
GAO R H, ZHANG C H, ZHAO X H, et al. Research progress on soybean isoflavone[J]. Cereals & Oils, 2009, (5):1-4 http://www.cnki.com.cn/Article/CJFDTotal-JZZY201301030.htm
[12]冯晓敏, 杨永, 任长忠, 等.豆科-燕麦间作对作物光合特性及籽粒产量的影响[J].作物学报, 2015, 41(9):1426-1434 http://www.cnki.com.cn/Article/CJFDTotal-XBZW201509023.htm
FENG X M, YANG Y, REN C Z, et al. Effects of legumes in-tercropping with oat on photosynthesis characteristics of and grain yield[J]. Acta Agronomica Sinica, 2015, 41(9):1426-1434 http://www.cnki.com.cn/Article/CJFDTotal-XBZW201509023.htm
[13]吴娜, 刘晓侠, 刘吉利, 等.马铃薯/燕麦间作对马铃薯光合特性与产量的影响[J].草业学报, 2015, 24(8):65-72 http://or.nsfc.gov.cn/bitstream/00001903-5/239154/1/1000013956530.pdf
WU N, LIU X X, LIU J L, et al. Effect of intercropping pota-toes with oats on the photosynthetic characteristics and yield of potato[J]. Acta Prataculturae Sinica, 2015, 24(8):65-72 http://or.nsfc.gov.cn/bitstream/00001903-5/239154/1/1000013956530.pdf
[14]张雷昌, 汤利, 郑毅.根系互作对玉米大豆间作作物磷吸收的影响[J].植物营养与肥料学报, 2015, 21(5):1142-1149 doi: 10.11674/zwyf.2015.0506
ZHANG L C, TANG L, ZHENG Y. Phosphorus absorption of crops affected by root interaction in maize and soybean intercropping system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5):1142-1149 doi: 10.11674/zwyf.2015.0506
[15]HAUGGAARD-NIELSEN H, GOODING M, AMBUS P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European or-ganic cropping systems[J]. Field Crops Research, 2009, 113(1):64-71 doi: 10.1016/j.fcr.2009.04.009
[16]LI X P, MU Y H, CHENG Y B, et al. Effects of inter-cropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability[J]. Acta Physiologiae Plantarum, 2013, 35(4):1113-1119 doi: 10.1007/s11738-012-1148-y
[17]WADDINGTON S R, MEKURIA M, SIZIBA S, et al. Long-term yield sustainability and financial returns from grain legume-maize intercrops on a sandy soil in subhumid North Central Zimbabwe[J]. Experimental Agriculture, 2007, 43(4):489-503 https://www.researchgate.net/profile/Stephen_Waddington/publication/232026713_Long-term_yield_sustainability_and_financial_returns_from_grain_legume-maize_intercrops_on_a_sandy_soil_in_subhumid_north_central_Zimbabwe/links/00b7d51fbec572a3e3000000.pdf?disableCoverPage=true
[18]WANG D, YANG S M, TANG F, et al. Symbiosis specificity in the legume-rhizobial mutualism[J]. Cellular Microbiology, 2012, 14(3):334-342 doi: 10.1111/j.1462-5822.2011.01736.x
[19]肖靖秀, 郑毅, 汤利.小麦-蚕豆间作对根系分泌低分子量有机酸的影响[J].应用生态学报, 2014, 25(6):1739-1744 http://www.cqvip.com/QK/90626A/201406/50009654.html
XIAO J X, ZHENG Y, TANG L. Effect of wheat and faba bean intercropping on root exudation of low molecular weight organic acids[J]. Chinese Journal of Applied Ecology, 2014, 25(6):1739-1744 http://www.cqvip.com/QK/90626A/201406/50009654.html
[20]刘英超, 肖靖秀, 汤利, 等.施氮对不同分隔方式间作蚕豆根系分泌柚皮素的影响[J].植物生理学报, 2017, 53(6):1097-1103 http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201004004.htm
LIU Y C, XIAO J X, TANG L, et al. Effects of nitrogen ap-plication rate on the naringenin exudation from intercropped faba bean's roots in different separation patterns[J]. Plant Physiology Journal, 2017, 53(6):1097-1103 http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201004004.htm
[21]刘晓玲, 杜文华, 宋超.氮磷肥施用量对红三叶中异黄酮含量的影响[J].西北农业学报, 2010, 19(7):159-163 http://cdmd.cnki.com.cn/Article/CDMD-10733-2007136283.htm
LIU X L, DU W H, SONG C. Effects of nitrogen and phos-phorus fertilization on isoflavone content in red clover[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(7):159-163 http://cdmd.cnki.com.cn/Article/CDMD-10733-2007136283.htm
[22]谷文英, 余飞, 陈莹, 等.不同生长时期红三叶异黄酮含量变化的研究[J].草原与草坪, 2006, (3):61-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyycp200603016
GU W Y, YU F, CHEN Y, et al. Study on the distribution of isoflavone in Trifolium pratense at different growth stages[J]. Grassland and Turf, 2006, (3):61-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyycp200603016
[23]卢国理, 汤利, 楚轶欧, 等.单/间作条件下氮肥水平对水稻总酚和类黄酮的影响[J].植物营养与肥料学报, 2008, 14(6):1064-1069 http://plantnutrifert.org/CN/abstract/abstract1078.shtml
LU G L, TANG L, CHU Y O, et al. Effect of nitrogen levels on the changes of phenol and flavonoid contents under rice monocropping and intercropping system[J]. Plant Nutrition and Fertilizer Science, 2008, 14(6):1064-1069 http://plantnutrifert.org/CN/abstract/abstract1078.shtml
[24]LI B, LI Y Y, WU H M, et al. Root exudates drive interspe-cific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23):6496-6501 doi: 10.1073/pnas.1523580113

相关话题/作物 植物 营养 生育 土壤