删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

氮肥减施对玉米幼苗根系分泌物影响的根际代谢组学分析

本站小编 Free考研考试/2022-01-01

彭钰洁,
程楠,
李佳佳,
孔杨鹭,
孙彩霞,
东北大学生命科学与健康学院 沈阳 110169
基金项目: 国家自然科学基金项目31300331
辽宁省科学技术计划项目201602260
沈阳市科学计划项目17-231-1-02


详细信息
作者简介:彭钰洁, 主要研究方向为植物代谢组学分析。E-mail:2838910703@qq.com
通讯作者:孙彩霞, 主要从事植物生理生态研究。E-mail:caixiasun@mail.neu.edu.cn
中图分类号:S181

计量

文章访问数:858
HTML全文浏览量:8
PDF下载量:968
被引次数:0
出版历程

收稿日期:2017-09-19
录用日期:2017-11-19
刊出日期:2018-06-01

Effects of nitrogen fertilizer reduction on root exudates of maize seedling ana-lyzed by rhizosphere metabonomics

PENG Yujie,
CHENG Nan,
LI Jiajia,
KONG Yanglu,
SUN Caixia,
College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
Funds: the National Natural Science Foundation of China31300331
he Science and Technology Program of Liaoning Province, China201602260
the Science and Technology Program of Shenyang City, China17-231-1-02


More Information
Corresponding author:SUN Caixia, E-mail:caixiasun@mail.neu.edu.cn


摘要
HTML全文
(3)(1)
参考文献(24)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:植物根系分泌物的根际代谢组学分析有助于更好地理解土壤根际微域内植物根系与土壤和土壤生物之间化学信号交流的根际过程。本文采用核磁共振氢谱(1H nuclear magnetic resonance,1H NMR)技术,对基于不同施氮处理下[常规施氮(180 kg·hm-2)、80%常规氮量和55%常规氮量]土壤培养收集的玉米幼苗的根系土壤沥出液(soil leachate,SL)、根鞘土浸提液(rhizosheath soil,RS)和根系水培液(distilled water cultivation,DWC)内的根系分泌物进行检测,并结合多维统计分析对比了不同收集方法以及不同施氮量下玉米幼苗根系分泌物的不同。结果表明:3种不同方法收集的玉米幼苗根系分泌物的核磁共振氢谱谱图轮廓及主要标志物明显不同。其中SL法的谱图峰信号及检测到的根系分泌物数目少,而RS和DWC法的谱图峰信号较多且可检测到玉米幼苗根系分泌物中的糖、有机酸和氨基酸等组分。与常规施氮量比较,在85%施氮量下,玉米幼苗根系分泌物中的α-葡萄糖、苹果酸、亮氨酸、缬氨酸水平显著增加;而当施氮量减少到55%时,玉米幼苗根系分泌物水平不再显著增加并呈现下降趋势。上述根系分泌物的变化可能和玉米根系对土壤氮营养供应水平的适应性调节有关。采用1H NMR技术,结合RS和DWC收集方法进行根际代谢组学分析,可为根际生态及根际氮素营养研究提供重要理论依据。
关键词:氮肥减施/
玉米/
根系分泌物/
根际代谢组学/
核磁共振氢谱(1H NMR)
Abstract:As one of the most critical environmental factors driving plant growth, soil N availability significantly influences the composition and quantity of root exudates. Concerning the environmental benefits, the inputs reduction of N fertilizer can be an attractive option for crop production in a more sustainable agriculture system. However, the pattern of root exudates in response to the reduced N levels remains poorly understood, especially for maize (Zea mays L.) plants. Metabolomics of root exudates can potentially help us to better understand the chemical communication between roots, soils and organisms in the rhizosphere. In this study, to characterize root exudation pattern of maize plants grown under conditions with reduced N fertilizer at metabolomics level, three methods were developed for collecting root exudates from maize seedling planted in soils through soil leachate (SL), rhizosheath soil extraction (RS) and distilled water cultivation (DWC), respectively. The metabolomics of root exudates collected by different methods under nitrogen fertilizer reduction conditions were investigated based on 1H NMR spectroscopy. Partial least squares projection to latent structures-discriminant analysis was performed to quantify the difference of metabolomics among samples and conditions. The results showed that the whole profilings of 1H NMR were distinctly different among root exudates obtained by three methods, and the major compounds contributing to the discrimination also varied. The most important exudates that differentiated the samples between SL and RS methods were glucose and alanine while more exudates such as acetate, lactate, succinate, sucrose, alanine, leucine, isoleucine and valine accounted for the discrimination between SL and DWC methods. In addition, the most important exudates that differentiated the samples between RS and DWC methods were acetate, lactate, succinate and isoleucine. The peak signals of 1H NMR and number of assigned metabolites in root exudates detected by method of SL were less while that were rather more in the methods of RS and DWC; and sugars, organic acids and amino acids in root exudates of maize seedlings were detected by the latter two methods. In contrast to the control of 100%-N level (corresponding to the conventional application rate of 180 kg·hm-2), the levels of α-glucose, malate, leucine and valine increased significantly in root exudates of maize seedlings in treatment with 85%-N level. However, the level of exudates decreased with reducing fertilizer N application rate and its difference between control and 55%-N treatment was not significant. The changes of root exudates may influence soil organic matter turnover and lead to an increase in plant-available N. Our results indicated that maize seedlings might adapt to the variation of nitrogen nutrient situation in soil by regulation of exudation. Metabolomics analysis of root exudates based on 1H NMR spectroscopy combined with sample collecting methods of rhizosheath soil extraction and distilled water cultivation could provide important theoretical basis for the study on the rhizosphere ecology and nitrogen nutrition. The possible ecological roles of root exudates in response to N reduction should be fully elucidated in the future. A combined approach involving different metabolomic tools will facilitate the understanding of belowground chemical communications and rhizosphere interactions under conditions of N reduction.
Key words:Nitrogen fertilizer reduction/
Maize/
Root exudates/
Rhizosphere metabolomics/
1H NMR

HTML全文


图1不同收集方法的常规施氮下玉米幼苗根系分泌物的典型1H NMR谱图
CK:无植物对照; SL:土壤沥出; RS:根鞘土; DWC:根系水培养。Leu:亮氨酸; Ile:异亮氨酸; Val:缬氨酸; Thr:苏氨酸; Lac:乳酸; Ala:丙氨酸; AA:乙酸; Pyr:丙酮酸; Succ:琥珀酸; CA:柠檬酸; Asp:天冬氨酸; GB:甜菜碱; MA:苹果酸; Asn:天冬酰胺; GAGB: γ-氨基丁酸; Suc:蔗糖; β-Gluc: β-葡萄糖; α-Gluc: α-葡萄糖; Fum:延胡索酸; Ac:乌头酸; For:甲酸。
Figure1.Typical 1H NMR spectra of root exudates of maize seedlings collected by different methods conventional nitrogen application
CK: control without plants; SL: soil leachate; RS: rhizosheath soil; DWC: distilled water cultivation. Leu: leucine; Ile: isoleucine; Val: valine; Thr: threonine; Lac: lactate; Ala: alanine; AA: acetate; Pyr: pyruvate; Succ: succinate; CA: citrate; Asp: aspartate; GB: glycinebataine; MA: malate; Asn: asparagine; GAGB: γ-amino-butyrate; Suc: sucrose; β-Gluc: β-glucose; α-Gluc: α-glucose; Fum: fumarate; Ac: aconitic acid; For: formate.


下载: 全尺寸图片幻灯片


图2不同收集方法的常规施氮量下玉米幼苗根系分泌物轮廓的PLS-DA分析
CK:无植物对照; SL:土壤沥出; RS:根鞘土; DWC:根系水培养。a、b、c和d是得分图; e、f和g为特征代谢物筛选图。Ala:丙氨酸; Ile:异亮氨酸; Leu:亮氨酸; Val:缬氨酸; Suc:蔗糖; β-Gluc: β-葡萄糖; α-Gluc: α-葡萄糖; AA:乙酸; Lac:乳酸; Succ:琥珀酸; GB:甜菜碱。
Figure2.PLS-DA of metabolite profiles of root exudates of maize seedlings under conventional nitrogen application obtained with different methods
CK: control without plants; SL: soil leachate; RS: rhizosheath soil; DWC: distilled water cultivation. Figure a, b, c and d are score plots. Figure e, f and g are metabolites screening for discrimination. Ala: alanine; Ile: isoleucine; Val: valine; Suc: sucrose; β-Gluc: β-glucose; α-Gluc: α-glucose; AA: acetate; Lac: lactate; Succ: succinate; GB: glycinebataine.


下载: 全尺寸图片幻灯片


图3不同施氮量下的玉米幼苗根系分泌物的典型1H NMR谱图
图a、b、c分别为100%(180 kg·hm-2)、85%和55%施氮量下的根鞘土浸提; 图d、e、f分别为100%(180 kg·hm-2)、85%和55%施氮量下的根系水培养。
Figure3.Typical 1H NMR spectra of root exudates of maize seedlings grown under different nitrogen fertilizer rates
Spectra of figure a, b and c are obtained using method of rhizosheath soil extraction (RS) from treatments of 100%-, 85%-and 55%-N application rate (N100, N85 and N55), respectively; spectra of figure d, e and f are obtained using method of roots distilled water cultivation (DWC) from treatments of 100%-, 85%-and 55%-N application rate (N100, N85 and N55), respectively.


下载: 全尺寸图片幻灯片

表1相对于常规施氮量不同减氮处理[85%(N85)55%(N55)常规施氮量]下玉米幼苗根系分泌代谢物的变化比
Table1.Change rates of metabolites in root exudates of maize seedlings under different reduced-nitrogen application conditions [85% (N85) and 55% (N55) conventional nitrogen application] relative to conventional nitrogen application (180 kg·hm-2)
代谢物
Metabolites
根鞘土
Rhizosheath soil extraction
根系水培养
Distilled water cultivation
N85 N55 N85 N55
蔗糖
Sucose
1.12±0.33 1.02±0.26 1.11±0.10 1.09±0.12
α-葡萄糖
α-Glucose
1.44±0.26* 1.26±0.19* 1.01±0.05 1.16±0.09
β-葡萄糖
β-Glucose
1.04±0.18 1.07±0.15 1.02±0.05 1.06±0.09
丙氨酸
Alanine
1.00±0.10 1.10±0.04 1.02±0.23 1.06± 0.39
天冬酰胺
Asparagine
1.09±0.07 1.06±0.12 0.99±0.31 1.03±0.47
天冬氨酸
Aspartate
1.08±0.04 1.01±0.07 1.03±0.05 1.06±0.07
γ-氨基丁酸
γ-amino-butyrate
1.05±0.06 1.04±0.06 1.06±0.09 1.08±0.04
异亮氨酸
Isoleucine
1.06±0.14 1.00±0.08 1.03±0.09 1.09±0.06
亮氨酸
Leucine
1.08±0.10 1.00±0.04 1.20±0.09* 1.11±0.11
缬氨酸
Valine
1.14±0.11 1.07±0.04 1.46±0.35* 1.18±0.21
乙酸
Acetate
1.08±0.16 0.91±0.07 0.87±0.11 1.03±0.06
乌头酸
Aconitic acid
0.99±0.27 1.12±0.38 1.04±0.13 1.02±0.15
柠檬酸
Citrate
1.05±0.05 1.06±0.10 1.04±0.05 1.06±0.05
甲酸
Formate
1.02±0.26 0.98±0.15 0.99±0.03 1.08±0.07
延胡索酸
Fumarate
1.00±0.22 1.01±0.13 1.13±0.13 1.12± 0.03
乳酸
Lactate
1.11±0.16 1.02±0.09 1.01±0.12 1.04±0.08
苹果酸
Malate
1.14±0.12 1.03±0.12 1.32±0.10* 1.13±0.23
丙酮酸
Pyruvate
1.13±0.18 0.98±0.08 1.16±0.23 1.01±0.12
琥珀酸
Succinate
1.10±0.15 1.03±0.16 0.99±0.26 0.98±0.15
甜菜碱
Glycinebataine
1.13±0.08 1.06±0.09 1.04±0.38 1.20±0.32
*表示代谢物变化率达显著水平(P < 0.05)。* means metabolites with significant changes at 0.05 level under reduced-nitrogen treatment compared with the conventional nitrogen treatment.


下载: 导出CSV

参考文献(24)
[1]严小龙, 廖红, 年海.根系生物学:原理与应用[M].北京:科学出版社, 2007:1-305
YAN X L, LIAO H, NIAN H. Roots Biology:Principles and Applications[M]. Beijing:Science Press, 2007:1-305
[2]VAN DAM N M, BOUWMEESTER H J. Metabolomics in the rhizosphere:Tapping into belowground chemical communication[J]. Trends in Plant Science, 2016, 21(3):256-265 doi: 10.1016/j.tplants.2016.01.008
[3]STREHMEL N, B?TTCHER C, SCHMIDT S, et al. Profiling of secondary metabolites in root exudates of Arabidopsis Thaliana[J]. Phytochemistry, 2014, 108:35-46 doi: 10.1016/j.phytochem.2014.10.003
[4]ESCUDERO N, MARHUENDA-EGEA F C, IBANCO-CA?ETE R, et al. A metabolomic approach to study the rhi-zodeposition in the tritrophic interaction:Tomato, Pochonia chlamydosporia and Meloidogyne javanica[J]. Me-tabolomics, 2014, 10(5):788-804 http://www.ingentaconnect.com/content/ssam/15733882/2014/00000010/00000005/art00004
[5]罗庆, 孙丽娜, 胡筱敏.镉超富集植物东南景天根系分泌物的代谢组学研究[J].分析化学, 2015, 43(1):7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201501002
LUO Q, SUN L N, HU X M. Metabonomics study on root exudates of Cd hyperaccumulator Sedum alfredii[J]. Chinese Journal of Analytical Chemistry, 2015, 43(1):7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201501002
[6]RUGOVA A, PUSCHENREITER M, KOELLENSPERGER G, et al. Elucidating rhizosphere processes by mass spectrometry-A review[J]. Analytica Chimica Acta, 2017, 956:1-13 doi: 10.1016/j.aca.2016.12.044
[7]SUN C X, CHEN X, CAO M M, et al. Growth and metabolic responses of maize roots to straw biochar application at dif-ferent rates[J]. Plant and Soil, 2017, 416(1/2):487-502 http://cn.bing.com/academic/profile?id=e33d1613da27884da6297067497ad141&encoded=0&v=paper_preview&mkt=zh-cn
[8]李春霞, 吴凤芝.根系分泌物的收集及其介导的种间互作[J].西北农业学报, 2016, 25(6):795-803 doi: 10.7606/j.issn.1004-1389.2016.06.001
LI C X, WU F Z. Advances of root exudates collection and root exudates mediated interspecific interactions[J]. Acta Ag-riculturae Boreali-Occidentalis Sinica, 2016, 25(6):795-803 doi: 10.7606/j.issn.1004-1389.2016.06.001
[9]ZHU S S, VIVANCO J M, MANTER D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology, 2016, 107:324-333 doi: 10.1016/j.apsoil.2016.07.009
[10]MA W, LI X X, LI C J. Modulation of soil particle size and nutrient availability in the maize rhizosheath[J]. Pedosphere, 2011, 21(4):483-490 doi: 10.1016/S1002-0160(11)60150-1
[11]VALENTINUZZI F, PⅡ Y, VIGANI G, et al. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa[J]. Journal of Experimental Botany, 2015, 66(20):6483-6495 doi: 10.1093/jxb/erv364
[12]FAN T W M, LANE A N, PEDLER J, et al. Comprehensive analysis of organic ligands in whole root exudates using nu-clear magnetic resonance and gas chromatography-mass spectrometry[J]. Analytical Biochemistry, 1997, 251(1):57-68 doi: 10.1006/abio.1997.2235
[13]FISCHER H, ECKHARDT K U, MEYER A, et al. Rhizodep-osition of maize:Short-term carbon budget and composi-tion[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(1):67-79 doi: 10.1002/jpln.v173:1
[14]TIWARI S, SINGH P, TIWARI R, et al. Salt-tolerant rhizo-bacteria-mediated induced tolerance in wheat (Triticum aes-tivum) and chemical diversity in rhizosphere enhance plant growth[J]. Biology and Fertility of Soils, 2011, 47:907-916 doi: 10.1007/s00374-011-0598-5
[15]PROCTOR C, HE Y H. Quantifying root extracts and exu-dates of sedge and shrub in relation to root morphology[J]. Soil Biology and Biochemistry, 2017, 114:168-180 doi: 10.1016/j.soilbio.2017.07.006
[16]COSKUN D, BRITTO D T, SHI W M, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017, 22(8):661-673 doi: 10.1016/j.tplants.2017.05.004
[17]闫湘, 金继运, 何萍, 等.提高肥料利用率技术研究进展[J].中国农业科学, 2008, 41(2):450-459 http://www.cqvip.com/qk/90161X/200802/26681785.html
YAN X, JIN J Y, HE P, et al. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2):450-459 http://www.cqvip.com/qk/90161X/200802/26681785.html
[18]KUIJKEN R C P, VAN EEUWIJK F A, MARCELIS L F M, et al. Root phenotyping:From component trait in the lab to breeding[J]. Journal of Experimental Botany, 2015, 66(18):5389-5401 doi: 10.1093/jxb/erv239
[19]BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Bio-chemistry, 2003, 35(9):1183-1192 doi: 10.1016/S0038-0717(03)00179-2
[20]HUANG X F, CHAPARRO J M, REARDON K F, et al. Rhi-zosphere interactions:Root exudates, microbes, and mi-crobial communities[J]. Botany, 2014, 92(4):267-275 doi: 10.1139/cjb-2013-0225
[21]CARVALHAIS L C, DENNIS P G, FEDOSEYENKO D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1):3-11 doi: 10.1002/jpln.v174.1
[22]FISK L M, BARTON L, JONES D L, et al. Root exudate carbon mitigates nitrogen loss in a semi-arid soil[J]. Soil Bi-ology and Biochemistry, 2015, 88:380-389 doi: 10.1016/j.soilbio.2015.06.011
[23]LUO Q, WANG S Y, SUN L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS[J]. Scientific Reports, 2017, 7:39878 doi: 10.1038/srep39878
[24]M?NCHGESANG S, STREHMEL N, SCHMIDT S, et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data[J]. Scientific Reports, 2016, 6:29033 doi: 10.1038/srep29033

相关话题/土壤 植物 图片 信号 根系