删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于手机相机获取玉米叶片数字图像的氮素营养诊断与推荐施肥研究

本站小编 Free考研考试/2022-01-01

夏莎莎1,,
张聪3,
李佳珍2,
李红军2,
张玉铭2,,,
胡春胜2
1.中国科学院生态环境研究中心 北京 100085
2.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
3.华北制药集团爱诺有限公司 石家庄 050000
基金项目: 国家重点研发计划2016YFD0200307
河北省科技计划项目14227423D
渤海粮仓现代农业区域科技示范KFJ-STS-ZDTP-001

详细信息
作者简介:夏莎莎, 研究方向为分析化学。E-mail: ssxia@rcees.ac.cn
通讯作者:张玉铭, 研究方向为农田生态系统养分循环。E-mail: ymzhang@sjziam.ac.cn
中图分类号:S126;S512

计量

文章访问数:789
HTML全文浏览量:2
PDF下载量:649
被引次数:0
出版历程

收稿日期:2017-12-15
录用日期:2018-02-01
刊出日期:2018-05-01

Diagnosis of nitrogen nutrient and recommended fertilization in summer corn using leaf digital images of cellphone camera

XIA Shasha1,,
ZHANG Cong3,
LI Jiazhen2,
LI Hongjun2,
ZHANG Yuming2,,,
HU Chunsheng2
1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-saving Agriculture, Shijiazhuang 050022, China
3. North China Pharmaceutical Group Aino CO., LTD, Shijiazhuang 050000, China
Funds: the National Key Research and Development Plan of China2016YFD0200307
the Science and Technology Plan Project of Hebei Province14227423D
the Science and Technology Demonstration of Modern Agriculture in Bohai Granary RegionKFJ-STS-ZDTP-001

More Information
Corresponding author:ZHANG Yuming,E-mail: ymzhang@sjziam.ac.cn


摘要
HTML全文
(3)(3)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本文利用手机相机获取玉米6叶期和9叶期的冠层图像,对图像进行色彩参数的提取与处理,分析了不同生长时期、不同品种间色彩参数的差异性,以及色彩参数与传统玉米氮素营养指标的相关性,选择出适宜的敏感色彩参数,对色彩参数与氮素营养指标进行拟合建模,建立了玉米氮素营养诊断体系,并推荐了不同产量目标下的施肥量,为实现利用智能手机田间拍照进行氮素营养诊断和精准推荐施肥提供参考。结果表明,在玉米6叶期,冠层图像色彩参数与传统氮素营养指标间的相关性优于9叶期,可作为应用数字图像分析技术进行氮素营养诊断的诊断时期;不同品种玉米的冠层图像色彩参数间无显著差异。B/(R+G+B)和G/(R+G+B)与传统氮素诊断指标——叶片SPAD值、第1完全展开叶叶脉硝酸盐浓度均显著相关,且B/(R+G+B)更为敏感,因此可作为玉米氮素营养诊断的色彩参数指标,诊断方程为:玉米叶脉硝酸盐浓度=1.73×1010×[B/(R+G+B)]9.43。并依此给出了不同B/(R+G+B)值下的玉米营养状况以及不同目标产量下的推荐施氮量。本研究结果可为基于手机相机开展玉米氮素营养诊断与推荐施肥技术的推广与应用提供技术支撑。
关键词:手机相机/
叶片数字图像/
色彩参数/
氮素营养诊断/
精准施肥/
夏玉米
Abstract:To meet requirements of food supplies and the accompanying pollution problem on environment, precision fertilization is one of the most important technologies. Soil nutrient test and crop nutrition diagnosis are essential work for precision fertilization. With the current situation of the increasing agriculture scale management, it is urgent to develop fast, nondestructive and economic techniques for the nitrogen nutrition diagnosis of crops. Digital images technology has been widely applied in nutrition diagnosis of crops. In majority of such researches, digital cameras have already been successfully used. However, few researches were reported to use cellphone cameras to study nutrition diagnosis and precision fertilization of crops. Thinking of the advantages that cellphone cameras have, such as portability, universality and handleability, the application of cellphone cameras should be detailly studied in nutrition diagnosis. In this study, we used smart cellphones to photograph corn leaves at 6-leaf and 9-leaf stages. The color parameters of corn leaves images were extracted and processed. The differences in color parameters of leaves photographs during two growth stages and for four varieties of corn were evaluated. The correlations of parameters with traditional nitrogen nutrient indexes were determined. Appropriate color parameters were selected based on statistical analysis and nutrient diagnosis model established for the color parameters and nitrogen nutrition index. Then the model was fitted to establish indicator systems of diagnosis of nitrogen nutrient and recommendations for fertilization of corns. The results showed that correlations of color parameters and nitrogen nutrient indexes at 6-leaf stage were more significant than those at 9-leaf stage, suggesting that 6-leaf stage was suitable time for diagnosis of corn nitrogen nutrient using digital image processing technique. From the analysis of leaves photographs of four corn varieties, there was no statistically significant difference among the images. Furthermore, the consequences supported two color parameters, B/(R+G+B) and G/(R+G+B) as candidates for sensitive color parameters. These two color parameters both had strong correlations with leaf SPAD and vein nitrate concentration. Also based on multivariate analysis, B/(R+G+B) was the best and was selected as sensitive color parameter for diagnosis of corn nitrogen nutrient. The diagnosis model of vein nitrate concentration was 1.73×1010×[B/(R+G+B)]9.43. Based on the equation, nitrogen application rates under different B/(R+G+B) values were calculated for certain yield targets of corn. The results were applied to nitrogen nutrient diagnosis and recommendation of fertilization of corn. In summary, it was possible and applicable to take photographs of corn leaves at 6-leaf stage with smart cellphone, extract B/(R+G+B) color parameter and use it to diagnose nitrogen nutrition status.
Key words:Cellphone camera/
Leaf digital photography/
Color parameter/
Diagnosis of nitrogen nutrient/
Precision fertilization/
Summer corn

HTML全文


图1不同玉米品种的叶片数字图像色彩参数的比较
Figure1.Comparison of color parameters of leaf digital images of different corn varieties


下载: 全尺寸图片幻灯片


图2玉米不同生育期/不同品种叶片数字图像绿光标准化值[G/(R+G+B)]与蓝光标准化值[B/(R+G+B)]的线性相关性
Figure2.Linear correlation between G/(R+G+B) and B/(R+G+B) of corn leaf digital images at different growth stages or of different varieties


下载: 全尺寸图片幻灯片


图3玉米叶片图像蓝光标准化值[B/(R+G+B)]与叶脉硝酸盐浓度的拟合曲线
Figure3.Fitted curve of B/(R+G+B) of leaf digital images and vein nitrate concentration of corn


下载: 全尺寸图片幻灯片

表1玉米品种‘郑单958’不同生育期的叶片数字图像的色彩参数的比较
Table1.Comparison of color parameters of leaf digital images of corn 'ZD 958' at different growth stages
色彩参数
Color
parameter
平均值
Average
标准差
Std.
变异系数
CV
6叶期
6-leaf
stage
9叶期
9-leaf
stage
6叶期
6-leaf
stage
9叶期
9-leaf
stage
6叶期
6-leaf
stage
9叶期
9-leaf
stage
R 60.622b 67.610a 10.042 11.283 0.166 0.167
G 71.262b 85.037a 10.569 13.307 0.148 0.156
B 32.536b 42.928a 7.416 6.562 0.228 0.153
R/(R+G+B) 0.371b 0.343a 0.009 0.010 0.024 0.029
G/(R+G+B) 0.452a 0.448a 0.021 0.011 0.047 0.024
B/(R+G+B) 0.177b 0.209a 0.024 0.018 0.136 0.086
G/R 1.220b 1.310a 0.060 0.036 0.049 0.027
VARI 0.108b 0.161a 0.026 0.016 0.237 0.099
不同小写字母表示两个生育期间差异显著(P < 0.05)。Different small letters mean significant differences among two growth stages (P < 0.05).


下载: 导出CSV
表2玉米不同生育期叶片图像色彩参数与传统氮素营养指标的相关关系
Table2.Correlation coefficients (R2) between color parameters of leaf digital images of corn and traditional nitrogen nutrient indexes at different growth stages
色彩参数
Color
parameter
SPAD 叶脉硝酸盐
Vein nitrate
concentration
6叶期6-leaf stage 9叶期9-leaf stage 6叶期6-leaf stage 9叶期9-leaf stage
R 0.082 0.678** 0.113* 0.238**
G 0.077 0.627** 0.083 0.191**
B 0.325** 0.200 0.366** 0.024
R/(R+G+B) 0.077 0.591** 0.031 0.314**
G/(R+G+B) 0.754** 0.349** 0.598** 0.217**
B/(R+G+B) 0.710** 0.642** 0.608** 0.354**
G/R 0.568** 0.207** 0.431** 0.126*
VARI 0.436** 0.337** 0.315** 0.165**
***分别表示P < 0.05和P < 0.01水平显著相关。* and ** mean significant correlations at P < 0.05 and P < 0.01, respectively.


下载: 导出CSV
表3基于玉米叶片图像蓝光标准化值[B/(R+G+B)]的玉米氮素营养诊断与推荐施肥指标体系
Table3.Diagnosis of nitrogen nutrition and fertilization recommendation system of corn with B/(R+G+B) as the sensitive color parameter
B/(R+G+B) < 0.158 7 0.158 7
~0.165 7
0.165 7
~0.170 8
0.170 8
~ 0.1749
0.174 9
~0.178 3
0.178 3
~0.181 2
0.181 2
~ 0.1838
> 0.183 8
营养状况
Nitrogen nutrition status
极低
Extremely low

Low
较低
Lower

Moderate

High
较高
Higher
极高
Extremely high
超高
Ultra high
目标产量
Yield target (t·hm-2)
推荐施氮量Recommended topdressing amount of nitrogen fertilizer
[kg(N)-hm-2]
7 250 200~225 150~175 100~125 60~80 30~45 0~15 0
8 225~250 175~200 125~150 80~100 45~60 15~30 15
9 195~225 140~170 90~115 50~70 15~35 20


下载: 导出CSV

参考文献(23)
[1]朱兆良, 文启孝.中国土壤氮素[M].南京:江苏科学技术出版社, 1992
ZHU Z L, WEN Q X. Nitrogen in Soils of China[M]. Nanjing:Jiangsu Science and Technology Press, 1992
[2]ZHAO R F, CHEN X P, ZHANG F S, et al. Fertilization and nitrogen balance in a wheat-maize rotation system in North China[J]. Agronomy Journal, 2006, 98(4):938-945 doi: 10.2134/agronj2005.0157
[3]吴倩, 孙红, 李民赞, 等.玉米作物多光谱图像精准分割与叶绿素诊断方法研究[J].光谱学与光谱分析, 2015, 35(1):178-183 http://www.cnki.com.cn/Article/CJFDTotal-GUAN201501045.htm
WU Q, SUN H, LI M Z, et al. Research on maize multispectral image accurate segmentation and chlorophyll index estimation[J]. Spectroscopy and Spectral Analysis, 2015, 35(1):178-183 http://www.cnki.com.cn/Article/CJFDTotal-GUAN201501045.htm
[4]CUI Z L, CHEN X P, MIAO Y X, et al. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China plain[J]. Agronomy Journal, 2008, 100(6):1527-1534 doi: 10.2134/agronj2008.0005
[5]张立周, 侯晓宇, 张玉铭, 等.数字图像诊断技术在冬小麦氮素营养诊断中的应用[J].中国生态农业学报, 2011, 19(5):1168-1174 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110529&flag=1
ZHANG L Z, HOU X Y, ZHANG Y M, et al. Diagnosis of the state of N in wheat via digital image processing technique[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1168-1174 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110529&flag=1
[6]张立周, 王殿武, 张玉铭, 等.数字图像技术在夏玉米氮素营养诊断中的应用[J].中国生态农业学报, 2010, 18(6):1340-1344 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061340&flag=1
ZHANG L Z, WANG D W, ZHANG Y M, et al. Diagnosis of N nutrient status of corn using digital image processing technique[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6):1340-1344 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061340&flag=1
[7]王连君, 宋月.应用数字图像技术对葡萄进行氮素营养诊断的研究[J].农业科技通讯, 2017, (7):186-189 http://www.cqvip.com/QK/93107X/201707/672598409.html
WANG L J, SONG Y. Study on the nitrogen nutrition diagnosis of grape using digital image processing technique[J]. Bulletin of Agricultural Science and Technology, 2017, (7):186-189 http://www.cqvip.com/QK/93107X/201707/672598409.html
[8]王连君, 邢宇.数字图像技术在草莓氮素营养诊断中的应用研究[J].华南农业大学学报, 2010, 31(2):19-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnydxxb201002006
WANG L J, XING Y. Study on strawberry of N nutrition diagnosis using digital image processing technique[J]. Journal of South China Agricultural University, 2010, 31(2):19-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnydxxb201002006
[9]王娟, 雷咏雯, 张永帅, 等.应用数字图像分析技术进行棉花氮素营养诊断的研究[J].中国生态农业学报, 2008, 16(1):145-149 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20080132&flag=1
WANG J, LEI Y W, ZHANG Y S, et al. Diagnosis of cotton N status using digital image analysis technique[J]. Chinese Journal of Eco-Agriculture, 2008, 16(1):145-149 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20080132&flag=1
[10]BLACKMER T M, SCHEPERS J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn[J]. Journal of Production Agriculture, 1994, 8(1):56-60
[11]AL-ABBAS A H, BARR R, HALL J D, et al. Spectra of normal and nutrient-deficient maize leaves[J]. Agronomy Journal, 1974, 66(1):16-20 doi: 10.2134/agronj1974.00021962006600010005x
[12]李红军, 李佳珍, 雷玉平, 等.无人机搭载数码相机航拍进行小麦、玉米氮素营养诊断研究[J].中国生态农业学报, 2017, 25(12):1832-1841 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171211&flag=1
LI H J, LI J Z, LEI Y P, et al. Diagnosis of nitrogen nutrition of winter wheat and summer corn using images from digital camera equipped on unmanned aerial vehicle[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12):1832-1841 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171211&flag=1
[13]夏莎莎, 张聪, 李佳珍, 等.基于手机相机获取冬小麦冠层数字图像的氮素诊断与推荐施肥研究[J].中国生态农业学报, 2018, 26(4):538-546 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0407&flag=1
XIA S S, ZHANG C, LI J Z, et al. Study on nitrogen nutrition diagnosis and fertilization recommendation of winter wheat using canopy digital images from cellphone camera[J]. Chinese Journal of Eco-Agriculture, 2018, 26(4):538-546 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0407&flag=1
[14]胡昊, 白由路, 杨俐苹, 等.基于SPAD-502与GreenSeeker的冬小麦氮营养诊断研究[J].中国生态农业学报, 2010, 18(4):748-752 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20104748&flag=1
HU H, BAI Y L, YANG L P, et al. Diagnosis of nitrogen nutrition in winter wheat (Triticum aestivum) via SPAD-502 and GreenSeeker[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4):748-752 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20104748&flag=1
[15]党蕊娟, 李世清, 穆晓慧, 等.施氮对半湿润农田夏玉米冠层氮素及叶绿素相对值(SPAD值)垂直分布的影响[J].中国生态农业学报, 2009, 17(1):54-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200901010
DANG R J, LI S Q, MU X H, et al. Effect of nitrogen on vertical distribution of canopy nitrogen and chlorophyll relative value (SPAD value) of summer maize in sub-humid areas[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):54-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200901010
[16]李鹏程, 董合林.叶绿素仪在棉花氮肥推荐中的研究进展[J].中国农学通报, 2015, 31(21):92-97 doi: 10.11924/j.issn.1000-6850.casb15020002
LI P C, DONG H L. A review on chlorophyll meter application on nitrogen fertilizer recommendation for cotton[J]. Chinese Agricultural Science Bulletin, 2015, 31(21):92-97 doi: 10.11924/j.issn.1000-6850.casb15020002
[17]李志宏, 张云贵, 刘宏斌, 等.叶绿素仪在夏玉米氮营养诊断中的应用[J].植物营养与肥料学报, 2005, 11(6):764-768 doi: 10.11674/zwyf.2005.0609
LI Z H, ZHANG Y G, LIU H B, et al. Application of chlorophyll meter on N nutritional diagnosis for summer corn[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6):764-768 doi: 10.11674/zwyf.2005.0609
[18]童淑媛, 宋凤斌. SPAD值在玉米氮素营养诊断及推荐施肥中的应用[J].农业系统科学与综合研究, 2009, 25(2):233-238 http://www.cqvip.com/QK/94062X/200902/30173659.html
TONG S Y, SONG F B. Application of SPAD value on N nutritional diagnosis and fertilization recommendation[J]. System Sciences and Comprehensive Studies in Agriculture, 2009, 25(2):233-238 http://www.cqvip.com/QK/94062X/200902/30173659.html
[19]张福锁.测土配方施肥技术要览[M].北京:中国农业大学出版社, 2006
ZHANG F S. A Review of Soil Testing and Fertilizer Recommendation Technique[M]. Beijing:China Agricultural University Press, 2006
[20]杨绍锷, 杜鑫.基于光谱信息的作物氮素营养诊断研究进展[J].湖南农业科学, 2017, (2):127-130 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hnnk201702032&dbname=CJFD&dbcode=CJFQ
YANG S E, DU X. Advances of crop nitrogen diagnosis based on spectral information[J]. Hunan Agricultural Sciences, 2017, (2):127-130 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hnnk201702032&dbname=CJFD&dbcode=CJFQ
[21]ADAMSEN F G, PINTER P J JR, BARNES E M, et al. Measuring wheat senescence with a digital camera[J]. Crop Science, 1999, 39(7):719-724 https://arizona.pure.elsevier.com/en/publications/measuring-wheat-senescence-with-a-digital-camera
[22]肖焱波, 贾良良, 陈新平, 等.应用数字图像分析技术进行冬小麦拔节期氮营养诊断[J].中国农学通报, 2008, 24(8):448-553 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200808097
XIAO Y B, JIA L L, CHEN X P, et al. N status diagnosis of winter wheat by using digital image analysis technology[J]. Chinese Agricultural Science Bulletin, 2008, 24(8):448-553 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200808097
[23]贾良良, 范明生, 张福锁, 等.应用数码相机进行水稻氮营养诊断[J].光谱学与光谱分析, 2009, 29(8):2176-2179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200908037
JIA L L, FAN M S, ZHANG F S, et al. Nitrogen status diagnosis of rice by using a digital camera[J]. Spectroscopy and Spectral Analysis, 2009, 29(8):2176-2179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200908037

相关话题/营养 技术 推荐 图像 指标

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 水稻冠层图像分割方法对比研究
    黄巧义1,2,,樊小林2,张木1,黄旭1,李苹1,付弘婷1,唐拴虎1,,1.广东省农业科学院农业资源与环境研究所/农业部南方植物营养与肥料重点实验室/广东省养分资源循环利用与耕地保育重点实验室广州5106402.华南农业大学/广东高校环境友好型肥料工程技术研究中心广州510642基金项目:公益性行业 ...
    本站小编 Free考研考试 2022-01-01
  • 玉米秸秆还田技术支付与受偿意愿差异性研究——以保定市徐水区农户调查为例
    周颖1,,周清波1,,,甘寿文1,祖君鸣2,杜艳芹21.中国农业科学院农业资源与农业区划研究所北京1000812.河北省保定市徐水区农业局徐水072550基金项目:中央级公益性科研院所专项资金项目720-32详细信息作者简介:周颖,主要研究方向为农业生态经济与农业生态补偿。E-mail:zhouyi ...
    本站小编 Free考研考试 2022-01-01
  • 基于手机相机获取冬小麦冠层数字图像的氮素诊断与推荐施肥研究
    夏莎莎1,,张聪3,李佳珍2,李红军2,张玉铭2,,,胡春胜21.中国科学院生态环境研究中心北京1000852.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室石家庄0500223.华北制药集团爱诺有限公司石家庄050000基金项目:国家重点 ...
    本站小编 Free考研考试 2022-01-01
  • 基于社团检测算法的固件二进制比对技术
    肖睿卿,费金龙,祝跃飞,蔡瑞杰,刘胜利(数学工程与先进计算国家重点实验室郑州450001)(xiao_paper@126.com)出版日期:2022-01-01基金资助:国家重点研发计划项目(2019QY1300);科技委基础加强项目(2019-JCJQ-ZD-113)Commission(2019 ...
    本站小编 Free考研考试 2022-01-01
  • 基于互惠性约束的可解释就业推荐方法
    朱海萍,赵成成,刘启东,郑庆华,曾疆维,田锋,陈妍(西安交通大学电子与信息学部西安710049)(智能网络与网络安全教育部重点实验室(西安交通大学)西安710049)(zhuhaiping@xjtu.edu.cn)出版日期:2021-12-01基金资助:国家重点研究与发展计划(2020AAA0108 ...
    本站小编 Free考研考试 2022-01-01
  • 基于自注意力网络的共享账户跨域序列推荐
    郭磊1,李秋菊1,刘方爱2,王新华21(山东师范大学商学院济南250358);2(山东师范大学信息科学与工程学院济南250358)(leiguo.cs@gmail.com)出版日期:2021-11-01基金资助:国家自然科学基金项目(61602282,61772321);中国博士后科学基金项目(20 ...
    本站小编 Free考研考试 2022-01-01
  • 一种面向含噪中尺度量子技术的量子-经典异构计算系统
    付祥1,郑宇真1,苏醒2,于锦涛3,徐炜遐1,吴俊杰11(国防科技大学计算机学院量子信息研究所兼高性能计算国家重点实验室长沙410073);2(国防科技大学计算机学院长沙410073);3(数学工程与先进计算国家重点实验室郑州450001)(xiangfu@quanta.org.cn)出版日期:20 ...
    本站小编 Free考研考试 2022-01-01
  • 面向超导量子计算机的程序映射技术研究
    窦星磊,刘磊,陈岳涛(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190)(中国科学院计算技术研究所北京100190)(liulei2010@ict.ac.cn)出版日期:2021-09-01基金资助:国家自然科学基金项目(62072432,61502452)AnInvesti ...
    本站小编 Free考研考试 2022-01-01
  • 一种基于3因素概率图模型的长尾推荐方法
    冯晨娇1,2,宋鹏3,王智强1,梁吉业11(计算智能与中文信息处理教育部重点实验室(山西大学)太原030006);2(山西财经大学应用数学学院太原030006);3(山西大学经济与管理学院太原030006)(fengcj@sxufe.edu.cn)出版日期:2021-09-01基金资助:国家自然科学 ...
    本站小编 Free考研考试 2022-01-01
  • 图像描述生成研究进展
    李志欣1,魏海洋1,张灿龙1,马慧芳2,史忠植31(广西多源信息挖掘与安全重点实验室(广西师范大学)广西桂林541004);2(西北师范大学计算机科学与工程学院兰州730070);3(中国科学院智能信息处理重点实验室(中国科学院计算技术研究所)北京100190)(lizx@gxnu.edu.cn)出 ...
    本站小编 Free考研考试 2022-01-01