Abstract As one of the major members of cytoskeleton, microtubules play important roles in plant growth and deve- lopment. Hypocotyl has become a model system to study cell elongation, which is regulated by multiple internal and ex- ternal signalings. Here, we reviewed the recent research progress for the roles of microtubules in regulating the hypocotyl elongation in response to diversed environmental and developmental cues, which will extend our understanding on how microtubules response to the upstream signal and play roles in the elongation of plant hypocotyls. Keywords:microtubule;hypocotyl;elongation;environmental signals;growth and developmental cues
PDF (1146KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 岳剑茹, 赫云建, 邱天麒, 郭南南, 韩雪萍, 王显玲. 植物微管骨架参与下胚轴伸长调节机制研究进展. 植物学报, 2021, 56(3): 363-371 doi:10.11983/CBB20170 Yue Jianru, He Yunjian, Qiu Tianqi, Guo Nannan, Han Xueping, Wang Xianling. Research Advances in the Molecular Mechanisms of Plant Microtubules in Regulating Hypocotyl Elongation. Chinese Bulletin of Botany, 2021, 56(3): 363-371 doi:10.11983/CBB20170
植物细胞骨架由微管和微丝组成。微管作为植物细胞骨架成员之一, 在植物生长发育过程中起重要作用(Hashimoto, 2003; Lloyd and Chan, 2004; Hashi- moto and Kato, 2006)。下胚轴作为研究细胞伸长的模式器官, 其伸长既受到许多上游信号的调控也受到微管骨架的调节。早期关于下胚轴伸长的研究中, 细胞骨架和上游信号的调节处于相对独立状态。随着研究的不断深入, 发现微管受到上游信号的调控, 进而参与下胚轴伸长的调节。因此本文对近年来关于微管骨架响应环境和生长发育信号参与下胚轴伸长调节机制的研究进展进行了总结。
用外源乙烯或ACC处理时, 黄化下胚轴细胞内周质微管由横向变为纵向排列, 说明乙烯通过调节微管的排列方式参与调节下胚轴的伸长(Soga et al., 2010)。在乙烯调节下胚轴细胞周质微管排列过程中有微管相关蛋白参与。研究表明, 微管相关蛋白WDL5参与乙烯抑制黄化下胚轴伸长的调节(Sun et al., 2015)。黑暗条件下, 乙烯信号通路下游的关键转录因子EIN3直接结合到WDL5的启动子上并上调其表达, WDL5通过稳定并重排微管进而抑制黄化下胚轴的伸长(Sun et al., 2015)。
COP1: 持续光形态建成1; EIN3/EIL1: 乙烯不敏感3/乙烯不敏感3类似1. CLASP、MDP25、WDL3、MDP60、SPR1、WDL5、MDP40、PIF3、EIN3和BZR1同表1。 Figure 1Microtubule-associated proteins that are involved in hypocotyl elongation and regulated by light and phytohormones
COP1: Constitutive photomorphogenic1; EIN3/EIL1: Ethylene-insensitive 3/EIN3 like 1. CLASP, MDP25, WDL3, MDP60, SPR1, WDL5, MDP40, PIF3, EIN3 and BZR1 see Table 1.
AdamowskiM, LiLX, FrimlJ (2019). Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling 20, 3337. DOI:10.3390/ijms20133337URL [本文引用: 1]
AlabadíD, Gallego-BartoloméJ, OrlandoL, García- CárcelL, RubioV, MartínezC, FrigerioM, Iglesias-PedrazJM, EspinosaA, DengXW, BlázquezMA (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness 53, 324-335. PMID:18053005 [本文引用: 1] In many plants, photomorphogenesis is the default developmental program after seed germination, and provides the key features that allow adaptation to light. This program is actively repressed if germination occurs in the absence of light, through a mechanism dependent on the E3 ubiquitin ligase activity that is encoded in Arabidopsis by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), which induces proteolytic degradation of transcription factors necessary for light-regulated development, such as HY5 (LONG HYPOCOTYL 5) and HYH (LONG HYPOCOTYL 5 HOMOLOG), and stabilization of transcription factors that promote skotomorphogenesis, such as PIF3 (PHYTOCHROME INTERACTING FACTOR 3). Seedlings deficient in gibberellin (GA) synthesis or signaling display a de-etiolated phenotype when grown in darkness, equivalent to the phenotype of cop1 mutants, which indicates that the switch between photo- and skotomorphogenesis is also under hormonal control. Here we provide evidence for the existence of crosstalk between GA and the COP1-mediated pathway, and identify HY5 and the PIF family as nodes of a regulatory network. This interaction occurs through distinct molecular mechanisms, based on the observation that GA signaling regulates protein stability of HY5, and the activity of PIF3.
AmbroseJC, ShojiT, KotzerAM, PighinJA, WasteneysGO (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division 19, 2763-2775. DOI:10.1105/tpc.107.053777URL [本文引用: 1]
BaskinTI, BeemsterGTS, Judy-MarchJE, MargaF (2004). Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Ara- bidopsis 135, 2279-2290. DOI:10.1104/pp.104.040493URL [本文引用: 1]
BleeckerAB, EstelleMA, SomervilleC, KendeH (1988). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana 241, 1086-1089. DOI:10.1126/science.241.4869.1086URL
ChenX, GrandontL, LiHJ, HauschildR, PaqueS, AbuzeinehA, RakusováH, BenkovaE, Perrot-Re- chenmannC, FrimlJ (2014). Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules 516, 90-93. [本文引用: 1]
ChoryJ, NagpalP, PetoCA (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light- regulated seedling development in Arabidopsis 3, 445-459. DOI:10.2307/3869351URL [本文引用: 1]
ClouseSD (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development 23, 1219-1230. DOI:10.1105/tpc.111.084475URL [本文引用: 2]
CowlingRJ, HarberdNP (1999). Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation 50, 1351-1357. DOI:10.1093/jxb/50.337.1351URL [本文引用: 1]
de GrauweL, VandenbusscheF, TietzO, PalmeK, van der StraetenD (2005). Auxin, ethylene and brassinos-teroids: tripartite control of growth in theArabidopsis hy- pocotyl 46, 827-836. DOI:10.1093/pcp/pci111URL [本文引用: 1]
De LucasM, DavièreJM, Rodríguez-FalcónM, PontinM, Iglesias-PedrazJM, LorrainS, FankhauserC, BlázquezMA, TitarenkoE, PratS (2008). A molecular framework for light and gibberellin control of cell elongation 451, 480-484. DOI:10.1038/nature06520URL [本文引用: 2]
EhrhardtDW, ShawSL (2006). Microtubule dynamics and organization in the plant cortical array 57, 859-875. PMID:16669785 [本文引用: 2] Live-cell studies have brought fresh insight into the organizational activities of the plant cortical array. Plant interphase arrays organize in the absence of a discrete microtubule organizing center, having plus and minus ends distributed throughout the cell cortex. Microtubule nucleation occurs at the cell cortex, frequently followed by minus-end detachment from origin sites. Microtubules associate tightly with the cell cortex, resisting lateral and axial translocation. Slow, intermitant loss of dimers from minus ends, coupled with growth-biased dynamic instability at the plus ends, results in the migration of cortically attached microtubules across the cell via polymer treadmilling. Microtubule-microtubule interactions, a direct consequence of treadmilling, result in polymer reorientation and creation of polymer bundles. The combined properties of microtubule dynamics and interactions among polymers constitute a system with predicted properties of self-organization.
FengSH, MartinezC, GusmaroliG, WangY, ZhouJL, WangF, ChenLY, YuL, Iglesias-PedrazJM, KircherS, Sch?ferE, FuXD, FanLM, DengXW (2008). Coordi-nated regulation ofArabidopsis thaliana development by light and gibberellins 451, 475-479. DOI:10.1038/nature06448URL [本文引用: 1]
FischerK, SchopferP (1997). Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles 196, 108-116. DOI:10.1007/BF01281064URL [本文引用: 1]
FrimlJ, Wi?niewskaJ, BenkováE, MendgenK, PalmeK (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis 415, 806-809. PMID:11845211 [本文引用: 1] Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.
FurutaniI, WatanabeY, PrietoR, MasukawaM, SuzukiK, NaoiK, ThitamadeeS, ShikanaiT, HashimotoT (2000). The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana 127, 4443-4453. [本文引用: 1]
GendreauE, TraasJ, DesnosT, GrandjeanO, CabocheM, H?fteH (1997). Cellular basis of hypocotyl growth in Arabidopsis thaliana 114, 295-305. PMID:9159952 [本文引用: 1] The Arabidopsis thaliana hypocotyl is widely used to study the effects of light and plant growth factors on cell elongation. To provide a framework for the molecular-genetic analysis of cell elongation in this organ, here we describe, at the cellular level, its morphology and growth and identify a number of characteristic, developmental differences between light-grown and dark-grown hypocotyls. First, in the light epidermal cells show a characteristic differentiation that is not observed in the dark. Second, elongation growth of this organ does not involve significant cortical or epidermal cell divisions. However, endoreduplication occurs, as revealed by the presence of 4C and 8C nuclei. In addition, 16C nuclei were found specifically in dark-grown seedlings. Third, in the dark epidermal cells elongate along a steep, acropetal spatial and temporal gradient along the hypocotyl. In contrast, in the light all epidermal cells elongated continuously during the entire growth period. These morphological and physiological differences, in combination with previously reported genetic data (T. Desnos, V. Orbovic, C. Bellini, J. Kronenberger, M. Caboche, J. Traas, H. H?fte [1996] Development 122: 683-693), illustrate that light does not simply inhibit hypocotyl growth in a cell-autonomous fashion, but that the observed growth response to light is a part of an integrated developmental change throughout the elongating organ.
GrayWM, OstinA, SandbergG, RomanoCP, EstelleM (1998). High temperature promotes auxin-mediated hy-pocotyl elongation in Arabidopsis 95, 7197-7202. DOI:10.1073/pnas.95.12.7197URL [本文引用: 1]
HarberdNP, Bel?eldE, YasumuraY (2009). The angio- sperm gibberellin-GID1-DELLA growth regulatory mecha-nism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments 21, 1328-1339. DOI:10.1105/tpc.109.066969URL [本文引用: 1]
HashimotoT (2003). Dynamics and regulation of plant interphase microtubules: a comparative view 6, 568-576. PMID:14611955 [本文引用: 1] Microtubule and actin cytoskeletons are fundamental to a variety of cellular activities within eukaryotic organisms. Extensive information on the dynamics and functions of microtubules, as well as on their regulatory proteins, have been revealed in fungi and animals, and corresponding pictures are now slowly emerging in plants. During interphase, plant cells contain highly dynamic cortical microtubules that organize into ordered arrays, which are apparently regulated by distinct groups of microtubule regulators. Comparison with fungal and animal microtubules highlights both conserved and unique mechanisms for the regulation of the microtubule cytoskeleton in plants.
HashimotoT, KatoT (2006). Cortical control of plant microtubules 9, 5-11. PMID:16324879 [本文引用: 2] The cortical microtubule array of plant cells appears in early G(1) and remodels during the progression of the cell cycle and differentiation, and in response to various stimuli. Recent studies suggest that cortical microtubules are mostly formed on pre-existing microtubules and, after detachment from the initial nucleation sites, actively interact with each other to attain distinct distribution patterns. The plus end of growing microtubules is thought to accumulate protein complexes that regulate both microtubule dynamics and interactions with cortical targets. The ROP family of small GTPases and the mitogen-activated protein kinase pathways have emerged as key players that mediate the cortical control of plant microtubules.
JensenPJ, HangarterRP, EstelleM (1998). Auxin transport is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis 116, 455-462. PMID:9489005 [本文引用: 1] Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 microM NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 mumol m-2 s-1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.
KimSY, KimBH, LimCJ, LimCO, NamKH (2010). Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1(bri1) mutant results in higher tolerance to cold 138, 191-204. [本文引用: 1]
KostB, ChuaNH (2002). The plant cytoskeleton: vacuoles and cell walls make the difference 108, 9-12. DOI:10.1016/S0092-8674(01)00634-1URL
LeJ, VandenbusscheF, de CnodderT, van der StraetenD, VerbelenJP (2005). Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: responses to ethy- lene and auxin 24, 166-178. DOI:10.1007/s00344-005-0044-8URL [本文引用: 3]
LiL, YeHX, GuoHQ, YinYH (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression 107, 3918-3923. DOI:10.1073/pnas.0909198107URL
LianN, LiuXM, WangXH, ZhouYY, LiH, LiJG, MaoTL (2017). COP1 mediates dark-specific degradation of micro- tubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation 114, 12321-12326. DOI:10.1073/pnas.1708087114URL [本文引用: 2]
LindeboomJJ, NakamuraM, HibbelA, ShundyakK, GutierrezR, KetelaarT, EmonsAMC, MulderBM, KirikV, EhrhardtDW (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule seve- ring 342, 1245533. DOI:10.1126/science.1245533URL [本文引用: 2]
LindeboomJJ, NakamuraM, SaltiniM, HibbelA, WaliaA, KetelaarT, EmonsAMC, SedbrookJC, KirikV, MulderBM, EhrhardtDW (2019). CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation 218, 190-205. DOI:10.1083/jcb.201805047 Central to the building and reorganizing cytoskeletal arrays is creation of new polymers. Although nucleation has been the major focus of study for microtubule generation, severing has been proposed as an alternative mechanism to create new polymers, a mechanism recently shown to drive the reorientation of cortical arrays of higher plants in response to blue light perception. Severing produces new plus ends behind the stabilizing GTP-cap. An important and unanswered question is how these ends are stabilized in vivo to promote net microtubule generation. Here we identify the conserved protein CLASP as a potent stabilizer of new plus ends created by katanin severing in plant cells. Clasp mutants are defective in cortical array reorientation. In these mutants, both rescue of shrinking plus ends and the stabilization of plus ends immediately after severing are reduced. Computational modeling reveals that it is the specific stabilization of severed ends that best explains CLASP's function in promoting microtubule amplification by severing and array reorientation.
LiuXM, QinT, MaQQ, SunJB, LiuZQ, YuanM, MaoTL (2013). Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis 25, 1740-1755. DOI:10.1105/tpc.113.112789URL [本文引用: 3]
LloydC, ChanJ (2004). Microtubules and the shape of plants to come 5, 13-23. [本文引用: 1]
MaQQ, WangXH, SunJB, MaoTL (2018). Coordinated regulation of hypocotyl cell elongation by light and ethy- lene through a microtubule destabilizing protein 176, 678-690. [本文引用: 2]
MargolisRL, WilsonL (1981). Microtubule treadmills— possible molecular machinery 293, 705-711. PMID:7027052 [本文引用: 1] Microtubule polymerization in vitro is the summation of different reactions occurring at each end of the polymer. In steady-state conditions in vitro, net tubulin addition on the microtubule occurs at one end of the polymer, and net tubulin loss occurs at the opposite end. Thus, a unidirectional flux of tubulin from one end of the microtubule to the other, or "treadmilling', can occur. The opposite end assembly--disassembly behaviour of microtubules, if it occurs within cells, could be fundamentally linked to the functions of microtubules, as, for example, in the translocation of chromosomes during mitosis.
MitchisonT, KirschnerM (1984). Dynamic instability of microtubule growth 312, 237-242. PMID:6504138 [本文引用: 2] We report here that microtubules in vitro coexist in growing and shrinking populations which interconvert rather infrequently. This dynamic instability is a general property of microtubules and may be fundamental in explaining cellular microtubule organization.
NakajimaK, FurutaniI, TachimotoH, MatsubaraH, HashimotoT (2004). SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells 16, 1178-1190. PMID:15084720 [本文引用: 2] Highly organized interphase cortical microtubule (MT) arrays are essential for anisotropic growth of plant cells, yet little is known about the molecular mechanisms that establish and maintain the order of these arrays. The Arabidopsis thaliana spiral1 (spr1) mutant shows right-handed helical growth in roots and etiolated hypocotyls. Characterization of the mutant phenotypes suggested that SPR1 may control anisotropic cell expansion through MT-dependent processes. SPR1 was identified by map-based cloning and found to encode a small protein with unknown function. Proteins homologous to SPR1 occur specifically and ubiquitously in plants. Genetic complementation with green fluorescent protein fusion proteins indicated that the SPR1 protein colocalizes with cortical MTs and that both MT localization and cell expansion control are conferred by the conserved N- and C-terminal regions. Strong SPR1 expression was found in tissues undergoing rapid cell elongation. Plants overexpressing SPR1 showed enhanced resistance to an MT drug and increased hypocotyl elongation. These observations suggest that SPR1 is a plant-specific MT-localized protein required for the maintenance of growth anisotropy in rapidly elongating cells.
NakajimaK, KawamuraT, HashimotoT (2006). Role of the SPIRAL1 gene family in anisotropic growth of Arabi-dopsis thaliana 47, 513-522. PMID:16478750 [本文引用: 2] Arabidopsis spiral1 (spr1) mutants show a right-handed helical growth phenotype in roots and etiolated hypocotyls due to impaired directional growth of rapidly expanding cells. SPR1 encodes a small protein with as yet unknown biochemical functions, though its localization to cortical microtubules (MTs) suggests that SPR1 maintains directional cell expansion by regulating cortical MT functions. The Arabidopsis genome contains five SPR1-LIKE (SP1L) genes that share high sequence identity in N- and C-terminal regions. Overexpression of SP1Ls rescued the helical growth phenotype of spr1, indicating that SPR1 and SP1L proteins share the same biochemical functions. Expression analyses revealed that SPR1 and SP1L genes are transcribed in partially overlapping tissues. A combination of spr1 and sp1l mutations resulted in randomly oriented cortical MT arrays and isotropic expansion of epidermal cells. These observations suggest that SPR1 and SP1Ls act redundantly in maintaining the cortical MT organization essential for anisotropic cell growth, and that the helical growth phenotype of spr1 results from a partially compromised state of cortical MTs. Additionally, inflorescence stems of spr1 sp1l multiple mutants showed a right-handed tendril-like twining growth, indicating that a directional winding response may be conferred to the non-directional nutational movement by modulating the expression of SPR1 homologs.
PengJR, CarolP, RichardsDE, KingKE, CowlingRJ, MurphyGP, HarberdNP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses 11, 3194-3205. DOI:10.1101/gad.11.23.3194URL [本文引用: 1]
ReidJB, BotwrightNA, SmithJJ, O’NeillDP, KerckhoffsLHJ (2002). Control of gibberellin levels and gene expres- sion during de-etiolation in pea 128, 734-741. DOI:10.1104/pp.010607URL [本文引用: 1]
RomanoCP, RobsonPRH, SmithH, EstelleM, KleeH (1995). Transgene-mediated auxin overproduction in Ara- bidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resis tant mutants 27, 1071-1083. PMID:7766890 [本文引用: 1] Transgenic Arabidopsis thaliana plants constitutively expressing Agrobacterium tumefaciens tryptophan monooxygenase (iaaM) were obtained and characterized. Arabidopsis plants expressing iaaM have up to 4-fold higher levels of free indole-3-acetic acid (IAA) and display increased hypocotyl elongation in the light. This result clearly demonstrates that excess endogenous auxin can promote cell elongation in a whole plant. Interactions of the auxin-overproducing transgenic plants with the phytochrome-deficient hy6-1 and auxin-resistant axr1-3 mutations were also studied. The effects of auxin overproduction on hypocotyl elongation were not additive to the effects of phytochrome deficiency in the hy6-1 mutant, indicating that excess auxin does not counteract factors that limit hypocotyl elongation in hy6-1 seedlings. Auxin-overproducing seedlings are also qualitatively indistinguishable from wild-type controls in their response to red, far-red, and blue light treatments, demonstrating that the effect of excess auxin on hypocotyl elongation is independent of red and blue light-mediated effects. All phenotypic effects of iaaM-mediated auxin overproduction (i.e. increased hypocotyl elongation in the light, severe rosette leaf epinasty, and increased apical dominance) are suppressed by the auxin-resistant axr1-3 mutation. The axr1-3 mutation apparently blocks auxin signal transduction since it does not reduce auxin levels when combined with the auxin-overproducing transgene.
SambadeA, PratapA, BuschmannH, MorrisRJ, LloydC (2012). The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl 24, 192-201. DOI:10.1105/tpc.111.093849URL [本文引用: 2]
Sauret-GüetoS, CalderG, HarberdNP (2012). Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse o- rientation of microtubules on the outer tangential wall of epidermal cells 69, 628-639. DOI:10.1111/tpj.2012.69.issue-4URL [本文引用: 1]
ShibaokaH (1974). Involvement of wall microtubules in gibberellin promotion and kinetin inhibition of stem elongation 15, 255-263. [本文引用: 1]
ShibaokaH (1993). Regulation by gibberellins of the orientation of cortical microtubules in plant cells 20, 461-470. [本文引用: 1]
SilverstoneAL, CiampaglioCN, SunTP (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway 10, 155-169. PMID:9490740 [本文引用: 2] The recessive rga mutation is able to partially suppress phenotypic defects of the Arabidopsis gibberellin (GA) biosynthetic mutant ga1-3. Defects in stem elongation, flowering time, and leaf abaxial trichome initiation are suppressed by rga. This indicates that RGA is a negative regulator of the GA signal transduction pathway. We have identified 10 additional alleles of rga from a fast-neutron mutagenized ga1-3 population and used them to isolate the RGA gene by genomic subtraction. Our data suggest that RGA may be functioning as a transcriptional regulator. RGA was found to be a member of the VHIID regulatory family, which includes the radial root organizing gene SCARECROW and another GA signal transduction repressor, GAI. RGA and GAI proteins share a high degree of homology, but their N termini are more divergent. The presence of several structural features, including homopolymeric serine and threonine residues, a putative nuclear localization signal, leucine heptad repeats, and an LXXLL motif, indicates that the RGA protein may be a transcriptional regulator that represses the GA response. In support of the putative nuclear localization signal, we demonstrated that a transiently expressed green fluorescent protein-RGA fusion protein is localized to the nucleus in onion epidermal cells. Because the rga mutation abolished the high level of expression of the GA biosynthetic gene GA4 in the ga1-3 mutant background, we conclude that RGA may also play a role in controlling GA biosynthesis.
SmalleJ, HaegmanM, KurepaJ, van MontaguM, StraetenDVD (1997). Ethylene can stimulate Arabidopsis hypocotyl elongation in the light 94, 2756-2761. DOI:10.1073/pnas.94.6.2756URL [本文引用: 1]
SogaK, YamaguchiA, KotakeT, WakabayashiK, HosonT (2010). Transient increase in the levels of γ-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules 5, 1480-1482. DOI:10.4161/psb.5.11.13561URL [本文引用: 2]
SunJB, MaQQ, MaoTL (2015). Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAM- PENED2-LIKE5 in etiolated hypocotyl elongation 169, 325-337. [本文引用: 2]
TangWQ, KimTW, Oses-PrietoJA, SunY, DengZP, ZhuSW, WangRJ, BurlingameAL, WangZY (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis 321, 557-560. DOI:10.1126/science.1156973URL [本文引用: 1]
ThitamadeeS, TuchiharaK, HashimotoT (2002). Microtubule basis for left-handed helical growth inArabidopsis 417, 193-196. PMID:12000963 Left-right asymmetry in plants can be found in helices of stalks, stems and tendrils, and in fan-like petal arrangements. The handedness in these asymmetric structures is often fixed in given species, indicating that genetic factors control asymmetric development. Here we show that dominant negative mutations at the tubulin intradimer interface of alpha-tubulins 4 and 6 cause left-handed helical growth and clockwise twisting in elongating organs of Arabidopsis thaliana. We demonstrate that the mutant tubulins incorporate into microtubule polymers, producing right-handed obliquely oriented cortical arrays, in the root epidermal cells. The cortical microtubules in the mutants had increased sensitivity to microtubule-specific drugs. These results suggest that reduced microtubule stability can produce left-handed helical growth in plants.
van der GraaffE, NussbaumerC, KellerB (2003). The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene 270, 243-252. PMID:12910411 [本文引用: 1] Activation tagging of the gene LEAFY PETIOLE (LEP) with a T-DNA construct induces ectopic leaf blade formation in Arabidopsis, which results in a leafy petiole phenotype. In addition, the number of rosette leaves produced prior to the onset of bolting is reduced, and the rate of leaf initiation is retarded by the activation tagged LEP gene. The ectopic leaf blade results from an invasion of the petiole region by the wild-type leaf blade. In order to isolate mutants that are specifically disturbed in the outgrowth of the leaf blade, second site mutagenesis was performed using ethane methanesulphonate (EMS) on a transgenic line that harbours the activation-tagged LEP gene and exhibits the leafy petiole phenotype. A collection of revertant for leafy petiole (rlp lines was isolated that form petiolated rosette leaves in the presence of the activated LEP gene, and could be classified into three groups. The class III rlp lines also display altered leaf development in a wild-type (non-transgenic) background, and are probably mutated in genes that affect shoot or leaf development. The rlp lines of classes I and II, which represent the majority of revertants, do not affect leaf blade outgrowth in a wild-type (non-transgenic) background. This indicates that LEP regulates a subset of the genes involved in the process of leaf blade outgrowth, and that genetic and/or functional redundancy in this process compensates for the loss of RLP function during the formation of the wild-type leaf blade. More detailed genetic and morphological analyses were performed on a selection of the rlp lines. Of these, the dominant rlp lines display complete reversion of (1) the leafy petiole phenotype, (2) the reduction in the number of rosette leaves and (3) the slower leaf initiation rate caused by the activation-tagged LEP gene. Therefore, these lines are potentially mutated in genes for interacting partners of LEP or in downstream regulatory genes. In contrast, the recessive rlp lines exhibit a specific reversion of the leafy petiole phenotype. Thus, these lines are most probably mutated in genes specific for the outgrowth of the leaf blade. Further functional analysis of the rlp mutations will contribute to the dissection of the complex pathways underlying leaf blade outgrowth.
WangCF, LiuWW, WangGD, LiJ, DongL, HanLB, WangQ, TianJ, YuYJ, GaoCX, KongZS (2017). KTN80 confers precision to microtubule severing by specific targeting of Katanin complexes in plant cells 36, 3435-3447. DOI:10.15252/embj.201796823URL [本文引用: 2]
WangXF, MaoTL (2019). Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals 52, 86-96. DOI:10.1016/j.pbi.2019.08.002URL [本文引用: 2]
WangXL, ZhangJ, YuanM, EhrhardtDW, WangZY, MaoTL (2012). Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation 24, 4012-4025. DOI:10.1105/tpc.112.103838URL [本文引用: 2]
WangZY, SetoH, FujiokaS, YoshidaS, ChoryJ (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids 410, 380-383. PMID:11268216 [本文引用: 1] Most multicellular organisms use steroids as signalling molecules for physiological and developmental regulation. Two different modes of steroid action have been described in animal systems: the well-studied gene regulation response mediated by nuclear receptors, and the rapid non-genomic responses mediated by proposed membrane-bound receptors. Plant genomes do not seem to encode members of the nuclear receptor superfamily. However, a transmembrane receptor kinase, brassinosteroid-insensitive1 (BRI1), has been implicated in brassinosteroid responses. Here we show that BRI1 functions as a receptor of brassinolide, the most active brassinosteroid. The number of brassinolide-binding sites and the degree of response to brassinolide depend on the level of BRI1 protein. The brassinolide-binding activity co-immunoprecipitates with BRI1, and requires a functional BRI1 extracellular domain. Moreover, treatment of Arabidopsis seedlings with brassinolide induces autophosphorylation of BRI1, which, together with our binding studies, shows that BRI1 is a receptor kinase that transduces steroid signals across the plasma membrane.
YeHX, LiL, YinYH (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways 53, 455-468. DOI:10.1111/jipb.2011.53.issue-6URL [本文引用: 2]
YuYW, WangJ, ZhangZJ, QuanRD, ZhangHW, DengXW, MaLG, HuangRF (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light 9, e1004025. [本文引用: 1]
ZhaoYD, ChristensenSK, FankhauserC, CashmanJR, CohenJD, WeigelD, ChoryJ (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis 291, 306-309. DOI:10.1126/science.291.5502.306URL [本文引用: 3]
ZhongSW, ShiH, XueC, WangL, XiYP, LiJG, QuailPH, DengXW, GuoHW (2012). A molecular framework of light-controlled phytohormone action in Arabidopsis 22, 1530-1535. DOI:10.1016/j.cub.2012.06.039URL
DELLAs contribute to plant photomorphogenesis 1 2007
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling 1 2019
... 生长素促进下胚轴伸长可通过调节周质微管为横向排列实现.植株体内缺少生长素会抑制其生长, 细胞内的微管以纵向排列为主, 纵向排列的微管可通过外源添加生长素改变为横向排列, 且这种转变具有剂量依赖效应(Fischer and Schopfer, 1997).关于生长素信号调控微管骨架排列方式分子机制的研究, 从发现生长素能够调节下胚轴细胞内微管的重新排列就已开始.Chen等(2014)研究表明, 生长素通过生长素结合蛋白1 (auxin binding protein 1, ABP1)调节ROP (Rho of plants) GTPase、ROP的互作蛋白RIC1 (ROP-interactive CRIB motif-containing protein 1)和微管切割蛋白katanin来调控下胚轴细胞内的微管骨架重排.True和Shaw (2020)发现, 外源生长素诱导下胚轴细胞周质微管重排需要转运抑制因子/生长素F-box (transport inhibitor 1/auxin F-box, TIR1/AFB)转录途径.但是关于生长素促进下胚轴伸长与调控微管重排之间的关系尚存在不同观点, 有研究者认为, 下胚轴细胞内周质微管重排由生长本身引起, 而不依赖于生长素(Adamowski et al., 2019).目前, 在生长素调控下胚轴伸长过程中, 并未发现受生长素信号直接调控的微管蛋白或微管相关蛋白, 对于微管骨架响应生长素信号调节下胚轴伸长的机理也需深入研究. ...
Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness 1 2008
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division 1 2007
... Representative microtubule-associated proteins that are involved in the hypocotyl elongation Table 1
CLASP: Cytoplasmic linker protein-associated protein; MDP25: Microtubule destabilizing protein 25; WDL3: Wave-dampened 2 like 3; MDP60: Microtubule destabilizing protein 60; SPR1: Spiral 1; WDL5: Wave-dampened 2 like 5; MDP40: Microtubule destabilizing protein 40; PIF3: Phytochrome-interacting factor 3; EIN3: Ethylene-insensitive 3; BZR1: Brassinazole-resistant 1 ...
Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Ara- bidopsis 1 2004
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana 0 1988
Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules 1 2014
... 生长素促进下胚轴伸长可通过调节周质微管为横向排列实现.植株体内缺少生长素会抑制其生长, 细胞内的微管以纵向排列为主, 纵向排列的微管可通过外源添加生长素改变为横向排列, 且这种转变具有剂量依赖效应(Fischer and Schopfer, 1997).关于生长素信号调控微管骨架排列方式分子机制的研究, 从发现生长素能够调节下胚轴细胞内微管的重新排列就已开始.Chen等(2014)研究表明, 生长素通过生长素结合蛋白1 (auxin binding protein 1, ABP1)调节ROP (Rho of plants) GTPase、ROP的互作蛋白RIC1 (ROP-interactive CRIB motif-containing protein 1)和微管切割蛋白katanin来调控下胚轴细胞内的微管骨架重排.True和Shaw (2020)发现, 外源生长素诱导下胚轴细胞周质微管重排需要转运抑制因子/生长素F-box (transport inhibitor 1/auxin F-box, TIR1/AFB)转录途径.但是关于生长素促进下胚轴伸长与调控微管重排之间的关系尚存在不同观点, 有研究者认为, 下胚轴细胞内周质微管重排由生长本身引起, 而不依赖于生长素(Adamowski et al., 2019).目前, 在生长素调控下胚轴伸长过程中, 并未发现受生长素信号直接调控的微管蛋白或微管相关蛋白, 对于微管骨架响应生长素信号调节下胚轴伸长的机理也需深入研究. ...
Phenotypic and genetic analysis of det2, a new mutant that affects light- regulated seedling development in Arabidopsis 1 1991
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development 2 2011
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
... ; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation 1 1999
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Auxin, ethylene and brassinos-teroids: tripartite control of growth in theArabidopsis hy- pocotyl 1 2005
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
A molecular framework for light and gibberellin control of cell elongation 2 2008
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
... ; de Lucas et al., 2008). ...
bHLH class transcription factors take centre stage in phytochrome signaling 1 2005
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Microtubule dynamics and organization in the plant cortical array 2 2006
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
... 乙烯是一种气体激素, 在调控植物下胚轴伸长中起重要作用(Smalle et al., 1997; Zhong et al., 2012).乙烯可根据光照条件促进或抑制拟南芥下胚轴伸长(Ecker et al.,1995; Smalle et al., 1997).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
Coordi-nated regulation ofArabidopsis thaliana development by light and gibberellins 1 2008
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles 1 1997
... 生长素促进下胚轴伸长可通过调节周质微管为横向排列实现.植株体内缺少生长素会抑制其生长, 细胞内的微管以纵向排列为主, 纵向排列的微管可通过外源添加生长素改变为横向排列, 且这种转变具有剂量依赖效应(Fischer and Schopfer, 1997).关于生长素信号调控微管骨架排列方式分子机制的研究, 从发现生长素能够调节下胚轴细胞内微管的重新排列就已开始.Chen等(2014)研究表明, 生长素通过生长素结合蛋白1 (auxin binding protein 1, ABP1)调节ROP (Rho of plants) GTPase、ROP的互作蛋白RIC1 (ROP-interactive CRIB motif-containing protein 1)和微管切割蛋白katanin来调控下胚轴细胞内的微管骨架重排.True和Shaw (2020)发现, 外源生长素诱导下胚轴细胞周质微管重排需要转运抑制因子/生长素F-box (transport inhibitor 1/auxin F-box, TIR1/AFB)转录途径.但是关于生长素促进下胚轴伸长与调控微管重排之间的关系尚存在不同观点, 有研究者认为, 下胚轴细胞内周质微管重排由生长本身引起, 而不依赖于生长素(Adamowski et al., 2019).目前, 在生长素调控下胚轴伸长过程中, 并未发现受生长素信号直接调控的微管蛋白或微管相关蛋白, 对于微管骨架响应生长素信号调节下胚轴伸长的机理也需深入研究. ...
Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis 1 2002
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana 1 2000
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
Cellular basis of hypocotyl growth in Arabidopsis thaliana 1 1997
High temperature promotes auxin-mediated hy-pocotyl elongation in Arabidopsis 1 1998
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
Plants grow on bras-sinosteroids 2 2011
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
... ; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
The angio- sperm gibberellin-GID1-DELLA growth regulatory mecha-nism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments 1 2009
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Dynamics and regulation of plant interphase microtubules: a comparative view 1 2003
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
Cortical control of plant microtubules 2 2006
... 植物细胞骨架由微管和微丝组成.微管作为植物细胞骨架成员之一, 在植物生长发育过程中起重要作用(Hashimoto, 2003; Lloyd and Chan, 2004; Hashi- moto and Kato, 2006).下胚轴作为研究细胞伸长的模式器官, 其伸长既受到许多上游信号的调控也受到微管骨架的调节.早期关于下胚轴伸长的研究中, 细胞骨架和上游信号的调节处于相对独立状态.随着研究的不断深入, 发现微管受到上游信号的调控, 进而参与下胚轴伸长的调节.因此本文对近年来关于微管骨架响应环境和生长发育信号参与下胚轴伸长调节机制的研究进展进行了总结. ...
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
Auxin transport is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis 1 1998
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1(bri1) mutant results in higher tolerance to cold 1 2010
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Brassinosteroid signal transduc-tion from receptor kinases to transcription factors 1 2010
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
The plant cytoskeleton: vacuoles and cell walls make the difference 0 2002
Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: responses to ethy- lene and auxin 3 2005
... 光是下胚轴伸长的主要调控因子之一.黑暗条件下, 植株下胚轴表现为黄化生长且快速伸长, 见光后下胚轴的伸长速率下降, 说明光对下胚轴伸长有强烈的抑制作用.Le等(2015)研究表明, 在快速伸长的下胚轴细胞内, 周质微管垂直于伸长轴, 表现为横向排列方式, 而在伸长缓慢或停止伸长的下胚轴细胞内, 周质微管表现为斜向或纵向排列; 快速伸长生长的黄化下胚轴见光后, 周质微管由横向平行排列变为斜向或纵向排列, 进而有利于抑制下胚轴的伸长.对光信号调节微管重排的研究发现, 光信号通过改变下胚轴细胞中周质微管的动态及转换能力调控其排列方式, 进而调节下胚轴的伸长.下胚轴细胞在快速伸长之前, 细胞内的微管会形成一种具有双极性的纵向列阵, 并转换为放射状的星状微管列阵, 之后开始进入快速伸长生长.在快速伸长的植株细胞内, 微管的聚合和重排速率都更快(Sambade et al., 2012).此外, 蓝光可在15分钟内诱导拟南芥下胚轴细胞中横向排列的周质微管完成90度重排.具体机理是: 蓝光照射后微管切割蛋白katanin切割交叉部位的微管产生新末端, 微管正端结合蛋白CLASP (cytoplasmic linker protein-associated protein)稳定新形成的微管末端, 使新末端在伸长过程中改变微管的排列方式为纵向排列(Lindeboom et al., 2013; Wang et al., 2017; Lindeboom et al., 2019) (表1).该研究结果为揭示光诱导微管重排的分子机理提供了重要线索. ...
CLASP: Cytoplasmic linker protein-associated protein; MDP25: Microtubule destabilizing protein 25; WDL3: Wave-dampened 2 like 3; MDP60: Microtubule destabilizing protein 60; SPR1: Spiral 1; WDL5: Wave-dampened 2 like 5; MDP40: Microtubule destabilizing protein 40; PIF3: Phytochrome-interacting factor 3; EIN3: Ethylene-insensitive 3; BZR1: Brassinazole-resistant 1 ...
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression 0 2010
COP1 mediates dark-specific degradation of micro- tubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation 2 2017
... 光是下胚轴伸长的主要调控因子之一.黑暗条件下, 植株下胚轴表现为黄化生长且快速伸长, 见光后下胚轴的伸长速率下降, 说明光对下胚轴伸长有强烈的抑制作用.Le等(2015)研究表明, 在快速伸长的下胚轴细胞内, 周质微管垂直于伸长轴, 表现为横向排列方式, 而在伸长缓慢或停止伸长的下胚轴细胞内, 周质微管表现为斜向或纵向排列; 快速伸长生长的黄化下胚轴见光后, 周质微管由横向平行排列变为斜向或纵向排列, 进而有利于抑制下胚轴的伸长.对光信号调节微管重排的研究发现, 光信号通过改变下胚轴细胞中周质微管的动态及转换能力调控其排列方式, 进而调节下胚轴的伸长.下胚轴细胞在快速伸长之前, 细胞内的微管会形成一种具有双极性的纵向列阵, 并转换为放射状的星状微管列阵, 之后开始进入快速伸长生长.在快速伸长的植株细胞内, 微管的聚合和重排速率都更快(Sambade et al., 2012).此外, 蓝光可在15分钟内诱导拟南芥下胚轴细胞中横向排列的周质微管完成90度重排.具体机理是: 蓝光照射后微管切割蛋白katanin切割交叉部位的微管产生新末端, 微管正端结合蛋白CLASP (cytoplasmic linker protein-associated protein)稳定新形成的微管末端, 使新末端在伸长过程中改变微管的排列方式为纵向排列(Lindeboom et al., 2013; Wang et al., 2017; Lindeboom et al., 2019) (表1).该研究结果为揭示光诱导微管重排的分子机理提供了重要线索. ...
CLASP: Cytoplasmic linker protein-associated protein; MDP25: Microtubule destabilizing protein 25; WDL3: Wave-dampened 2 like 3; MDP60: Microtubule destabilizing protein 60; SPR1: Spiral 1; WDL5: Wave-dampened 2 like 5; MDP40: Microtubule destabilizing protein 40; PIF3: Phytochrome-interacting factor 3; EIN3: Ethylene-insensitive 3; BZR1: Brassinazole-resistant 1 ...
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses 1 1997
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
Control of gibberellin levels and gene expres- sion during de-etiolation in pea 1 2002
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
Transgene-mediated auxin overproduction in Ara- bidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resis tant mutants 1 1995
... 光是下胚轴伸长的主要调控因子之一.黑暗条件下, 植株下胚轴表现为黄化生长且快速伸长, 见光后下胚轴的伸长速率下降, 说明光对下胚轴伸长有强烈的抑制作用.Le等(2015)研究表明, 在快速伸长的下胚轴细胞内, 周质微管垂直于伸长轴, 表现为横向排列方式, 而在伸长缓慢或停止伸长的下胚轴细胞内, 周质微管表现为斜向或纵向排列; 快速伸长生长的黄化下胚轴见光后, 周质微管由横向平行排列变为斜向或纵向排列, 进而有利于抑制下胚轴的伸长.对光信号调节微管重排的研究发现, 光信号通过改变下胚轴细胞中周质微管的动态及转换能力调控其排列方式, 进而调节下胚轴的伸长.下胚轴细胞在快速伸长之前, 细胞内的微管会形成一种具有双极性的纵向列阵, 并转换为放射状的星状微管列阵, 之后开始进入快速伸长生长.在快速伸长的植株细胞内, 微管的聚合和重排速率都更快(Sambade et al., 2012).此外, 蓝光可在15分钟内诱导拟南芥下胚轴细胞中横向排列的周质微管完成90度重排.具体机理是: 蓝光照射后微管切割蛋白katanin切割交叉部位的微管产生新末端, 微管正端结合蛋白CLASP (cytoplasmic linker protein-associated protein)稳定新形成的微管末端, 使新末端在伸长过程中改变微管的排列方式为纵向排列(Lindeboom et al., 2013; Wang et al., 2017; Lindeboom et al., 2019) (表1).该研究结果为揭示光诱导微管重排的分子机理提供了重要线索. ...
The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl 2 2012
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
... 有研究者对赤霉素促进光下下胚轴伸长过程中微管骨架的功能进行分析, 发现赤霉素通过使下胚轴细胞内周质微管重排为横向进而促进下胚轴伸长(Shibaoka, 1974, 1993).Vineyard等(2013)使用生长素和赤霉素双激素处理的方法研究了光下生长的下胚轴细胞内横向排列周质微管形成的机制, 发现双激素处理能在2小时内同步诱导光下下胚轴细胞内大部分周质微管变为横向排列.激素处理初期, 正在聚合的微管正端减少约1/3; 继续用激素诱导45分钟后, 横向排列的微管最初在细胞中间部位形成, 然后以双向的方式逐步向细胞顶端和底端扩展(Vineyard et al., 2013).但也有研究发现, 对光下生长的拟南芥下胚轴外源瞬时施加赤霉素会导致下胚轴细胞的伸长速率瞬时增加, 然后恢复至正常状态, 这一过程伴随DELLAs蛋白中赤霉素合成缺陷突变体抑制子RGA (repressor of ga1-3)蛋白降解及恢复, 但下胚轴表皮细胞外切壁中的周质微管并未变为横向排列, 推测可能光下下胚轴细胞伸长速率的增加并不需要外切壁细胞中周质微管变为横向排列(Sauret-Güeto et al., 2012).关于微管骨架在赤霉素促进光下下胚轴伸长过程中的作用机制目前仍不十分清楚, 因此, 对微管骨架响应赤霉素信号调节下胚轴伸长的机理也需进一步探索. ...
Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse o- rientation of microtubules on the outer tangential wall of epidermal cells 1 2012
... 有研究者对赤霉素促进光下下胚轴伸长过程中微管骨架的功能进行分析, 发现赤霉素通过使下胚轴细胞内周质微管重排为横向进而促进下胚轴伸长(Shibaoka, 1974, 1993).Vineyard等(2013)使用生长素和赤霉素双激素处理的方法研究了光下生长的下胚轴细胞内横向排列周质微管形成的机制, 发现双激素处理能在2小时内同步诱导光下下胚轴细胞内大部分周质微管变为横向排列.激素处理初期, 正在聚合的微管正端减少约1/3; 继续用激素诱导45分钟后, 横向排列的微管最初在细胞中间部位形成, 然后以双向的方式逐步向细胞顶端和底端扩展(Vineyard et al., 2013).但也有研究发现, 对光下生长的拟南芥下胚轴外源瞬时施加赤霉素会导致下胚轴细胞的伸长速率瞬时增加, 然后恢复至正常状态, 这一过程伴随DELLAs蛋白中赤霉素合成缺陷突变体抑制子RGA (repressor of ga1-3)蛋白降解及恢复, 但下胚轴表皮细胞外切壁中的周质微管并未变为横向排列, 推测可能光下下胚轴细胞伸长速率的增加并不需要外切壁细胞中周质微管变为横向排列(Sauret-Güeto et al., 2012).关于微管骨架在赤霉素促进光下下胚轴伸长过程中的作用机制目前仍不十分清楚, 因此, 对微管骨架响应赤霉素信号调节下胚轴伸长的机理也需进一步探索. ...
Involvement of wall microtubules in gibberellin promotion and kinetin inhibition of stem elongation 1 1974
... 有研究者对赤霉素促进光下下胚轴伸长过程中微管骨架的功能进行分析, 发现赤霉素通过使下胚轴细胞内周质微管重排为横向进而促进下胚轴伸长(Shibaoka, 1974, 1993).Vineyard等(2013)使用生长素和赤霉素双激素处理的方法研究了光下生长的下胚轴细胞内横向排列周质微管形成的机制, 发现双激素处理能在2小时内同步诱导光下下胚轴细胞内大部分周质微管变为横向排列.激素处理初期, 正在聚合的微管正端减少约1/3; 继续用激素诱导45分钟后, 横向排列的微管最初在细胞中间部位形成, 然后以双向的方式逐步向细胞顶端和底端扩展(Vineyard et al., 2013).但也有研究发现, 对光下生长的拟南芥下胚轴外源瞬时施加赤霉素会导致下胚轴细胞的伸长速率瞬时增加, 然后恢复至正常状态, 这一过程伴随DELLAs蛋白中赤霉素合成缺陷突变体抑制子RGA (repressor of ga1-3)蛋白降解及恢复, 但下胚轴表皮细胞外切壁中的周质微管并未变为横向排列, 推测可能光下下胚轴细胞伸长速率的增加并不需要外切壁细胞中周质微管变为横向排列(Sauret-Güeto et al., 2012).关于微管骨架在赤霉素促进光下下胚轴伸长过程中的作用机制目前仍不十分清楚, 因此, 对微管骨架响应赤霉素信号调节下胚轴伸长的机理也需进一步探索. ...
Regulation by gibberellins of the orientation of cortical microtubules in plant cells 1 1993
... 赤霉素(gibberellin, GA)也参与调控植物下胚轴的伸长(Cowling and Harberd, 1999).GA可以促进黄瓜(Cucumis sativus)、生菜(Lactuca sativa var. ramosa)和拟南芥等植物下胚轴的伸长.外源添加赤霉素能促进光下生长的拟南芥下胚轴伸长, 但对黑暗下生长的下胚轴无促进效果, 这说明黑暗条件下下胚轴伸长对赤霉素的响应存在饱和效应(Sauret-Güeto et al., 2012).下胚轴伸长受光和赤霉素的拮抗作用(光抑制细胞伸长, 而赤霉素促进细胞伸长).具体调节机制为: 在光下, 光受体phyB介导光敏色素互作因子4 (PIF4)降解, PIF4调控的促进下胚轴细胞伸长的下游基因表达受到抑制, 进而抑制下胚轴伸长(Duek and Fankhauser, 2005; de Lucas et al., 2008).此外, 光使幼苗中赤霉素生物合成基因的表达瞬时下调, 编码赤霉素失活酶基因的表达上调, 因此可能导致活性赤霉素减少及DELLAs (赤霉素信号的负调控因子)蛋白在下胚轴细胞中积累(Peng et al., 1997; Silverstone et al., 1998; Reid et al., 2002; Achard et al., 2007; Alabadíet et al., 2008; Harberd et al., 2009).DELLA蛋白与促进细胞伸长的转录因子PIF3和PIF4互作抑制其活性, 进而使下胚轴伸长受到抑制.当赤霉素存在时, 赤霉素与受体结合, 促进受体与DELLA蛋白互作, 使DELLAs降解, PIF3和PIF4能发挥其转录活性, 进而促进下胚轴伸长(Feng et al., 2008; de Lucas et al., 2008). ...
The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway 2 1998
... 乙烯是一种气体激素, 在调控植物下胚轴伸长中起重要作用(Smalle et al., 1997; Zhong et al., 2012).乙烯可根据光照条件促进或抑制拟南芥下胚轴伸长(Ecker et al.,1995; Smalle et al., 1997).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
... ; Smalle et al., 1997).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
Ethylene can stimulate Arabidopsis hypocotyl elongation in the light 1 1997
... 用外源乙烯或ACC处理时, 黄化下胚轴细胞内周质微管由横向变为纵向排列, 说明乙烯通过调节微管的排列方式参与调节下胚轴的伸长(Soga et al., 2010).在乙烯调节下胚轴细胞周质微管排列过程中有微管相关蛋白参与.研究表明, 微管相关蛋白WDL5参与乙烯抑制黄化下胚轴伸长的调节(Sun et al., 2015).黑暗条件下, 乙烯信号通路下游的关键转录因子EIN3直接结合到WDL5的启动子上并上调其表达, WDL5通过稳定并重排微管进而抑制黄化下胚轴的伸长(Sun et al., 2015). ...
Transient increase in the levels of γ-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules 2 2010
... 用外源乙烯或ACC处理时, 黄化下胚轴细胞内周质微管由横向变为纵向排列, 说明乙烯通过调节微管的排列方式参与调节下胚轴的伸长(Soga et al., 2010).在乙烯调节下胚轴细胞周质微管排列过程中有微管相关蛋白参与.研究表明, 微管相关蛋白WDL5参与乙烯抑制黄化下胚轴伸长的调节(Sun et al., 2015).黑暗条件下, 乙烯信号通路下游的关键转录因子EIN3直接结合到WDL5的启动子上并上调其表达, WDL5通过稳定并重排微管进而抑制黄化下胚轴的伸长(Sun et al., 2015). ...
... 的启动子上并上调其表达, WDL5通过稳定并重排微管进而抑制黄化下胚轴的伸长(Sun et al., 2015). ...
Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAM- PENED2-LIKE5 in etiolated hypocotyl elongation 2 2015
... Representative microtubule-associated proteins that are involved in the hypocotyl elongation Table 1
CLASP: Cytoplasmic linker protein-associated protein; MDP25: Microtubule destabilizing protein 25; WDL3: Wave-dampened 2 like 3; MDP60: Microtubule destabilizing protein 60; SPR1: Spiral 1; WDL5: Wave-dampened 2 like 5; MDP40: Microtubule destabilizing protein 40; PIF3: Phytochrome-interacting factor 3; EIN3: Ethylene-insensitive 3; BZR1: Brassinazole-resistant 1 ...
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis 1 2008
... 微管在植物多种生理活动中起重要作用, 如维持细胞形态、控制细胞极性生长、调控细胞有丝分裂与细胞分化以及参与囊泡运输和信号转导(Kost and Chua, 2002; Hashimoto, 2003; Lloyd and Chan, 2004; Hashimoto and Kato, 2006).4种微管列阵随着细胞周期依次转化, 执行相应的生理功能.其中, 周质微管列阵与植物细胞形态和生长方向等密切相关(Ehrhardt and Shaw, 2006).在快速伸长的根或黄化下胚轴细胞中, 周质微管表现为密集的横向平行排列(垂直于细胞的伸长方向) (Baskin et al., 2004).当植物根细胞中的周质微管排列方向由横向变为左手螺旋时, 植物根细胞则转变为右手螺旋方向生长, 即根由向下变为向右生长; 相反, 植物根细胞中的周质微管排列方向由横向变为右手螺旋时, 根细胞则转变为左手螺旋方向生长, 即根由向下变为向左生长(Furutani et al., 2000; Thitamadee et al., 2002; Nakajima et al., 2004). ...
Microtubule basis for left-handed helical growth inArabidopsis 0 2002
Exogenous auxin induces trans- verse microtubule arrays through TRANSPORT INHIBI-TOR RESPONSE1/AUXIN SIGNALING F-BOX receptors 2 2020
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
... 生长素促进下胚轴伸长可通过调节周质微管为横向排列实现.植株体内缺少生长素会抑制其生长, 细胞内的微管以纵向排列为主, 纵向排列的微管可通过外源添加生长素改变为横向排列, 且这种转变具有剂量依赖效应(Fischer and Schopfer, 1997).关于生长素信号调控微管骨架排列方式分子机制的研究, 从发现生长素能够调节下胚轴细胞内微管的重新排列就已开始.Chen等(2014)研究表明, 生长素通过生长素结合蛋白1 (auxin binding protein 1, ABP1)调节ROP (Rho of plants) GTPase、ROP的互作蛋白RIC1 (ROP-interactive CRIB motif-containing protein 1)和微管切割蛋白katanin来调控下胚轴细胞内的微管骨架重排.True和Shaw (2020)发现, 外源生长素诱导下胚轴细胞周质微管重排需要转运抑制因子/生长素F-box (transport inhibitor 1/auxin F-box, TIR1/AFB)转录途径.但是关于生长素促进下胚轴伸长与调控微管重排之间的关系尚存在不同观点, 有研究者认为, 下胚轴细胞内周质微管重排由生长本身引起, 而不依赖于生长素(Adamowski et al., 2019).目前, 在生长素调控下胚轴伸长过程中, 并未发现受生长素信号直接调控的微管蛋白或微管相关蛋白, 对于微管骨架响应生长素信号调节下胚轴伸长的机理也需深入研究. ...
The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene 1 2003
... 有研究者对赤霉素促进光下下胚轴伸长过程中微管骨架的功能进行分析, 发现赤霉素通过使下胚轴细胞内周质微管重排为横向进而促进下胚轴伸长(Shibaoka, 1974, 1993).Vineyard等(2013)使用生长素和赤霉素双激素处理的方法研究了光下生长的下胚轴细胞内横向排列周质微管形成的机制, 发现双激素处理能在2小时内同步诱导光下下胚轴细胞内大部分周质微管变为横向排列.激素处理初期, 正在聚合的微管正端减少约1/3; 继续用激素诱导45分钟后, 横向排列的微管最初在细胞中间部位形成, 然后以双向的方式逐步向细胞顶端和底端扩展(Vineyard et al., 2013).但也有研究发现, 对光下生长的拟南芥下胚轴外源瞬时施加赤霉素会导致下胚轴细胞的伸长速率瞬时增加, 然后恢复至正常状态, 这一过程伴随DELLAs蛋白中赤霉素合成缺陷突变体抑制子RGA (repressor of ga1-3)蛋白降解及恢复, 但下胚轴表皮细胞外切壁中的周质微管并未变为横向排列, 推测可能光下下胚轴细胞伸长速率的增加并不需要外切壁细胞中周质微管变为横向排列(Sauret-Güeto et al., 2012).关于微管骨架在赤霉素促进光下下胚轴伸长过程中的作用机制目前仍不十分清楚, 因此, 对微管骨架响应赤霉素信号调节下胚轴伸长的机理也需进一步探索. ...
CLASP: Cytoplasmic linker protein-associated protein; MDP25: Microtubule destabilizing protein 25; WDL3: Wave-dampened 2 like 3; MDP60: Microtubule destabilizing protein 60; SPR1: Spiral 1; WDL5: Wave-dampened 2 like 5; MDP40: Microtubule destabilizing protein 40; PIF3: Phytochrome-interacting factor 3; EIN3: Ethylene-insensitive 3; BZR1: Brassinazole-resistant 1 ...
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
BRI1 is a critical component of a plasma-membrane receptor for plant steroids 1 2001
... 油菜素甾醇(brassinosteroids, BRs)是一种重要的调节植物生长发育的植物激素(Clouse, 2011; Ye et al., 2011).BRs通过受体激酶BRI1 (brinsensitive1)以及特定的信号转导途径激活2个关键转录因子BZR1 (brassinazole-resistant 1)和BES1/BZR2 (brinsensi-tive1-EMS-suppressor1/brinsensitive2)来起作用(Li et al., 2010; Kim and Wang, 2010; Clouse, 2011; Gudesblat and Russinova, 2011).许多油菜素甾醇缺陷及不敏感突变体的黄化下胚轴变短且光下生长的植株矮小.例如, 油菜素甾醇合成缺失突变体det2 (de-etiolated-2)在黑暗下生长时子叶张开且下胚轴伸长受到抑制(Chory et al., 1991; Wang et al., 2001); 油菜素甾醇受体BRI1的无效突变体bri1-116植株也表现出黄化下胚轴短的表型; 油菜素甾醇信号途径转录因子BZR1的激活标签突变体bzr1-1D则表现出黄化下胚轴长且弯曲的表型; 油菜素甾醇信号途径的负调控因子BIN2的显性突变体bin2-1植株黄化下胚轴伸长也受到抑制; 油菜素甾醇信号通路中的上游组分BSKs和BSU1通过改变转录因子BZR1的磷酸化状态调控下胚轴的伸长(Tang et al., 2008; Kim et al., 2010; Gudesblat and Russinova, 2011).上述结果表明, BRs在调控下胚轴伸长方面起重要作用. ...
Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways 2 2011
... 乙烯是一种气体激素, 在调控植物下胚轴伸长中起重要作用(Smalle et al., 1997; Zhong et al., 2012).乙烯可根据光照条件促进或抑制拟南芥下胚轴伸长(Ecker et al.,1995; Smalle et al., 1997).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
... ).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light 1 2013
... 生长素(auxin)在控制细胞伸长过程中起重要作用.生长素的合成或运输受到影响均会改变拟南芥下胚轴的长度.生长素转运抑制剂NPA (1-naphthylphthala- mic acid)处理和生长素输出载体PIN1 (pin formed1)突变均可抑制光下下胚轴的伸长(Jensen et al., 1998; Friml et al., 2002), 而PIN1过表达可促进光下下胚轴的伸长(De Grauwe et al., 2005).外源施加生长素或上调生长素合成酶基因的表达都能促进光下生长的拟南芥下胚轴伸长, 黑暗下并无类似作用(Romano et al., 1995; Gray et al., 1998; van der Graaff et al., 2003).但也有研究表明, 提高生长素的水平会抑制黑暗下下胚轴的伸长.例如, 生长素合成酶基因YUCCA过表达植株, 光下下胚轴比野生型长而黑暗下下胚轴比野生型短, 说明在光暗两种条件下生长素可能发挥不同的作用或通过不同的信号途径发挥作用(Zhao et al., 2001). ...
A role for flavin monooxygenase-like enzymes in auxin biosynthesis 3 2001
... 乙烯是一种气体激素, 在调控植物下胚轴伸长中起重要作用(Smalle et al., 1997; Zhong et al., 2012).乙烯可根据光照条件促进或抑制拟南芥下胚轴伸长(Ecker et al.,1995; Smalle et al., 1997).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
... ).光照条件下, 乙烯或者其前体ACC (1-aminocyclopropane-1-car-boxylic acid)处理可促进下胚轴伸长; 黑暗条件下, 乙烯则抑制下胚轴伸长(Zhong et al., 2012; Yu et al., 2013).乙烯通过转录因子EIN3激活PIF3依赖的生长促进途径及乙烯响应因子1 (ethylene response fac-tor 1, ERF1)介导的生长抑制途径来调控下胚轴生长.在光下, 乙烯通过其信号途径关键转录因子EIN3直接结合PIF3的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
... 的启动子区激活其表达, 从而促进光下下胚轴伸长; 黑暗条件下, 乙烯可诱导抑制伸长的ERF1蛋白积累, 进而抑制黄化下胚轴伸长(Zhong et al., 2012).此外, 乙烯还可通过COP1介导的HY5 (hypocotyl 5)蛋白降解来促进光下下胚轴的伸长(Yu et al., 2013). ...
A molecular framework of light-controlled phytohormone action in Arabidopsis 0 2012