Abstract Both transcription factor MYB77 and signal molecule nitric oxide (NO) are important regulators of lateral root development. However, our understanding about the role of MYB77 and NO in the regulation of lateral root formation in plants remains elusive. This study investigated the roles and interrelation of MYB77 and NO in regulating lateral root formation under drought stress by using wild type Arabidopsis, AtMYB77 deletion mutant Atmyb77-1 and overexpression lines AtOE77-1 and AtOE77-3. The results showed that the expression of AtMYB77 was induced by drought stress. When subjected to drought stress treatment, the Atmyb77-1 mutant showed down-regulation of CYCA2;1 and CDKA;1, two genes that are related with lateral root development. Meanwhile, the number and length of lateral roots in the Atmyb77-1 mutant were significantly lower than those in wild type, while AtOE77-1 and AtOE77-3 lines displayed more and longer lateral roots. These results indicated that AtMYB77 was involved in the regulation of lateral root development under drought stress. We also showed that drought stress could increase the NO content, as well as the nitric oxide synthase (NOS) and nitrate reductase (NR) enzymes activity and gene expression in roots of Arabidopsis. Such increase in NO content, NOS and NR activities as well as related gene transcript levels were attenuated by deletion of AtMYB77 but enhanced by AtMYB77 overexpression. Exogenous NO donor sodium nitroprusside (SNP) alleviated the inhibitive effects of AtMYB77 deletion on the expressions of CYCA2;1 and CDKA;1 as well as the lateral root formation, while NO sca-vengers or synthesis inhibitors attenuate the promoting effect of AtMYB77 overexpression on lateral root growth. Taken together, these results demonstrate that AtMYB77 participates in drought-induced lateral root growth by promoting NO synthesis. Keywords:AtMYB77;NO;lateral root development;drought stress;Arabidopsis thaliana
PDF (1507KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育. 植物学报, 2021, 56(4): 404-413 doi:10.11983/CBB20207 Che Yongmei, Sun Yanjun, Lu Songchong, Hou Lixia, Fan Xinxin, Liu Xin. AtMYB77 Involves in Lateral Root Development via Regulating Nitric Oxide Biosynthesis under Drought Stress in Arabidopsis thaliana. Chinese Bulletin of Botany, 2021, 56(4): 404-413 doi:10.11983/CBB20207
(A) 干旱胁迫下Atmyb77-1突变体根系生长表型(Bar=1 cm); (B) 干旱对拟南芥Atmyb77-1突变体和AtMYB77过表达株系侧根数目的影响; (C) 干旱对拟南芥Atmyb77-1突变体和AtMYB77过表达株系侧根长度的影响; (D) 干旱对拟南芥Atmyb77-1突变体和AtMYB77过表达株系根部AtCYCA2;1表达的影响; (E) 干旱对拟南芥Atmyb77-1突变体和AtMYB77过表达株系根部AtCDKA;1表达的影响。CK: 对照; WT: 野生型。不同小写字母表示不同株系的不同处理间差异显著(P<0.05)。 Figure 2Effects of drought stress on lateral root growth and expression of lateral root development related genes in Arabidopsis Atmyb77-1 mutant and AtMYB77 overexpression lines
(A) Root phenotypes of Atmyb77-1 mutant under drought stress (Bar=1 cm); (B) Effects of drought stress on lateral root number of Atmyb77-1 mutant and AtMYB77 overexpression lines; (C) Effects of drought stress on lateral root length of Atmyb77-1 mutant and AtMYB77 overexpression lines; (D) Effects of drought stress on relative expression level of AtCYCA2;1 in roots of Arabidopsis Atmyb77-1 mutant and AtMYB77 overexpression lines; (E) Effects of drought stress on relative expression level of AtCDKA;1 in roots of Arabidopsis Atmyb77-1 mutant and AtMYB77 overexpression lines. CK: Control; WT: Wild type. Different lowercase letters indicate significant differences among different treatments of different lines at P<0.05.
(A) 干旱胁迫下拟南芥根部NO荧光成像(Bars=100 μm); (B) 干旱对拟南芥根部NO含量的影响; (C) 干旱对拟南芥根部NOS活性的影响; (D) 干旱对拟南芥根部NR活性的影响; (E) 干旱对拟南芥根部AtNOS1表达量的影响; (F) 干旱对拟南芥根部AtNia1表达量的影响; (G) 干旱对拟南芥根部AtNia2表达量的影响。CK: 对照; WT: 野生型; NOS: 一氧化氮合酶; NR: 硝酸还原酶。不同小写字母表示不同株系的不同处理间差异显著(P<0.05)。 Figure 3Effects of drought stress on NO content, activities and gene expression of NO synthesis enzymes in Arabidopsis roots
(A) NO fluorescence imaging of Arabidopsis roots under drought stress (Bars=100 μm); (B) Effects of drought stress on NO content in Arabidopsis roots; (C) Effects of drought stress on NOS activity in Arabidopsis roots; (D) Effects of drought stress on NR activity in Arabidopsis roots; (E) Effects of drought stress on relative expression level of AtNOS1 in Arabidopsis roots; (F) Effects of drought stress on relative expression level of AtNia1 in Arabidopsis roots; (G) Effects of drought stress on relative expression level of AtNia2 in Arabidopsis roots. CK: Control; WT: Wild type; NOS: Nitric oxide synthase; NR: Nitrate reductase. Different lowercase letters indicate significant differences among different treatments of different lines at P<0.05.
(A) SNP对干旱胁迫下Atmyb77-1突变体根系生长的影响(Bar=1 cm); (B) SNP对干旱条件下Atmyb77-1缺失突变体侧根数目的影响; (C) SNP对干旱条件下Atmyb77-1缺失突变体侧根长度的影响; (D) SNP对干旱条件下Atmyb77-1缺失突变体AtCYCA2;1表达的影响; (E) SNP对干旱条件下Atmyb77-1缺失突变体AtCDKA;1表达的影响。CK: 对照; WT: 野生型。不同小写字母表示不同株系的不同处理间差异显著(P<0.05)。 Figure 4Effects of NO donor sodium nitroprusside (SNP) on lateral root growth and expression of lateral root development related genes in Arabidopsis Atmyb77-1 mutant under drought condition
(A) The effect of SNP on root growth of Atmyb77-1 mutant under drought stress (Bar=1 cm); (B) The effect of SNP on lateral root number in Atmyb77-1 mutant under drought condition; (C) The effect of SNP on lateral root length in Atmyb77-1 mutant under drought condition; (D) The effect of SNP on relative expression level of AtCYCA2;1 in Atmyb77-1 mutant root under drought condition; (E) The effect of SNP on relative expression level of AtCDKA;1 in Atmyb77-1 mutant root under drought condition. CK: Control; WT: Wild type. Different lowercase letters indicate significant differences among different treatments of different lines at P<0.05.
(A) NO清除剂或合成抑制剂对干旱胁迫下AtMYB77过表达株系根系生长的影响(Bar=1 cm); (B) NO清除剂或合成抑制剂对干旱条件下AtMYB77过表达株系侧根数目的影响; (C) NO清除剂或合成抑制剂对干旱条件下AtMYB77过表达株系侧根长度的影响; (D) NO清除剂或合成抑制剂对干旱条件下AtMYB77过表达株系根部AtCYCA2;1表达量的影响; (E) NO清除剂或合成抑制剂对干旱条件下AtMYB77过表达株系根部AtCDKA;1表达量的影响。CK: 对照; WT: 野生型。不同小写字母表示不同株系的不同处理间差异显著(P<0.05)。 Figure 5Effects of NO scavenger (c-PTIO) or biosynthesis inhibitor (L-NAME) on lateral root growth and expression of lateral root development related genes in AtMYB77 overexpression lines under drought condition
(A) The effects of NO scavenger or biosynthesis inhibitor on root growth of AtMYB77 overexpression lines subjected to drought stress (Bar=1 cm); (B) The effects of NO scavenger or biosynthesis inhibitor on lateral root number of AtMYB77 overexpression lines under drought condition; (C) The effects of NO scavenger or biosynthesis inhibitor on lateral root length of AtMYB77 overexpression lines under drought condition; (D) The effects of NO scavenger or biosynthesis inhibitor on relative expression level of AtCYCA2;1 in AtMYB77 overexpression lines under drought condition; (E) The effects of NO scavenger or biosynthesis inhibitor on relative expression level of AtCDKA;1 in AtMYB77 overexpression lines under drought condition. CK: Control; WT: Wild type. Different lowercase letters indicate significant differences among different treatments of different lines at P<0.05.
2.6 讨论
侧根是植物根系的主要组成部分, 侧根的发育状况与植物的抗旱性关系密切。已有研究表明, 生长素是调控侧根发育的主要植物激素, 参与调控侧根形成过程的每个阶段(Fukaki et al., 2007); ABA、NO、乙烯和赤霉素等均参与侧根发育的调控(Correa-Aragunde et al., 2006; Zhao et al., 2014; Xing et al., 2016; Hu et al., 2018)。转录因子MYB77参与生长素和ABA介导的侧根发育过程(Zhao et al., 2014; Xing et al., 2016); NO通过IAA依赖途径参与调控番茄(Lycopersicon esculentum)的侧根发生(Correa-Aragunde et al., 2004), 但MYB77和NO在根系响应干旱胁迫中的作用及机制尚未见报道。本研究利用拟南芥AtMYB77缺失和过表达株系为实验材料的研究表明, AtMYB77受干旱诱导, AtMYB77缺失和过表达株系分别表现出侧根发育受到抑制和促进的表型(图2A-C), 证明AtMYB77介导了干旱调控的侧根发育过程。NOS和NR是植物体内催化NO合成的主要酶, 干旱诱导拟南芥NO的含量升高, NR和NOS活性及基因表达量上调(图3A-E); NOS抑制剂L-NAME和NR抑制剂Na2WO4能减弱干旱对AtMYB77过表达对侧根发育的促进作用, 而NO供体SNP能缓解AtMYB77缺失对侧根发育的抑制作用(图4, 图5)。上述结果表明, 在植物响应干旱的信号转导过程中, NO位于MYB77的下游, MYB77通过NOS和NR途径促进NO合成进而调控干旱诱导的侧根发育。
实线部分为本文结果, 虚线部分为根据已有报道及推测可能存在的作用。ABA: 脱落酸; NR: 硝酸还原酶; NOS: 一氧化氮合酶 Figure 6Working model of AtMYB77 function in regulating lateral roots development under drought stress in Arabidopsis
The solid lines indicate the results of this study, and the dotted lines indicate the possible roles based on reports and speculation. ABA: Abscisic acid; NR; Nitrate reductase; NOS: Nitric oxide synthase
AnJP, WangXF, ZhangXW, XuHF, BiSQ, YouCX, HaoYJ (2020). An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation 18, 337-353. DOI:10.1111/pbi.v18.2URL [本文引用: 1]
BashirW, AnwarS, ZhaoQ, HussainI, XieFT (2019). Interactive effect of drought and cadmium stress on soybean root morphology and gene expression 175, 90-101. DOI:10.1016/j.ecoenv.2019.03.042URL [本文引用: 1]
CaoXC, ZhuCQ, ZhongC, ZhangJH, WuLH, JinQY, MaQX (2019). Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots 19, 108. DOI:10.1186/s12870-019-1721-2URL [本文引用: 1]
ChakhcharA, ChaguerN, FerradousA, Filali-MaltoufA, ElModafar C (2018). Root system response in Argania spinosa plants under drought stress and recovery 13, e1489669. DOI:10.1080/15592324.2018.1489669URL [本文引用: 1]
Correa-AragundeN, GrazianoM, ChevalierC, LamattinaL (2006). Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato 57, 581-588. PMID:16410257 [本文引用: 4] Nitric oxide (NO) is a bioactive molecule involved in diverse physiological functions in plants. It has previously been reported that the NO donor sodium nitroprusside (SNP) applied to germinated tomato seeds was able to induce lateral root (LR) formation in the same way that auxin treatment does. In this paper, it is shown that NO modulates the expression of cell cycle regulatory genes in tomato pericycle cells and leads, in turn, to induced LR formation. The addition of the NO scavenger CPTIO at different time points during auxin-mediated LR development indicates that NO is required for LR primordia formation and not for LR emergence. The SNP-mediated LR promotion could be prevented by the cell cycle inhibitor olomoucine, suggesting that NO is involved in cell cycle regulation. A system was developed in which the formation of LRs was synchronized. It was based on the control of NO availability in roots by treatment with the NO scavenger CPTIO. The expression of the cell cycle regulatory genes encoding CYCA2;1, CYCA3;1, CYCD3;1, CDKA1, and the Kip-Related Protein KRP2 was studied using RT-PCR analysis in roots with synchronized and non-synchronized LR formation. NO mediates the induction of the CYCD3;1 gene and the repression of the CDK inhibitor KRP2 gene at the beginning of LR primordia formation. In addition, auxin-dependent cell cycle gene regulation was dependent on NO.
Correa-AragundeN, GrazianoM, LamattinaL (2004). Nitric oxide plays a central role in determining lateral root development in tomato 218, 900-905. PMID:14716561 [本文引用: 2] Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato ( Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.
FangQ, JiangTZ, XuLX, LiuH, MaoH, WangXQ, JiaoB, DuanYJ, WangQ, DongQN, YangL, TianGZ, ZhangC, ZhouYF, LiuXP, WangHY, FanD, WangBJ, LuoKM (2017). A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis 114, 100-110. DOI:10.1016/j.plaphy.2017.02.018URL [本文引用: 1]
GibbsDJ, VoßU, HardingSA, FannonJ, MoodyLA, YamadaE, SwarupK, NibauC, BasselGW, ChoudharyA, LavenusJ, BradshawSJ, StekelDJ, BennettMJ, CoatesJC (2014). AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis 203, 1194-1207. DOI:10.1111/nph.2014.203.issue-4URL [本文引用: 1]
GuM, ZhangJ, LiHH, MengDQ, LiR, DaiXL, WangSC, LiuW, QuHY, XuGH (2017). Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice 68, 3603-3615. DOI:10.1093/jxb/erx174URL [本文引用: 2]
HuZR, WangR, ZhengM, LiuXB, MengF, WuHL, YaoYY, XinMM, PengHR, NiZF, SunQX (2018). TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aes-tivum L.) 96, 372-388. DOI:10.1111/tpj.2018.96.issue-2URL [本文引用: 1]
LeeHK, ChoSK, SonO, XuZY, HwangI, KimWT (2009). Drought stress-induced Rma1H1, a RING membrane- anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants 21, 622-641. DOI:10.1105/tpc.108.061994URL [本文引用: 1]
SahayS, KhanE, GuptaM (2019). Nitric oxide and abscisic acid protects against PEG-induced drought stress differentially in Brassica genotypes by combining the role of stress modulators, markers and antioxidants 89, 81-92. DOI:10.1016/j.niox.2019.05.005URL [本文引用: 1]
SantisreeP, Bhatnagar-MathurP, SharmaKK (2015). NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? 239, 44-55. DOI:10.1016/j.plantsci.2015.07.012URL [本文引用: 1]
SeoPJ, ParkCM (2009). Auxin homeostasis during lateral root development under drought condition 4, 1002-1004. DOI:10.4161/psb.4.10.9716URL [本文引用: 1]
WangPC, DuYY, HouYJ, ZhaoY, HsuCC, YuanFJ, ZhuXH, TaoWA, SongCP, ZhuJK (2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1 112, 613-618. DOI:10.1073/pnas.1423481112URL [本文引用: 1]
WillemsE, LeynsL, VandesompeleJ (2008). Standardization of realtime PCR gene expression data from independent biological replicates 379, 127-129. DOI:10.1016/j.ab.2008.04.036PMID:18485881 [本文引用: 1] Gene expression analysis by quantitative reverse transcription PCR (qRT-PCR) allows accurate quantifications of messenger RNA (mRNA) levels over different samples. Corrective methods for different steps in the qRT-PCR reaction have been reported; however, statistical analysis and presentation of substantially variable biological repeats present problems and are often not meaningful, for example, in a biological system such as mouse embryonic stem cell differentiation. Based on a series of sequential corrections, including log transformation, mean centering, and autoscaling, we describe a robust and powerful standardization method that can be used on highly variable data sets to draw statistically reliable conclusions.
XieYJ, MaoY, LaiDW, ZhangW, ZhengTQ, ShenWB (2013). Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance 64, 3045-3060. DOI:10.1093/jxb/ert149URL [本文引用: 1]
XingL, ZhaoY, GaoJH, XiangCB, ZhuJK (2016). The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth 6, 27177. DOI:10.1038/srep27177PMID:27256015 [本文引用: 5] Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors.
ZhaoY, XingL, WangXG, HouYJ, GaoJH, WangPC, DuanCG, ZhuXH, ZhuJK (2014). The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77- dependent transcription of auxin-responsive gene 7, ra53. [本文引用: 6]
ZhouGY, ZhouXH, NieYY, BaiSH, ZhouLY, ShaoJJ, ChengWS, WangJW, HuFQ, FuYL (2018). Drought- induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials 41, 2589-2599. DOI:10.1111/pce.v41.11URL [本文引用: 1]
CheYM, SunYJ, LuSC, HouLX, FanXX, LiuX (2021). AtMYB77 involves in lateral root development via regulating nitric oxide biosynthesis under drought stress in Arabidopsis thaliana 56, 404-413.
AtWRKY40参与拟南芥干旱胁迫响应过程 1 2018
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
Nitric oxide plays a central role in determining lateral root development in tomato 2 2004
... 一氧化氮(nitric oxide, NO)是植物体内广泛存在的气体信号分子(张玲玲等, 2017).植物体内NO的合成途径包括酶促和非酶促途径, 其中硝酸还原酶(nitrate reductase, NR)和一氧化氮合酶(nitric oxide synthase, NOS)是合成NO的关键酶.拟南芥中, NR由AtNia1和AtNia2两个基因编码, 目前已鉴定的拟南芥NOS基因为AtNOA1 (Xie et al., 2013).有研究表明, NO参与介导植物体内水分胁迫的信号转导过程, 通过影响渗透调节物质的积累、抗氧化酶活性和气孔运动等增强植物的抗旱性(Santisree et al., 2015; Wang et al., 2015; Cao et al., 2019; Sahay et al., 2019).NO亦参与调控植物侧根发育过程, 其能够诱导细胞周期调控基因CYCA2;1、CYCA3;1、CYCD3;1、CDKA1和KRP2等的表达, 进而促进侧根的形成(Correa-Aragunde et al., 2004, 2006).NO是否参与干旱胁迫下侧根的发育? NO与MYB77之间是否存在互作? 作用机制是什么? 目前尚未见报道.本研究以AtMYB77缺失突变体及过表达株系为实验材料, 研究MYB77与NO在干旱胁迫下侧根发育中的互作及机制, 可为深入解析干旱诱导侧根发育的信号转导机理奠定基础. ...
... 侧根是植物根系的主要组成部分, 侧根的发育状况与植物的抗旱性关系密切.已有研究表明, 生长素是调控侧根发育的主要植物激素, 参与调控侧根形成过程的每个阶段(Fukaki et al., 2007); ABA、NO、乙烯和赤霉素等均参与侧根发育的调控(Correa-Aragunde et al., 2006; Zhao et al., 2014; Xing et al., 2016; Hu et al., 2018).转录因子MYB77参与生长素和ABA介导的侧根发育过程(Zhao et al., 2014; Xing et al., 2016); NO通过IAA依赖途径参与调控番茄(Lycopersicon esculentum)的侧根发生(Correa-Aragunde et al., 2004), 但MYB77和NO在根系响应干旱胁迫中的作用及机制尚未见报道.本研究利用拟南芥AtMYB77缺失和过表达株系为实验材料的研究表明, AtMYB77受干旱诱导, AtMYB77缺失和过表达株系分别表现出侧根发育受到抑制和促进的表型(图2A-C), 证明AtMYB77介导了干旱调控的侧根发育过程.NOS和NR是植物体内催化NO合成的主要酶, 干旱诱导拟南芥NO的含量升高, NR和NOS活性及基因表达量上调(图3A-E); NOS抑制剂L-NAME和NR抑制剂Na2WO4能减弱干旱对AtMYB77过表达对侧根发育的促进作用, 而NO供体SNP能缓解AtMYB77缺失对侧根发育的抑制作用(图4, 图5).上述结果表明, 在植物响应干旱的信号转导过程中, NO位于MYB77的下游, MYB77通过NOS和NR途径促进NO合成进而调控干旱诱导的侧根发育. ...
Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress 1 2017
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis 1 2017
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
Auxin-mediated lateral root formation in higher plants 1 2007
... 侧根是植物根系的主要组成部分, 侧根的发育状况与植物的抗旱性关系密切.已有研究表明, 生长素是调控侧根发育的主要植物激素, 参与调控侧根形成过程的每个阶段(Fukaki et al., 2007); ABA、NO、乙烯和赤霉素等均参与侧根发育的调控(Correa-Aragunde et al., 2006; Zhao et al., 2014; Xing et al., 2016; Hu et al., 2018).转录因子MYB77参与生长素和ABA介导的侧根发育过程(Zhao et al., 2014; Xing et al., 2016); NO通过IAA依赖途径参与调控番茄(Lycopersicon esculentum)的侧根发生(Correa-Aragunde et al., 2004), 但MYB77和NO在根系响应干旱胁迫中的作用及机制尚未见报道.本研究利用拟南芥AtMYB77缺失和过表达株系为实验材料的研究表明, AtMYB77受干旱诱导, AtMYB77缺失和过表达株系分别表现出侧根发育受到抑制和促进的表型(图2A-C), 证明AtMYB77介导了干旱调控的侧根发育过程.NOS和NR是植物体内催化NO合成的主要酶, 干旱诱导拟南芥NO的含量升高, NR和NOS活性及基因表达量上调(图3A-E); NOS抑制剂L-NAME和NR抑制剂Na2WO4能减弱干旱对AtMYB77过表达对侧根发育的促进作用, 而NO供体SNP能缓解AtMYB77缺失对侧根发育的抑制作用(图4, 图5).上述结果表明, 在植物响应干旱的信号转导过程中, NO位于MYB77的下游, MYB77通过NOS和NR途径促进NO合成进而调控干旱诱导的侧根发育. ...
AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis 1 2014
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice 2 2017
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
... ; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aes-tivum L.) 1 2018
... 侧根是植物根系的主要组成部分, 侧根的发育状况与植物的抗旱性关系密切.已有研究表明, 生长素是调控侧根发育的主要植物激素, 参与调控侧根形成过程的每个阶段(Fukaki et al., 2007); ABA、NO、乙烯和赤霉素等均参与侧根发育的调控(Correa-Aragunde et al., 2006; Zhao et al., 2014; Xing et al., 2016; Hu et al., 2018).转录因子MYB77参与生长素和ABA介导的侧根发育过程(Zhao et al., 2014; Xing et al., 2016); NO通过IAA依赖途径参与调控番茄(Lycopersicon esculentum)的侧根发生(Correa-Aragunde et al., 2004), 但MYB77和NO在根系响应干旱胁迫中的作用及机制尚未见报道.本研究利用拟南芥AtMYB77缺失和过表达株系为实验材料的研究表明, AtMYB77受干旱诱导, AtMYB77缺失和过表达株系分别表现出侧根发育受到抑制和促进的表型(图2A-C), 证明AtMYB77介导了干旱调控的侧根发育过程.NOS和NR是植物体内催化NO合成的主要酶, 干旱诱导拟南芥NO的含量升高, NR和NOS活性及基因表达量上调(图3A-E); NOS抑制剂L-NAME和NR抑制剂Na2WO4能减弱干旱对AtMYB77过表达对侧根发育的促进作用, 而NO供体SNP能缓解AtMYB77缺失对侧根发育的抑制作用(图4, 图5).上述结果表明, 在植物响应干旱的信号转导过程中, NO位于MYB77的下游, MYB77通过NOS和NR途径促进NO合成进而调控干旱诱导的侧根发育. ...
Drought stress-induced Rma1H1, a RING membrane- anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants 1 2009
The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance 1 2018
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network 1 2012
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
Nitric oxide and abscisic acid protects against PEG-induced drought stress differentially in Brassica genotypes by combining the role of stress modulators, markers and antioxidants 1 2019
... 一氧化氮(nitric oxide, NO)是植物体内广泛存在的气体信号分子(张玲玲等, 2017).植物体内NO的合成途径包括酶促和非酶促途径, 其中硝酸还原酶(nitrate reductase, NR)和一氧化氮合酶(nitric oxide synthase, NOS)是合成NO的关键酶.拟南芥中, NR由AtNia1和AtNia2两个基因编码, 目前已鉴定的拟南芥NOS基因为AtNOA1 (Xie et al., 2013).有研究表明, NO参与介导植物体内水分胁迫的信号转导过程, 通过影响渗透调节物质的积累、抗氧化酶活性和气孔运动等增强植物的抗旱性(Santisree et al., 2015; Wang et al., 2015; Cao et al., 2019; Sahay et al., 2019).NO亦参与调控植物侧根发育过程, 其能够诱导细胞周期调控基因CYCA2;1、CYCA3;1、CYCD3;1、CDKA1和KRP2等的表达, 进而促进侧根的形成(Correa-Aragunde et al., 2004, 2006).NO是否参与干旱胁迫下侧根的发育? NO与MYB77之间是否存在互作? 作用机制是什么? 目前尚未见报道.本研究以AtMYB77缺失突变体及过表达株系为实验材料, 研究MYB77与NO在干旱胁迫下侧根发育中的互作及机制, 可为深入解析干旱诱导侧根发育的信号转导机理奠定基础. ...
NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? 1 2015
... 一氧化氮(nitric oxide, NO)是植物体内广泛存在的气体信号分子(张玲玲等, 2017).植物体内NO的合成途径包括酶促和非酶促途径, 其中硝酸还原酶(nitrate reductase, NR)和一氧化氮合酶(nitric oxide synthase, NOS)是合成NO的关键酶.拟南芥中, NR由AtNia1和AtNia2两个基因编码, 目前已鉴定的拟南芥NOS基因为AtNOA1 (Xie et al., 2013).有研究表明, NO参与介导植物体内水分胁迫的信号转导过程, 通过影响渗透调节物质的积累、抗氧化酶活性和气孔运动等增强植物的抗旱性(Santisree et al., 2015; Wang et al., 2015; Cao et al., 2019; Sahay et al., 2019).NO亦参与调控植物侧根发育过程, 其能够诱导细胞周期调控基因CYCA2;1、CYCA3;1、CYCD3;1、CDKA1和KRP2等的表达, 进而促进侧根的形成(Correa-Aragunde et al., 2004, 2006).NO是否参与干旱胁迫下侧根的发育? NO与MYB77之间是否存在互作? 作用机制是什么? 目前尚未见报道.本研究以AtMYB77缺失突变体及过表达株系为实验材料, 研究MYB77与NO在干旱胁迫下侧根发育中的互作及机制, 可为深入解析干旱诱导侧根发育的信号转导机理奠定基础. ...
Auxin homeostasis during lateral root development under drought condition 1 2009
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
The Arabidopsis transcription factor MYB77 modulates auxin signal transduction 1 2007
Drought- induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials 1 2018
... 干旱是世界范围内严重威胁农业生产的主要非生物胁迫, 全球约一半以上的农作物产量损失由干旱引起.根是植物吸收水分的主要器官, 干旱胁迫下, 维持根系的正常生长发育和功能对植物体水分代谢平衡至关重要(Chakhchar et al., 2018; Zhou et al., 2018; Bashir et al., 2019).侧根是植物根系的主要组成部分, 其发育受内部信号及土壤水分和养分状况等环境信号的调控.多种内外因素通过内源激素信号介导的转录调控影响侧根发育相关基因的表达, 进而调控侧根发育.研究表明, MYB、AP2/ERF和bZIP等转录因子家族的许多成员参与侧根发育相关基因表达的调控(Dash et al., 2017; Gu et al., 2017; Nie et al., 2018).其中, MYB是植物特有的转录因子家族, 广泛参与植物生长发育和逆境适应等过程的调节(车永梅等, 2018; An et al., 2020; 张雨等, 2020).该家族的多个成员与侧根发育的调控相关, 但作用各不相同.例如, 拟南芥(Arabidopsis thaliana) AtMYB61缺失后表现出侧根形成受阻; 水稻(Oryza sativa) R2R3-类型MYB转录因子OsMYB1缺失抑制赤霉素诱导的侧根生长, 是侧根发育的正调节因子(Romano et al., 2012; Gu et al., 2017); AtMYB96和AtMYB93则在侧根发育过程中起负调控作用, 其缺失后促进拟南芥的侧根发育, 使侧根密度增大(Seo and Park, 2009; Gibbs et al., 2014); 毛果杨(Populus trichocarpa) R2R3类MYB转录因子PtrSSR1基因受盐胁迫诱导, 参与盐胁迫下侧根发生过程的调节(Fang et al., 2017).有研究表明, MYB77在脱落酸(abscisic acid, ABA)介导的侧根发育过程中起重要作用, 在ABA作用后期的侧根恢复生长阶段, ABA受体PLY8和PLY9与MYB77结合, 诱导多个生长素响应基因的表达, 进而促进拟南芥侧根的生长(Zhao et al., 2014; Xing et al., 2016).ABA是重要的水分胁迫信号, MYB77是否参与干旱胁迫下侧根发育的调控及其作用机理目前尚未见报道. ...
AtMYB77 involves in lateral root development via regulating nitric oxide biosynthesis under drought stress in Arabidopsis thaliana 0 2021