删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水稻植株特性对稻田甲烷排放的影响及其机制的研究进展

本站小编 Free考研考试/2022-01-01

江瑜1, 2,,
管大海3,
张卫建1,,
1.中国农业科学院作物科学研究所/农业部作物生理生态重点实验室 北京 100081
2.Department of Geography, College ofLife and Environmental Sciences, University of Exeter, Exeter EX4 4 RJ, UK
3.农业部农业生态与资源保护总站 北京 100125
基金项目: 国家“十三五”重点研发计划项目2016YFD0300903

详细信息
作者简介:江瑜, 主要研究方向为农田生态。E-mail:jiangyu198610@163.com
通讯作者:张卫建, 主要研究方向为耕作制度与农田生态。E-mail:zhangweijian@caas.cn
中图分类号:X511;S318

计量

文章访问数:1077
HTML全文浏览量:5
PDF下载量:1156
被引次数:0
出版历程

收稿日期:2017-12-05
录用日期:2017-12-12
刊出日期:2018-02-01

The effect of rice plant traits on methane emissions from paddy fields: A review

JIANG Yu1, 2,,
GUAN Dahai3,
ZHANG Weijian1,,
1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
2. Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4 RJ, UK
3. General Station for Agricultural Ecology and Resources Protection, Ministry of Agriculture, Beijing 100125, China
Funds: the National Key Research and Development Project of China2016YFD0300903

More Information
Corresponding author:ZHANG Weijian, E-mail:zhangweijian@caas.cn


摘要
HTML全文
(0)(0)
参考文献(46)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:水稻是我国最主要的口粮作物,稻田是重要温室气体甲烷的主要排放源之一。水稻植株特性既是水稻产量形成的关键因子,也是稻田甲烷排放的主要影响因子。但是,至今关于水稻植株对稻田甲烷排放的调控效应及其机制仍存在许多不一致的认识。为此,本文从形态特征、生理生态特征、植株-环境互作等方面,对现有的相关研究进行了综合论述。水稻地上部形态特征如分蘖数、株高、叶面积等对稻田甲烷排放的影响的研究结果不尽相同,起关键作用的是地下系统。优化光合产物分配在持续淹水的情况下可以减少稻田甲烷排放。提高水稻生物量在低碳土壤增加稻田甲烷排放,但在高碳土壤下降低甲烷排放。本文还明确了相关研究现状和存在的问题。在此基础上,作者认为未来应加强水稻根系形态及其生理特征,以及水稻植株-土壤环境(尤其是水分管理和养分管理)互作对稻田甲烷产生、氧化和排放影响的研究,在方法上应加强微区试验和大田试验的结合,并开展植株和稻田的碳氮互作效应及其机制研究,为高产低碳排放的水稻品种选育和低碳稻作模式创新提供理论参考和技术指导。
关键词:温室气体排放/
甲烷/
稻田/
水稻植株特性/
植株-环境互作/
碳排放/
粮食安全
Abstract:Rice is the most important stable food in China and rice paddies constitute a major source of methane (CH4) emission. Rice plant traits not only play an important role in rice yield, but also significantly affect CH4 emission from paddy fields. However, there have been wide gaps in the understanding of the effects of rice plant traits on CH4 emissions from paddy fields. Thus research status and progress on the impact of rice plant on CH4 emissions were reviewed in terms of plant morphological and physiological characteristics (especially photosynthetic characteristics), plant-environment interactions, etc. The effects of aboveground plant traits (e.g. tiller, plant height and leaf area) on CH4 emissions from paddy fields have remained inconclusive. The belowground system plays a key role in CH4 emission. Optimizing photosynthate allocation can reduce CH4 emission in continuously flooded paddy fields. High biomass rice plants can increase CH4 emission in low C paddy soils, but reduce CH4 emission in high C paddy soils. Based on the summary of the effects and the underlying mechanisms reported in existing studies, further efforts were needed, such as assessment of the effects of root morphological and physiological characteristics and plant-environment interactions on CH4 production, oxidation and emission. There was also the need to pay more attention on the underlying mechanisms that combines microcosmic and field experiments and other new research methods. Meanwhile, the interaction and underlying mechanisms of carbon and nitrogen in plant-soil systems needed further exploration in future studies. A good understanding of the impact of rice plants on CH4 emissions can provide the theoretical basis for rice cultivar breeding and innovative rice cropping with less greenhouse gas emissions and high yields.
Key words:Greenhouse gas emission/
Methane/
Paddy field/
Rice plant traits/
Plant-environment interaction/
Carbon emission/
Food security

HTML全文

参考文献(46)
[1]IPCC. Summary for policymakers[C]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York, NY, USA: Cambridge University Press, 2013: 1535
[2]BRIDGHAM S D, CADILLO-QUIROZ H, KELLER J K, et al. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5): 1325–1346 doi: 10.1111/gcb.12131
[3]KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813–823 doi: 10.1038/ngeo1955
[4]YAN X Y, AKIYAMA H, YAGI K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2002 https://www.sciencedirect.com/science/article/pii/S0269749117335078
[5]ALEXANDRATOS N, BRUINSMA J. World agriculture towards 2030/2050: The 2012 revision[R]. ESA Working Paper No. 12-03, Rome: FAO, 2012
[6]PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3–8 doi: 10.1626/pps.12.3
[7]蔡祖聪.中国稻田甲烷排放研究进展[J].土壤, 1999, 31(5): 266–269 http://d.old.wanfangdata.com.cn/Conference/51659
CAI Z C. Methane emissions from China's rice paddies: A review[J]. Soils, 1999, 31(5): 266–269 http://d.old.wanfangdata.com.cn/Conference/51659
[8]LE MER J, ROGER P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25–50 doi: 10.1016/S1164-5563(01)01067-6
[9]CONRAD R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1–63 doi: 10.1016/S0065-2113(07)96005-8
[10]WATANABE A, TAKEDA T, KIMURA M. Evaluation of origins of CH4 carbon emitted from rice paddies[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D19): 23623–23629 doi: 10.1029/1999JD900467
[11]TOKIDA T, ADACHI M, CHENG W G, et al. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology, 2011, 17(11): 3327–3337 doi: 10.1111/j.1365-2486.2011.02475.x
[12]MA K, QIU Q F, LU Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16(11): 3085–3095 http://cn.bing.com/academic/profile?id=d0249e6024fb5bc38b56304207733560&encoded=0&v=paper_preview&mkt=zh-cn
[13]JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4728–4738 doi: 10.1111/gcb.2017.23.issue-11
[14]TOKIDA T, CHENG W G, ADACHI M, et al. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air[CO2] enrichment and soil warming experiments[J]. Plant and Soil, 2013, 364(1/2): 131–143 doi: 10.1007/s11104-012-1356-7
[15]ZHANG G B, YU H Y, FAN X F, et al. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem[J]. Scientific Reports, 2016, 6: 27065 doi: 10.1038/srep27065
[16]GOGOI N, BARUAH K K, GUPTA P K. Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable Development, 2008, 28(2): 181–186 doi: 10.1051/agro:2008005
[17]DAS K, BARUAH K K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2008, 134(2): 303–312 doi: 10.1111/ppl.2008.134.issue-2
[18]GUTIERREZ J, KIM S Y, KIM P J. Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil[J]. Field Crops Research, 2013, 146: 16–24 doi: 10.1016/j.fcr.2013.03.003
[19]闫晓君, 王丽丽, 江瑜, 等.长江三角洲主要超级稻CH4排放特征及其与植株生长特性的关系[J].应用生态学报, 2013, 24(9): 2518–2524 http://www.cjae.net/CN/abstract/abstract19611.shtml
YAN X J, WANG L L, JIANG Y, et al. CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2518–2524 http://www.cjae.net/CN/abstract/abstract19611.shtml
[20]ZHANG Y, JIANG Y, LI Z J, et al. Aboveground morphological traits do not predict rice variety effects on CH4 emissions[J]. Agriculture, Ecosystems & Environment, 2015, 208: 86–93 http://www.sciencedirect.com/science/article/pii/S0167880915001632
[21]SINGH S, SINGH J S, KASHYAP A K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization[J]. Soil Biology and Biochemistry, 1999, 31(9): 1219–1228 doi: 10.1016/S0038-0717(99)00027-9
[22]NOUCHI I, MARIKO S, AOKI K. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants[J]. Plant Physiology, 1990, 94(1): 59–66 doi: 10.1104/pp.94.1.59
[23]NOUCHI I, HOSONO T, AOKI K, et al. Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling[J]. Plant and Soil, 1994, 161(2): 195–208 doi: 10.1007/BF00046390
[24]WANG B, NEUE H U, SAMONTE H P. Role of rice in mediating methane emission[J]. Plant and Soil, 1997, 189(1): 107–115 doi: 10.1023/A:1004219024281
[25]曹云英, 许锦彪, 朱庆森.水稻植株状况对甲烷传输速率的影响及其品种间差异[J].华北农学报, 2005, 20(2): 105–109 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200606000.htm
CAO Y Y, XU J B, ZHU Q S. Effect of rice plant status and difference rice varieties on methane transport rate[J]. Acta Agriculturae Boreali-Sinica, 2005, 20(2): 105–109 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200606000.htm
[26]AULAKH M S, BODENBENDER J, WASSMANN R, et al. Methane transport capacity of rice plants. Ⅰ. Influence of methane concentration and growth stage analyzed with an automated measuring system[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/3): 357–366 doi: 10.1023/A:1009831712602
[27]AULAKH M S, BODENBENDER J, WASSMANN R, et al. Methane transport capacity of rice plants. Ⅱ. Variations among different rice cultivars and relationship with morphological characteristics[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/3): 367–375 doi: 10.1023/A:1009839929441
[28]YUAN Q, PUMP J, CONRAD R. Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms[J]. PLoS One, 2012, 7(11): e49073 doi: 10.1371/journal.pone.0049073
[29]VAN DER GON H A C D, KROPFF M J, VAN BREEMEN N, et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12021–12024 doi: 10.1073/pnas.192276599
[30]SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602–606 doi: 10.1038/nature14673
[31]JIANG Y, TIAN Y L, SUN Y N, et al. Effect of rice panicle size on paddy field CH4 emissions[J]. Biology and Fertility of Soils, 2016, 52(3): 389–399 doi: 10.1007/s00374-015-1084-2
[32]HUANG Y, SASS R, FISHER F. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission[J]. Global Change Biology, 1997, 3(6): 491–500 doi: 10.1046/j.1365-2486.1997.00106.x
[33]VAN GROENIGEN K J, VAN KESSEL C, HUNGATE B A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions[J]. Nature Climate Change, 2013, 3(3): 288–291 doi: 10.1038/nclimate1712
[34]WATANABE A, KAJIWARA M, TASHIRO T, et al. Influence of rice cultivar on methane emission from paddy fields[J]. Plant and Soil, 1995, 176(1): 51–56 doi: 10.1007/BF00017674
[35]JIANG Y, WANG L L, YAN X J, et al. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China[J]. Rice Science, 2013, 20(6): 427–433 doi: 10.1016/S1672-6308(13)60157-2
[36]GUTIERREZ J, ATULBA S L, KIM G, et al. Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions[J]. Biology and Fertility of Soils, 2014, 50(5): 861–868 doi: 10.1007/s00374-014-0904-0
[37]AULAKH M S, WASSMANN R, BUENO C, et al. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil[J]. Plant and Soil, 2001, 230(1): 77–86 doi: 10.1023/A:1004817212321
[38]ZHENG X H, ZHOU Z X, WANG Y S, et al. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields[J]. Global Change Biology, 2006, 12(9): 1717–1732 doi: 10.1111/gcb.2006.12.issue-9
[39]CAI Y F, ZHENG Y, BODELIER P L E, et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 11728 doi: 10.1038/ncomms11728
[40]SCHROPE M K, CHANTON J P, ALLEN L H, et al. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa[J]. Global Change Biology, 1999, 5(5): 587–599 doi: 10.1111/gcb.1999.5.issue-5
[41]VAN DER GON H A C D, NEUE H U. Oxidation of methane in the rhizosphere of rice plants[J]. Biology and Fertility of Soils, 1996, 22(4): 359–366 doi: 10.1007/BF00334584
[42]FENG J F, CHEN C Q, ZHANG Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 164: 220–228 https://www.sciencedirect.com/science/article/pii/S0167880912003842
[43]谢立勇, 许婧, 郭李萍, 等.水肥管理对稻CH4排放及其全球增温潜势影响的评估[J].中国生态农业学报, 2017, 25(7): 958–967 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170702&flag=1
XIE L Y, XU Q, GUO L P, et al. Impact of water/fertilizer management on methane emission in paddy fields and on global warming potential[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7): 958–967 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170702&flag=1
[44]HANG X N, ZHANG X, SONG C L, et al. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China[J]. Soil and Tillage Research, 2014, 144: 205–210 doi: 10.1016/j.still.2014.07.013
[45]ZHANG L, ZHENG J C, CHEN L G, et al. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system[J]. European Journal of Agronomy, 2015, 63: 47–54 doi: 10.1016/j.eja.2014.11.005
[46]ZHU X C, ZHANG J, ZHANG Z P, et al. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts[J]. European Journal of Agronomy, 2016, 75: 50–59 doi: 10.1016/j.eja.2016.01.003

相关话题/生态 土壤 环境 生理 管理