删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水稻卷叶细胞学与分子机制研究进展

本站小编 Free考研考试/2022-01-01

周亭亭1,2, 饶玉春1,*,, 任德勇2,*,
1浙江师范大学化学与生命科学学院, 金华 321004
2中国水稻研究所水稻生物学国家重点实验室, 杭州 310006
Zhou Tingting1,2, Rao Yuchun1,*,, Ren Deyong2,*,
1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
2State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
引用本文
周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018, 53(6): 848-855

贡献者
* 通讯作者。E-mail: ryc1984@163.com; rendeyong616@163.com
基金资助
浙江省自然科学基金(No.LY18C130007);
接受日期:2017-12-5网络出版日期:2018-11-1
-->Copyright
2018《植物学报》编辑部


History
Received:Online:





摘要:卷叶性状是水稻(Oryza sativa)重要的育种指标之一。研究表明, 水稻叶片适度卷曲对植株的光合作用、株型及增产等均具有重要作用。该文综述了水稻叶片卷曲的相关研究进展, 对水稻叶片卷曲的细胞学形成机制和相关调控基因的分子机制进行了阐述, 以期深入阐明水稻叶片卷曲的细胞学和分子机制, 促进卷叶性状在水稻育种中的应用。
关键词: 水稻 ; 卷叶 ; 细胞学机制 ; 分子机制

Abstract: Leaf rolling is one of the important traits for breeding rice (Oryza sativa). Moderate leaf rolling plays a key role in plant photosynthesis, architecture and high yield. This paper reviews the research advances in rice leaf rolling, especially the cytological and molecular mechanisms of genes related to leaf rolling. These findings can facilitate a further understanding of the mechanisms and promote the use of the leaf rolling trait in rice breeding.

Key words:rice ; leaf rolling ; cytological mechanism ; molecular mechanism


水稻(Oryza sativa)叶片是植株进行光合作用的主要场所。叶片卷曲是叶片性状中的一个重要组成部分。研究表明, 卷叶正面的光合能力低于展叶, 其背面的光合能力高于展叶, 而水稻卷叶的衰老程度则小于展叶。叶片适度卷曲可减少叶片披垂, 从而使叶片产生良好的受光姿态, 最终使群体光合速率高于展叶(王美娥, 2012)。叶片适度卷曲还能使叶片保持直立形态, 提高水稻光能利用率, 从而提高产量。叶片适度卷曲在一定条件下能增加水稻种植密度, 提供合适的空间, 而且能提高水稻的抗病性。然而, 随着叶片卷曲度的增加, 叶片表面的漏光损失增大, 植株不能充分利用光能(王凡华, 2016)。本文主要论述水稻卷叶细胞学及相关分子调控机制的研究进展。

1 水稻卷叶类型及细胞学形态变化目前, 在双子叶模式植物拟南芥(Arabidopsis th- aliana)和单子叶模式植物水稻中分离出了许多叶片性状相关突变体。随着超级稻概念的提出, 水稻叶片性状相关研究成为当前的研究热点。目前, 卷叶类型包括3种: 正卷、反卷和扭曲。正卷即叶片朝着近轴端卷曲, 反卷是叶片朝着远轴端卷曲, 而扭曲是无规则的。卷曲程度分为高度卷曲、中度卷曲和轻微卷曲(张俊杰, 2015)。当叶片发生卷曲时, 其细胞学形态也发生相应变化, 包括泡状细胞的变化、 厚壁细胞及薄壁细胞的变化, 以及维管束中韧皮部变化和叶肉细胞的变化(王莉, 2014)。
1.1 泡状细胞的变化研究表明, 泡状细胞的主要作用是储存水分, 通过借助大液泡内在水分的得失来调控叶片的伸展和卷曲, 从而对叶片的形态以及光能利用产生影响(王文乐, 2016)。此外, 泡状细胞的形态与叶片卷曲有关。当叶片蒸腾失水时, 泡状细胞会皱缩, 使叶片内卷以减少蒸腾; 当蒸腾作用较小时, 泡状细胞又会吸水膨胀, 使叶片变平展。泡状细胞的大小和位置也是决定叶片卷曲方向的重要影响因子。通过控制叶片中泡状细胞的数目及面积可控制叶片的卷曲。一般情况下, 泡状细胞失水会使叶片形成1个向近轴面方向的作用力, 从而使叶片发生卷曲。当泡状细胞数量和面积增多时则会使水稻叶片发生反卷, 而泡状细胞数量和面积减少时又会导致叶片发生正卷(李战朋等, 2016)。通过对叶片细胞进行观察, 发现叶片中的泡状细胞数量没有发生变化时, 泡状细胞面积增大也会导致叶片反卷; 而当泡状细胞数量增多时, 其面积减少不仅不能促使叶片反卷, 反而出现叶片正卷的表型(郭旻等, 2014)。

1.2 厚壁细胞和薄壁细胞的变化厚壁细胞对水稻叶片形态的维持具有重要作用。当小叶脉靠近远轴面的厚壁细胞发生缺失时, 部分泡状细胞会发生异位或不完全异位, 即泡状细胞本应分布在叶片的上表面(近轴面), 却出现在叶片的下表面(远轴面), 或者出现在叶片的上下表面。Zhang等(2009)研究表明, 水稻叶片远轴面的厚壁细胞发生缺失时导致叶片正卷, 而近轴面厚壁细胞缺失会使叶片反卷。水稻卷曲叶片的主脉本应是空腔的地方大多被薄壁细胞填充, 导致薄壁细胞的数目明显增多(Zou et al., 2011)。卷叶在叶脉近轴面厚壁细胞的缺失可能是由于近轴面薄壁细胞数目的增加占据了原厚壁细胞的位置, 从而使厚壁细胞分化发育的命运发生改变。因此, 叶片卷曲由薄壁细胞和厚壁细胞的共同作用决定。

1.3 维管束中的韧皮部变化在水稻成熟叶脉的维管束中, 韧皮部(由筛管和伴胞等细胞组成)和木质部(由原生木质部导管和次生木质部导管组成)及其外围围绕的束内输导组织鞘细胞和维管束鞘细胞构成束状结构。韧皮部负责将叶片光合同化的产物运输到水稻的其它部位。除此之外, 它们还发挥结构支撑作用。细胞学观察结果表明, 水稻反卷叶中维管束的韧皮部面积明显增大, 而筛管-伴胞复合体的细胞数量增多是造成韧皮部面积增大的直接原因, 并促使韧皮部周围细胞(如其两旁的叶肉细胞和远轴面的厚壁细胞)的分布发生变化。其原因可能是由于薄壁细胞的异常分裂影响了主脉近轴面维管束的正常分化和发育。当韧皮部的细胞面积增大时, 使叶片发生反卷; 反之, 则使叶片发生正卷(Zou et al., 2011)。

1.4 叶肉细胞的变化在水稻正常叶片中, 叶肉细胞在形态和排列方面具有极性(Hibara et al., 2009)。而水稻卷叶叶片的叶肉细胞形态分布没有规律, 在近上表皮左边的叶肉细胞接近多边形, 右边的叶肉细胞呈现长方形; 而在靠近下 表皮的叶肉细胞也有呈多边形和长方形排列(罗远章, 2010)。此外, 在卷叶维管束鞘细胞的左右两侧还存在薄壁细胞, 而其小脉中细胞的分化和形态与大脉中的分化大体相同。另外, 卷叶中紧邻泡状细胞的叶肉细胞也发生薄壁化, 成为薄壁细胞, 其泡状细胞的面积也明显减小, 最终导致叶片卷曲(Li et al., 2016)。

2 水稻卷叶的分子机制研究表明, 泡状细胞的发育对水稻叶片形态有重要影响(许杨, 2016)。目前, 从水稻卷叶中克隆的基因大多数都与泡状细胞的发育有关, 少数与厚壁细胞、韧皮部细胞及维管束细胞相关, 从而使叶片形态发育受影响。
2.1 水稻卷叶基因的定位水稻作为禾本科植物的模式作物, 基因组较小且已被测序, 极大地方便了对其进行发育分子机理的探究。水稻卷叶形成的主要因素是叶片中泡状细胞的膨胀程度及其渗透压, 生理性逆境(缺水和盐胁迫等)都会使叶片发生卷曲, 但这种条件下的卷叶性状是可逆的且不能遗传, 而由基因控制的卷叶性状一般能够遗传且表型稳定(徐静等, 2013)。已有研究发现了许多控制水稻卷叶性状的主效基因, 而后又发现了一些微效基因以及非等位基因, 表明水稻卷叶性状由多种复杂的遗传途径调控(林鸿宣等, 1996)。同时, 在水稻中通过各种化学诱变、物理诱变及转座子和T-DNA插入的方法获得了许多叶形突变体, 而能遗传的卷叶性状是我们所关注的。研究表明, 调控卷叶性状的基因有很多, 且部分已被克隆(表1)。水稻12条染色体均有卷叶相关调控基因被报道, 其中, REL1OsAG07RL(t)等属于显性性状基因; ADL1Roc5IRL1SRL1SRL2ACL1OsLBD3-7OsMYB103LRL14等属于隐性性状基因。
表 1
Table 1
表 1
表 1 水稻卷叶相关基因 Table 1 Relative genes of leaf rolling in rice
基因名称所在染色体号显/隐性表型特征功能参考文献
rl11隐性窄叶, 内卷未知张俊杰, 2015
rl4 1隐性内卷未知Khush et al., 1991
Url1a(t)1隐性内卷未知余东等, 2008
REL11显性外卷未知功能蛋白Chen et al., 2015
ADL12隐性外卷半胱氨酸蛋白酶Hibara et al., 2009
CFL12显性内卷编码WW结构域Wu et al., 2011
ROC52隐性外卷亮氨酸拉链蛋白Zou et al., 2011
Nir2隐性内卷未知陈蕾等, 2015
Nrl3(t)2隐性内卷未知张小惠等, 2015
IRL12隐性外卷富亮氨酸重复类受体蛋白激酶Park et al., 2014
rl(t)2不完全显性内卷未知邵元健等, 2005
s1-1452隐性内卷未知Xie et al., 2013
NAL73隐性内卷未知Fujino et al., 2008
OsAGO73显性内卷含有PAZ和PIWI结构域的蛋白Shi et al., 2007
SRL23隐性窄卷叶新的植物特异蛋白Liu et al., 2016
nrl4 3隐性内卷未知Liang et al., 2016
70-36 3隐性内卷未知王凡华, 2016
OsLBD3-73隐性窄叶, 内卷LBD家族转录因子Li et al., 2016
Cvd13隐性内卷未知Jing et al., 2017
NRL2(t)3隐性内卷未知Wang et al., 2011
OsFMO(t)3隐性内卷未知Yi et al., 2013
ACL1 4隐性外卷编码没有保守功能的结构域蛋白Li et al., 2010
Rl11(t)4隐性内卷未知Zhou et al., 2010
rl85隐性内卷未知邵元健等, 2005
RL285隐性内卷未知冯萍等, 2015
Ocu5 6显性正卷未知王文乐, 2016
RL136隐性内卷未知田晓庆等, 2012
sd-sl6隐性微卷未知夏令等, 2007
SRL1 7隐性内卷未知Xiang et al., 2012
SLL27隐性内卷未知Zhang et al., 2015
Cld1 7隐性内卷未知Li et al., 2017
rl11(t)7隐性内卷未知施勇烽等, 2008
DG18隐性内卷未知Yu et al., 2017
OsMYB103L8隐性内卷R2R3型MYB转录因子Yang et al., 2014
RL9(t)9隐性内卷未知Yan et al., 2006
SLL1 9隐性极度内卷SHAQKYF类MYB转录因子Zhang et al., 2009
RL10(t)9隐性微卷未知Luo et al., 2007
LRL1 9隐性内卷未知赵芳明等, 2015
Zw2099隐性内卷未知李战朋等, 2016
OsZHD1 9隐性外卷锌指结构域蛋白Xu et al., 2014
RL1410隐性内卷2OG-Fe(II)加氧酶Fang et al., 2012
RL12(t)10显性内卷未知Luo et al., 2009
RL15(t)10隐性内卷未知张礼霞等, 2014
dnl2 10隐性内卷未知Adedze et al., 2017
NRL(t)11隐性内卷未知陈涛等, 2014
NRL112隐性窄卷叶纤维素合成酶D4Hu et al., 2010
NAL3(t)12隐性内卷未知汪得凯等, 2009


表 1
水稻卷叶相关基因
Table 1
Relative genes of leaf rolling in rice



2.2 水稻泡状细胞发育相关基因研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016)。另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%。OsHox32基因超表达导致叶片窄且卷。组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016)。Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达。rel1突变体的叶片表型由泡状细胞大小和数量的变异引起。rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015)。Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲。OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014)。Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成。SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012)。RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012)。Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化。Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷。此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010)。

2.3 水稻厚壁细胞发育和远近轴向发育基因CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017)。Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷。研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016)。Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷。ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010)。Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷。SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状。叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成。sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009)。

2.4 水稻维管束、韧皮部及叶肉细胞相关基因CVD1候选区域内的BEL1同源结构域蛋白基因(Os03g0732100)中有2个核苷酸的缺失, 导致移码突变和蛋白质产物的截短, 突变体在静脉叶中的形成存在缺陷, 导致叶片向内卷曲(Jing et al., 2017)。在水稻中过表达OsMYB103L可调控叶片卷曲。进一步分析显示, 其过表达株系中的纤维素合成酶基因(CESA)表达水平和纤维素含量显著增加。OsMYB- 103L可能通过CESA基因调控纤维素合成, 有可能应用于设计水稻中所需的叶片形状和机械强度(Yang et al., 2014)。此外, 研究表明RL14在叶鞘内的叶肉细胞中转录, 在成熟叶中, RL14主要在围绕脉管系统的叶肉细胞中表达。在rl14突变体中, 与二次细胞壁形成有关的基因表达受到影响, 其叶中的纤维素和木质素含量发生改变, 是其叶片卷曲的直接原因(Fang et al., 2012)。

2.5 激素相关基因对卷叶的影响激素相关基因也参与水稻叶片卷曲的调控。NAL7基因编码1个黄素单加氧酶, 其与YUCCA序列同源, 突变会产生无活性的酶。与野生型相比, nal7突变体中的IAA含量改变, 导致水稻叶片呈现内卷的表型(Fujino et al., 2008)。同样地, 水稻中的黄素单加氧酶(FMO)也调控水稻内源IAA的生物合成。在卷叶突变体中, OsFMO(t)完全不表达; 而在野生型中, 由OsFMO(t)调控的IAA生物合成是局部的, 并且可能在形成局部IAA浓??度方面发挥重要作用, 而IAA浓度又是调节水稻正常生长以及发育的关键(Yi et al., 2013)。REL1基因能够响应油菜素类固醇, 其编码1个在单子叶植物中高度保守的功能未知蛋白, 通过协调BR信号转导来调控叶片的卷曲和弯曲, rel1叶片卷曲表型主要是由于泡状细胞数目和大小增加, 进而发生外卷(Chen et al., 2015)。目前, 大多数激素在叶发育中的调控机制仍不十分清楚, 但激素在维持叶片形态发育过程中所发挥的作用不容忽视。

3 水稻卷叶性状与育种的关系良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016)。在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012)。水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大。此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产。而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014)。袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等。其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征。目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32。这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009)。

4 问题与展望目前, 经过长期的积累, 已有了比较丰富的水稻卷叶资源。遗传研究者通过EMS等诱变处理的方法已获得了大量卷叶突变体材料。然而, 这些突变体材料大多伴有其它不利性状(如植株籽粒空瘪和结实率低), 以致大量突变体无法在高产育种实践中应用。部分水稻卷叶基因虽然已被克隆, 但这些基因大多是转录因子基因, 而这些转录因子如何调控下游基因及调控哪些下游基因, 目前仍不清楚。此外, 对于不同卷叶基因的关系、细胞学基础及调控机制的研究还存在很大不足。水稻高产不是由单因素控制, 而是由多个因素协调控制。水稻卷叶性状是一种复杂的性状, 因此, 必然存在着复杂的调控网络控制叶片的细胞结构并进一步控制卷叶的发生。另外, 水稻卷叶性状是否受到本身基因或相关基因的miRNA调控? 均需要利用突变体材料对卷叶相关基因进行深入研究, 了解多基因之间调控体系, 进而从分子机理层面更加清晰地揭示水稻卷叶基因的功能。将水稻分子育种技术与已知的卷叶基因相结合, 在育种中加速对水稻卷叶基因的利用, 以便为水稻作物的遗传改良提供参考借鉴。

The authors have declared that no competing interests exist.

参考文献
文献选项
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子




[1] 陈蕾, 李小华, 叶胜海, 张小明, 翟荣荣, 金庆生 (2015). 一个水稻类感干尖线虫卷叶突变体的遗传分析与基因定位. 核农学报 29, 617-622.
DOI:10.11869/j.issn.100-8551.2015.04.0617URL) was obtained from EMS-treated mutations in a showed obvious rolled and withered leaves in the whole stages, which was similar to the phenotype of rice plants infested by nematode. Furthermore, showed other characters such as dwarf plants, smooth leaves and less effective tillers. F population of /‘Xiushui 09’was developed for genetic analysis, and the results showed that the mutant trait was controlled by a single recessive nuclear gene. Using amther F population of /93-11 for gene mapping. By using the F populations, the gene controling the nematode infestation mimic rolling leaf trait was mapped to a region on chromosome 2 between two InDel markers, 2~88w and 2~82w, with genetic distance of 1.1 cM and physical distance of 245 kb. The results suggested that might be a new gene that had not been reported before, and further cloning of gene could reveal different regulation mechanism of rolling leaf.
[2] 陈涛, 刘燕清, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 于新, 赵凌, 王才林 (2014). 水稻窄卷叶突变体nrl(t)的遗传分析与基因定位. 华北农学报 29(4), 37-43.
DOI:10.7668/hbnxb.2014.04.007MagsciURL为发掘、定位和克隆水稻窄卷叶相关突变基因,揭示叶片发育机理。对武运粳7号条纹叶枯病抗性改良品系中发现的窄卷叶突变体进行了表型观察、遗传分析及基因定位。结果表明,与野生型相比,突变体在叶片形态发生改变的同时,其株高、分蘖性、穗长、枝梗数、每穗实粒数、穗粒数、结实率、千粒质量等农艺性状也存在显著差异。遗传分析表明,该突变性状受一对隐性基因控制。以500株辐恢838/nrl<sub>(t)</sub>的F<sub>2</sub>隐性单株为定位群体,利用SSR标记将 <em>NRL</em><sub>(<em>t</em>)</sub>基因定位于水稻第11染色体短臂末端RM11-01、RM11-11之间,物理距离约为160 kb的范围内。通过水稻基因组注释数据库分析发现,在该区域存在26个预测的基因,测序分析表明已报道的 <em>homeobox3A</em> 基因可能是潜在的候选基因,这为进一步研究该基因奠定了基础。
[3] 冯萍, 邢亚迪, 刘松, 郭爽, 朱美丹, 娄启金, 桑贤春, 何光华, 王楠 (2015). 水稻卷叶突变体rl28的特性与基因定位. 作物学报 41, 1164-1171.
DOI:10.3724/SP.J.1006.2015.01164URLLeaves play a very important role in plant development for their function of photosynthesis. Moderate rolling leaves can facilitate the improvement of plant population structure and enhance light-use efficiency, which is very important in ideotype breeding. Therefore, the rolled leaf genes which regulate morphology in rice are important for exploring plant type and improving basic research in molecular biology. This study reported a new gene rolled leaf 28 (rl28), which was derived from EMS-treated restorer line Jinhui10. The mutational trait inherited steadily after several generations self-crossing. Compared with the wild-type, the leaves of rl28 began to curl along ?the vasculan bundle in medial axis from booting stage, leaf rolling index was significantly higher than that of the wild-type, and leaf angles were less than those of wild-type. Scanning electron microscopy and morphological analysis showed stoma number per 10-5 m2 and stomatal conductance were significantly higher than those of the wild-type, transpiration rate was significantly higher than that of wild-type. Compared with the wild-type, midrib of rl28 was much larger, and the number of the two adjacent vesicular cells decreased. Genetic analysis showed that the mutational trait was controlled by a single recessive nuclear gene. RL28 was finally mapped on chromosome 5 between SSR markers 5-43 and 5-34 with an interval of 90 kb. These results provide a foundation for cloning and function analysis of RL28.
[4] 郭旻, 李荣德, 姚健, 朱娟, 范祥云, 王伟, 汤述翥, 顾铭洪, 严长杰 (2014). 水稻叶片形态相关基因RL3(t)的遗传分析和精细定位. 中国水稻科学 28, 458-464.
DOI:10.3969/j.issn.10017216.2014.05. 002URLTwo mutants with rolled leaves, derived from the indica cultivar 9311 via the radiation of 60Coγ ray in M2 generation, temporally designated as rl3(t)1 and rl3(t)2, were served as materials for exploring the mechanism underlying the rolling leaf characteristic. Morphological analysis showed that, these two mutants have typically adaxially rolled leaves. In addition, when compared with wild type 9311, the plant heights and panicle lengths of rl3(t)1 and rl3(t)2 significantly decreased, as well as the seed setting percentage. Cytological analysis suggests that the rolled leaf phenotype may be caused by the change of number and size of bulliform cells. Genetic analysis indicated that rolled leaf character is controlled by a recessive nuclear gene. Crossing between the two mutants, the F1\[rl3(t)1/rl3(t)2\] plants exhibit rolled leaf, suggesting they are allelic. To map the RL3(t) gene, an F2 population was generated by crossing the rl3(t)1 mutants with Wuyunjing 8 as a mapping population. By using simple sequence repeat (SSR) markers and some new designed sequence tagged site (STS) markers, RL3(t) was initially mapped in the region between the STS marker M345 and the SSR marker RM6676 with the genetic distances of 5.5 cM and 4.4 cM, respectively, on the long arm of chromosome 3. Furthermore, with the enlarged population and more developed STS markers, RL3(t) gene was finally delimited to a 46kb long region governed by the STS markers S339 and S336.
[本文引用: 1]
[5] 李战朋, 吴金霞, 张治国 (2016). 一个水稻卷叶突变体zw209的遗传分析与精细定位. 中国农业科技导报 18(5), 25-32.
URL叶片是植物光合作用的主要场所,优良的叶片形态有利于塑造理想株型,提高光合效率。为了研究叶片形态建成的分子机制,从水稻T-DNA突变体库中筛选到1个叶片极度卷曲的突变体zw209,突变体有2个显著特征:1突变体泡状细胞数量和面积均变小;2突变体的叶绿素含量较高,具有较高的光合效率。遗传分析表明,zw209的突变性状由一对隐性核基因控制。通过图位克隆,将基因(ZW209)精细定位到9号染色体长臂上,位于In Del136和In Del140之间的92.3 kb区域内。在这个区域内,尚未见报告已克隆的卷叶基因,很可能是一个新的基因位点。上述结果明确了突变体的表型特征及遗传规律,为克隆ZW209基因和揭示其作用机理奠定基础。
[本文引用: 1]
[6] 林鸿宣, 钱惠荣, 熊振民, 闵绍楷, 郑康乐 (1996). 几个水稻品种抽穗期主效基因与微效基因的定位研究. 遗传学报 23, 205-213.
DOI:10.1007/BF02951625URL在构建2张RFLP图谱的基础上,定位分析了控制水稻抽穗期的主效基因和微效基因,在特三矮2号/C.B.群全中定位到2个主效基因和2个微效基因,该2个主基因分别位于第3、8染色体上,累加贡献率约达50%,加性效应值分别为7天和6天,而分别位于第1、12染色体的2个微效基因的贡献率仅分别为8.3%和9.6%,加性效应值仅为3天和4天,在外引2号/C.B.群体中定位了3个连锁于第6染色体的主效基因和1位于
[本文引用: 1]
[7] 罗远章 (2010). 水稻新型卷叶突变体rl12(t)的遗传分析和基因定位. 西南大学 35, 1967-1972.
DOI:10.7666/d.y1670927水稻(Oryza sativa L.) 是世界上重要的粮食作物,随着粮食需求不断增加和耕地面积的持续减少,如何提高水稻的产量已成为育种家和栽培家们最主要的议题。近年来,关于水稻高产的“理想株型”模式也颇多,然而这其中都不乏提到水稻叶片的直和卷。叶片是水稻光合作用的重要器官,近年研究也表明,叶片在水稻高产中发挥着重要的作用,适度卷曲有利于改善光照群体结构、提高光能利用率,因而卷叶基因是培育理想株型的重要资源。因而可以说适度卷叶为群体接受尽可能多的光能搭建好了平台,同时叶片卷曲往往伴随着叶绿素含量的提高,水稻叶绿素是光能吸收、转化的重要基础。因而卷叶资源对于高光效育种具有重要的利用价值。 水稻中存在丰富的可稳定遗传的卷叶种质资源,但对卷叶基因的遗传研究仍较少,目前包括经典遗传图谱定位的6个卷叶基因在内的共17个卷叶基因被定位,其中15个为隐性基因,1个为不完全显性基因,1个为不完全隐性基因,目前尚没有完全显性控制的卷叶基因被定位。我们利用EMS诱变籼稻恢复系缙恢10号,获得了一个由显性基因控制的随生育进程变化的水稻新型卷叶突变体rl12(t),本文对rl12(t)从形态学分析、生理分析、细胞学分析、农艺性状分析、遗传分析及基因定位等方面进行了系统的研究。其主要研究结果如下: 1.形态学分析 rl12(t)全不同于以往所报道的卷叶形态,其叶片卷曲特性随生育进程而发生变化,卷叶性状从分蘖期开始表现,叶片沿叶脉向内卷曲,主要表现为新叶全部不卷,老叶全部逐渐卷曲呈筒状,而其余叶片的中上部约1/3卷曲、中下部正常。当剑叶抽出后,剑叶也表现为上部1/3卷曲。 2.生理分析 在分蘖、拔节、抽穗和成熟四个时期测定了rl12(t)和野生型的叶片色素含量,结果表明在各个时期,rl12(t)的叶绿素的含量都要高于对照,尤其在抽穗期rl12(t)的叶绿素a、叶绿素b、总叶绿素、类胡萝卜素含量均极显著高于对照缙恢10号。因此表明此卷叶突变体提高了不同时期各色素的含量,从而为水稻光合速率的提高奠定了良好的基础。 3.细胞学分析 为从形态上探明卷叶形成的原因,我们在突变体表型性状完全表现时期,取突变型和对照的新鲜叶片,制作成石蜡切片,在电子显微镜下观察细胞结构发现,卷叶突变体的叶肉细胞在叶片的下表皮分布较多,在小维管束的外侧都有叶肉细胞的分布;而在对照中,叶片两侧的叶肉细胞分布比较均匀,在小维管束的外侧几乎没有叶肉细胞的分布,这种差异可能是由于小维管束间的运动细胞弯曲度不同所导致。 4.农艺性状分析 rl12(t)卷叶突变体在分蘖期便可以表现出卷叶性状。且整个营养生长期除叶片卷曲外,其它性状如株高、叶角、分蘖数与正常植株没有显著差异;在抽穗成熟后,rl12(t)卷叶突变体与野生型(缙恢10号)的有效穗数、穗长和总粒数差异没有显著差异,但结实率、穗实粒数、千粒重之间与野生型缙恢10号却极显著低于野生型。表明该卷叶基因可能同时影响着水稻的结实率、千粒重,穗实粒数等重要的农艺性状。5.卷叶性状的遗传分析 由于rl12(t)是由一个恢复系诱变而来,因而本研究以该卷叶突变体rl12(t)为父本与平展叶不育系西农1A杂交,F1植株叶片性状与rl12(t)表现完全相同,说明该突变体由显性基因控制。F2代群体中出现了明显分离,分别表现双亲性状,没有中间类型的卷叶植株出现。卷曲单株(4160株):正常单株(1345株)完全符合3:1分离比(χ2=0.91613.84[χ2(0.05,1)]),由此表明该卷叶突变体受一对完全显性单基因控制。 6.卷叶性状的基因定位 利用能较均匀覆盖水稻全基因组的400对SSR标记对两个基因池进行多态性筛选,发现位于第10染色体上的标记RM3590和RM5348在两基因池间表现出多态性,另选取F2中的10株突变株和10株正常株进行连锁分析,表明两个标记均与目标性状连锁。然后利用F2中的所有定位群体进一步将其初定位于距两标记分别为12.1 cM和2.6 cM的范围。为了能将RL12(t)基因定位在更小的范围内,根据RM3590和RM5348间已公布的SSR标记(http://www. gramene. org/),选择在与9311有差异的标记合成引物,同时也在更近的标记之间发展新的SSR标记,进一步将RL12(t)基因定位在SWU-1和SWU-2之间,遗传距离分别为1.8 cM和0.6 cM
[本文引用: 1]
[8] 邵元健, 潘存红, 陈宗祥, 左示敏, 张亚芳, 潘学彪 (2005). 水稻不完全隐性卷叶主基因rl(t)的精细定位. 科学通报 50, 2107-2113.

[9] 沈年伟, 钱前, 张光恒 (2009). 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种 7, 852-860.
DOI:10.3969/mpb.007.000852URL目前,水稻叶片卷曲性状已被直接或间接的应用于水稻理想株型育 种.研究发现,叶片适度的内卷能使叶片挺直以减少披垂现象的发生,在生长发育后期作用明显,有利于改善水稻基部的受光条件,进而提高植株光能的利用率,实 现增产的目的;叶片过度卷曲会产生许多不利的影响,如有效叶面积指数偏小以及光合有效辐射利用率不高等.大量证据表明,叶片卷曲受到体内遗传机制和体外环 境因子的双重调节.本文主要综述水稻叶片卷曲的相关研究,包括卷曲效应、形成机制、相关调控基因及其在育种中的利用等,同时探讨了目前水稻卷叶研究中存在 的问题,以期能更好地促进卷叶性状在水稻育种中的应用.
[本文引用: 1]
[10] 施勇烽, 陈洁, 刘文强, 黄奇娜, 沈波, Hei leung, 吴建利 (2008). 水稻卷叶基因rI-11(t)的精细定位. 见: 中国遗传学会. 中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008). 407-412.

[11] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华 (2012). 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报 38, 423-428.
DOI:10.3724/SP.J.1006.2012.00423URLRolled 1eaf mutants are good materials rice in breeding for leaf and plant type. A rolled 1eaf mutant 13 was derived from an EMS-treated mutation in an 13 was significantly higher than that of wild type Jinhui10. There was a highly significant difference in the curl of the three functional mutant leaves compared with those with wild-type. However, there were no significant differences between the three functional mutants. Through the analysis of paraffin, mesophyll cells per layer in 13 thinned, wild-type cells contain a large bubble into two similar size vesicular cells of mutants, which resulted in the character of rolled leaf. We made the combination of Xinong1A13 to establish genetic population for genetic analysis, the results confirmed that the mutant trait was controlled by a single recessive nuclear gene. In the F, the gene of the rolled leaf trait was mapped between two SSR markers, RM276 and SWU6-1, with distances of 1.1 cM and 0.2 cM, respectively.
[12] 汪得凯, 刘合芹, 李克磊, 李素娟, 陶跃之 (2009). 一个水稻窄叶突变体的鉴定和基因定位. 科学通报 54, 360-365.

[13] 王凡华 (2016). 一个水稻显性卷叶突变体的遗传分析与基因定位. 硕士论文. 广州: 华南农业大学. pp. 7.
URL水稻是世界上最重要的粮食作物之一,提高水稻产量对于解决人类温饱问题具有重要的意义。叶片是水稻主要的光合作用器官,是水稻株型育种的重要组成部分。研究表明,叶片适度卷曲有利于植株叶片保持直立不披垂,增加中、下层叶片透光率,从而改善群体光照条件,可为产量的提高奠定良好株型基础。本研究以甲基磺酸乙酯(Ethylmethylsulfone,EMS)诱变粳稻日本晴获得的一个遗传稳定的显性卷叶突变体70-36为材料,从遗传学、细胞学及生理生化等方面分析该突变体的特性,并对其突变座位进行分子标记定位分析,然后进行候选基因的遴选及卷叶机理的探讨,取得的主要结果如下:从六叶期开始,突变体70-36植株的叶片表现与野生型日本晴显著不同,其叶片呈现内卷、且该卷叶特性在后续生育期中一直维持。与野生型相比,突变体植株倒1叶及倒2叶的卷曲度均增加约49%,叶长分别增加约23%和38%,叶宽分别增加约13%和14%,另外株高和百粒重也分别增加约19%和8%,但结实率和有效分蘖数却分别降低29%和13%。对孕穗期剑叶进行徒手切片和半薄切片观察,研究表明,突变体叶片的维管束发育从六叶期开始表现异常:与野生型相比,突变体叶片不仅中脉和侧脉部分维管束远轴面的厚壁组织发育存在缺陷,而且中脉上的小维管束数目也增多。利用透射电镜进一步观察,发现突变体叶片维管束的远轴面厚壁组织中细胞壁厚度比野生型明显减少。利用傅立叶变换红外光谱法(fourier transform infrared spectroscopy,FT-IR)对孕穗期剑叶中脉的细胞壁成份进行分析,结果表明突变体叶片中脉的纤维素、半纤维素和木质素含量均比野生型明显降低。利用分光光度法测定孕穗期剑叶的叶绿素和类胡萝卜素含量,结果表明突变体叶片中叶绿素a含量比野生型增加约12.5%,而其它色素含量无变化。以卷叶突变体70-36为母本,与叶片正常的广亲和品种粳籼89杂交,得到的F1代植株叶片呈现与70-36相似的卷叶特性,在F2代群体中,卷叶植株与平展叶植株的比例为3.20:1(χ2=0.47χ20.05=3.84),完全符合一对等位基因的孟德尔分离比例,此结果表明70-36突变体的卷叶特性受单一显性基因控制。利用F2分离群体中的164个隐性单株(平展叶)进行分子标记定位分析,将卷叶座位定位于水稻第3染色体上Ind3和Ind6两个标记之间约1.7 Mb的区域。通过测序分析,在定位区间内发现70-36中有4个基因,即Os03g0386000、Os03g0389100、Os03g0389900和Os03g0395100的序列存在碱基变异。对这4个基因的表达量进行荧光定量PCR(qRT-PCR)分析,发现五叶期Os03g0395100基因的表达量比野生型显著增加,而其余基因表达量无显著变化,因此将Os03g0395100作为70-36卷叶突变体的候选基因。转录组测序(RNA-seq)分析的结果表明,突变体与野生型间共存在207个显著差异表达基因,其中上调表达的基因162个,下调表达的基因共45个。对这些显著差异表达基因进行功能分类和PATHWAY分析,发现与叶极性建立、泡状细胞发育、厚壁组织发育等有关的基因在70-36中表达均发生了显著改变,另外还发现与信号转导、次生代谢途径等有关基因的表达改变也与突变密切联系。利用qRT-PCR技术对基因表达量进行验证,表明叶极性发育相关基因OsYABBY1、OsYABBY7,以及厚壁组织发育相关基因SLL1在突变体中显著上调表达,而与木质素合成相关基因Dirigent1、4CL3在突变体中则显著下调表达,证明70-36突变体的卷叶形成受叶极性发育、厚壁组织发育及木质素合成相关基因的表达改变影响。但是,这些基因的表达是否受分子标记定位筛选到的候选基因Os03g0395100的影响、是否被其直接调控而导致卷叶以及具体的调控分子机理如何,还有待进一步研究。
[本文引用: 1]
[14] 王莉 (2014). 水稻叶形及叶脉发育调控基因OsARVL4定位及功能分析. 硕士论文. 北京: 中国农业科学院. pp. 20.
URL叶片是植物进行光合作用的主要场所。水稻叶片的形态变化直接影响着植物的蒸腾作用、抗逆性、光合产物运输与分配等生理功能。叶形和叶脉等是植物叶片形态的外部特征。水稻叶片的适度卷曲可以明显的保持群体生长中后期基部的受光条件。同时,叶脉可以为植株生长运输营养物质和水分,为叶片提供机械支持,有利于植物正常生理功能的发挥。叶片形态和叶绿素含量与植物光合效率密切相关,并最终影响植株产量。本研究以EMS诱变粳稻品种日本晴获得一个水稻叶脉白化反卷叶突变体abaxial rolling and vein-albino leaves(Osarvl4)为材料,对其进行了相关的形态学观察、遗传分析、基因定位和初步的功能分析,主要研究结果如下: 1.经植株表型和组织细胞结构比较分析,发现突变体Osarvl4气腔、薄壁细胞、厚壁细胞、叶肉细胞、泡状细胞及维管束发育异常,叶绿素含量和光合效率显著降低。 2.遗传分析表明该叶脉白化反卷叶突变性状受一个单隐性核基因控制,通过图位克隆技术将该基因定位在第4染色体长臂上44kb物理距离内。 3.经序列比较和实时定量PCR分析,该区段内3个候选基因(包括起始密码子前2kb和终止密码子后1kb)在DNA水平没有差异;除了突变体LOC_Os04g33580基因的相对表达量显著下降外,其余两个候选基因(LOC_Os04g33560和LOC_Os04g33570)无明显差异。因此,我们推测LOC_Os04g33580就是调控水稻叶脉发育和叶片形态建成的目标基因,参与表观遗传调控,由于基因内存在某种碱基特殊修饰(如甲基化)导致叶脉和叶形发育异常。 4.同时,研究表明OsARVL4基因与植株叶绿素降解及光合效率相关。本研究为水稻叶片发育基因克隆及其调控机理研究奠定了基础。
[本文引用: 1]
[15] 王美娥 (2012). 叶片披垂和卷曲性状对水稻光抑制及衰老进程的影响. 硕士论文. 扬州: 扬州大学. pp. 50.
URL本文以中籼稻扬稻6号为材料,分别进行5。、30。、50。、70。4个不同叶片开张角处理和卷曲度(叶片展开宽度/卷曲宽度)分别为1、1.42、2.21卷叶处理,研究上述两种叶片姿态对水稻光合光抑制及衰老进程的的影响,结果表明: 1.不同开张角叶片对水稻光合光抑制的影响表现为:(1)供试水稻齐穗期至齐穗后30d,光合有效辐射的日变化均呈单峰曲线的趋势,其中中午时段约3-4小时光辐射值最高,在1200-1500μ mo1.m-2s-1之间,均高于水稻的光饱和点;而大气温度及各处理叶片表面的温度的日变化,与光辐射相比,则较为平缓,中午时段,叶片70。、50。开张角的处理叶面温度明显较高;(2)各开张角处理中,70。叶片受光抑制及光氧化的程度最大,表现为Fv/Fm值在高光辐射情况下降低幅度最大;同样,其光氧化产物超氧阴离子及过氧化氢产生速率亦最大,膜脂过氧化程度最高,而活性氧清除酶SOD、APX活性则最小,相反,5。和30。处理光抑制效应相对较小。(3)70。开张角的叶片在结实前期具有较大的光合速率优势,但随着齐穗后天数的增加,其叶绿素含量及光合速率迅速下降,导致结实中后期光合生产较小,产量较低;30。、50。处理则较好地在光抑制、光伤害和光合速率间取得平衡,因而结实中后期衰老进程平缓,物质生产及产量均高出5。及70。处理约7%;开张角5。的处理,其虽然在整个结实期均具有较高的光合潜力,即叶片光系统Ⅱ的最大量子产量Fv/Fm在各处理中最高,但因其受光面积较小,限制了光合能力的发挥,因而结实期物质生产和产量均较低。 2.不同卷曲度叶片对水稻光合光抑制的影响表现为:(1)在多数情况下,不同卷曲度叶片表面温度均为展叶半卷全卷。(2)在整个结实期,展叶叶片的光抑制及光氧化程度均最大,表现在Fv/Fm值低、活性氧产生速率大,而卷叶叶型在缓解光抑制程度上具有一定优势,结实期光合潜力(Fv/Fm)大。(3)半卷叶、卷叶虽然在光合有效辐射较强时具有一定的光合速率优势,但由于受光面积相对较小,导致其较高的光合能力不能有效地发挥,因而在整个结实期总体上光合速率较低,物质生产较展叶分别低4.8%和13.4%,产量较展叶分别低2.4%和3.2%。
[本文引用: 1]
[16] 王伟, 王嘉宇, 杨生龙, 刘进, 董晓雁, 王国骄, 陈温福 (2016). 水稻窄卷叶突变体nrl7的鉴定与基因定位. 植物学报 51, 290-295.

[本文引用: 1]
[17] 王文乐 (2016). 水稻卷叶突变体ocu5基因图位克隆及功能研究. 硕士论文. 北京: 中国农业科学院. pp. 1.

[本文引用: 2]
[18] 夏令, 陈亮, 郭迟鸣, 张红心, 赵政, 沈明山, 陈亮 (2007). 一个新的水稻矮秆突变体sd-sl的遗传与基因定位研究. 厦门大学学报(自然科学版) 46, 847-851.
DOI:10.3321/j.issn:0438-0479.2007.06.023URL新的矮秆基因的发掘、研究和利用对水稻育种和植物生长发育机制研究有重要的作用.用60Coγ射线辐照粳稻9522,获得一个能稳定遗传的突变体.该突变体表型为株高较野生型矮,叶片短而微卷.将该突变体与籼稻广陆矮杂交,F2代呈3:1分离,说明该突变体受隐性单基因控制.通过InDel分子标记对F2代分离群体进行遗传定位,将该基因定位于第6染色体InDel标记OS604附近.随后又发展了多对有多态性的InDel分子标记,将该基因座位精细定位在InDel标记XL6-6和XL6-1之间,AP003490和AP005619上,两个引物之间的物理距离为118 kb.本研究为该克隆基因及其作用机理的探究奠定了基础.
[19] 徐静, 王莉, 钱前, 张光恒 (2013). 水稻叶片形态建成分子调控机制研究进展. 作物学报 39, 767-774.
DOI:10.3724/SP.J.1006.2013.00767URL叶片形态是水稻“理想株型”的重要组成部分,是当前水稻高产育种关注的重点。本文通过对已克隆多个叶形相关调控基因综述了水稻叶片形态(叶片卷曲度、倾角、披散程度以及叶片宽度)建成的分子遗传学研究进展。综合分析认为,水稻叶片的卷曲主要是通过卷叶基因调控叶片近轴/远轴间的发育、泡状细胞的发育及其膨胀和渗透压、厚壁组织的形成以及叶片角质层的发育等来实现。影响植株空间伸展姿态的叶倾角主要通过叶角基因调控油菜素内酯的信号传导来影响叶枕细胞的生长发育;唯一被克隆的影响叶片披垂度的披叶基因DL1是通过控制叶片中脉发育而改变叶片形态的:而窄叶基因则主要通过调控生长素的合成与极性运输、维管组织的发育和分布,影响叶片维管束数目及宽度。但到目前为止,所有已克隆的叶形调控基因问相互调控关系的研究还不够深入,还不能完整清晰地勾勒水稻叶形建成和发育的分子调控网络。因此,在已有的研究基础上更深入地探索水稻叶片形态建成的分子调控机制,对进一步构建相关的调控网络,塑造水稻理想株型具有重要意义。
[本文引用: 1]
[20] 许扬 (2016). 水稻控制花粉管生长基因OsCNGC13的图位克隆及功能分析和水稻卷叶基因OsZHD1的功能研究. 硕士论文. 南京: 南京农业大学. pp. 82.
URL小穗育性是水稻高产的决定因素之一。高且稳定的小穗结实率是水稻超高产杂交水稻的重要特征。水稻半不育突变体在作物育种、遗传学、生殖生物学和分子生物学的研究中提供了很好的材料,若能用稳定的半不育突变体进行研究,阐明半不育产生的分子机制,对克服生产中遇到的半不育问题具有重要的借鉴意义。在开花植物受精过程中,花粉管在雌蕊中生长的过程就是其与雌蕊相互识别的过程,为了更好地理解花粉管和雌蕊的相互作用分子机制,需要识别和分离涉及此过程各个阶段的基因,并对其功能进行分析。作为进行光合作用的主要器官,叶片对于种子植物的生长发育十分重要。在水稻育种中,倒三叶叶片长、窄、薄、直立且适当卷曲是超高产杂交水稻的重要特征。其中,叶片适当卷曲是突破产量瓶颈的关键,因此,克隆控制卷叶基因并明确其功能具有重大的生产意义。本研究对一个新的小穗半不育突变体进行研究发现,在水稻受精过程中,OsCNGC13能够促进花粉管通道内的细胞程序性死亡而促进花粉管的生长,该结果为进一步阐明水稻生殖发育的分子机制提供了新思路。此外,对一个新的水稻卷叶突变体进行研究发现,OsZHD1在水稻形态建成尤其是泡状细胞的形成和分布中起重要作用,过表达该基因会导致植株叶片卷曲,泡状细胞数量增多且排列异常。本研究主要结果如下:1.ORF1突变是导致突变体结实率下降的主要原因。细胞学观察表明,突变体花器官形态、花粉粒发育和体外萌发均正常;而在花粉管生长和胚囊极核位置方面表现异常。遗传分析表明,该突变由单显性基因控制。通过精细定位将该基因定位在52-kb范围内。基因组测序结果表明突变体中有44-kb片段发生了倒置,两边的断口分别在ORF1和ORF3的内部,使得ORF1被截短形成NewORF1。3'RACE实验表明NewORF1与野生型ORF1相比,序列差异表现在C端。通过转基因互补发现,野生型中表达NewORF1会使植株结实率下降;在W109sss1-D中过表达ORF1,转基因植株结实率有所提高;利用Crispr技术将野生型中ORF1进行基因敲除,全部八个阳性家系植株的结实率都有不同程度的下降。2. ORF1 编码一个环核苷酸门控离子通道(cyclic nucleotide-gated channels,CNGCs)蛋白OsCNGC13,该蛋白主要通过调节花柱内细胞程序性死亡而控制小穗育性。时空表达分析发现OsCNGC13呈组成型表达模式,并在雌蕊中大量累积。水稻和烟草系统表明该蛋白亚细胞定位于细胞膜。电生理实验证明OsCNGC13是一个钙离子通道蛋白。水稻中有3个钙调蛋白且均能与OsCNGC13互作,但在水稻16个CNGC家族成员中并未发现能与OsCNGC13互作的同源蛋白。利用原子吸收能谱对开花前后雌蕊中钙离子相对含量进行分析,发现在9311花柱中钙离子明显积累,而在突变体中并无此种现象。此外,用阿新蓝染料对成熟花柱进行染色,发现突变体较野生型着色较浅且范围较小。在开花后30分钟时,能观察到9311花粉管通道中的死亡细胞,但是突变体中相应部位的细胞依旧完整。开花后两小时,能观察到9311花粉管通道中存在大量细胞间隙,但是在突变体中只有少量细胞发生了消亡。3. OsZHHD1控制水稻叶片卷曲。对反卷叶突变体进行细胞学观察发现,突变体叶片中泡状细胞增加且排列异常。遗传数据和分子实验表明,T-DNA插入使锌指同源异型盒转录因子OsZHD1过表达,从而导致水稻叶片出现反卷。OsZHD1表现为组成型表达并在发育中的叶和穗子中积累。野生型中过表达OsZHHD1发现在所得到的转基因阳性家系中,均出现了反卷叶的表型。
[本文引用: 1]
[21] 姚健 (2012). 水稻卷叶突变体的遗传分析和基因定位研究. 硕士论文. 扬州: 扬州大学. pp. 46.
URL水稻(OryzasativaL.)是世界上重要的粮食作物之 一,随着粮食需求不断增加和耕地面积的持续减少,提高水稻产量也就成为迫在眉睫的问题。卷叶性状作为水稻超高产育种中重要形态指标之一,在生产实践中已经 得到充分的验证。叶作为是水稻的主要光合器官,其适度的卷曲有利于保持叶片直立,可以改善群体内部的透光环境以降低消光系数,为群体尽可能多的接受光能建 立一个良好的平台,从而增强光合作用与光能的利用效率。因此,探明水稻卷叶形成的分子机理,不仅有助于了解叶的发育机制,而且能帮助我们通过改良叶片的遗 传性状来提高作物产量和品质。   水稻...
[本文引用: 1]
[22] 余东, 吴海滨, 杨文韬, 巩鹏涛, 李有志, 赵德刚 (2008). 水稻单侧卷叶突变体B157遗传分析及基因初步定位. 分子植物育种 6, 220-226.

[23] 袁隆平 (1997). 杂交水稻超高产育种. 杂交水稻 12(6), 4-9.
URL杂交水稻超高产育种袁隆平(国家杂交水稻工程技术研究中心410125)1超高产水稻的概念什么叫水稻超高产育种,迄今并没有一个统一的标准和严格的定义,因此各家各派提出的产量指标并不相同。1980年日本制定的水稻超高产育种计划,要求在15a内育成比原有品种...
[24] 张俊杰 (2015). 水稻卷叶突变体sll2的遗传分析及泡状细胞发育调控研究. 博士论文. 南京: 南京农业大学. pp. 34.
URL泡状细胞是大的,薄壁并且高度液泡化的细胞,与应答干旱和高温时叶片卷曲有关。同时,卷叶是水稻育种中重要的农艺性状。为了了解控制卷叶的分子机制,本文报道了一个卷叶突变体shallot-like2(sll2)。该突变体从六叶期开始叶片向近轴面极度内卷,其光合效率增高,株高和分蘖数减少。组织学分析表明,泡状细胞皱缩导致内卷叶。该突变体是隐性的,回复突变率9%。卷叶表型是由T-DNA插入引起的。利用TAIL-PCR进行位点克隆表明T-DNA插入在LOC_Os07g38664的启动子区,出乎意料的是,LOC_Os07g38664被35S启动子加强表达并不是引起卷叶表型的原因。此外,增强子可以长距...
[本文引用: 1]
[25] 张礼霞, 刘合芹, 于新, 王友林, 范宏环, 金庆生, 王建军 (2014). 水稻卷叶突变体rl15(t)的生理学分析及基因定位. 中国农业科学 47, 2881-2888.
DOI:10.3864/j.issn.0578-1752.2014.14.018URL【Objective】Phenotypic and physiological characteristics of an environmentally induced rolled leaf mutant were studied in present paper. Meanwhile, the mutant gene was preliminarily mapped on rice chromosome. 【Method】A rolled leaf mutant, named rl15 (t) (rolled leaf 15), was obtained by 60Coγ-ray mutagenesis from japonica cv. Nipponbare. By field identification, the phenotypes and main agronomic traits of the mutant were investigated. Different temperature and relative humidity treatments could reveal the environment factors that affect leaves rolling in mutant. Both of rl15(t) and wild type at heading stage were divided into 6 groups and were treated with temperature at 24℃, 29℃ and 34℃, and relative humidity at 60% and 95%. After treatment for 1.5 h, flag leaves were used to measure leaf rolling index (LRI). From 6:00 AM to 18:00 PM, the photosynthesis rate (Pn), transpiration rate (Tr), stamatal conductance (Gs) of flag leaves in rl15(t) and wild type were measured at 2-hour intervals by using the portable gas exchange system Li-6400, meanwhile, leaf water potential was measured by WP4 dewpoint potential meter. These physiological characteristics were analyzed and compared between rl15(t) and wild type. The rl15(t) mutant was crossed with the wild type Nipponbare, leaf phenotype of the F1 progeny and segregation ratio of flat leaf plants and rolled leaf plants in F2 population were investigated. On the basis of BSA method according to Michelmore et al., preliminarily mapping of the candidate mutant gene were conducted using a F2 population derived from rl15(t) crossed with indica line Zhenshan97B.【Result】Compared with the wild type, the mutant plants have shortened plant height, reduced tiller numbers, shorter panicle, smaller grains, delayed heading duration, shorter and narrowed leaves. All of the leaves in rl15(t) were observed to highly inward roll at midday hours under sunny conditions, whereas were flat or slightly inward rolled under rainy conditions or at early morning and sunset under sunny conditions. Experiments of different temperature and relative humidity treatments showed that leaf rolling index in rl15(t) mutant were mainly depended on air humidity and could be promoted by high temperature. The photosynthesis rate, transpiration rate, stamatal conductance and leaf water potential of flag leaves in mutant were extremely lower than those in the wild type at midday hours under sunny conditions. However, the instantaneous water use efficiency (WUE) was similar to that of wild type at 6:00, 12:00, 18:00 o’clock, whereas in other time of a day, WUE was dramatically higher than that of the wild type. F1 plants derived from crossing rl15(t) with wild Nipponbare showed normal flat leaves, The segregation ratio of flat leaf plants to rolled leaf plants in F2 population was consistent with the inheritance of single recessive nuclear locus. Further molecular genetics studies revealed that RL15(t) was mapped on the long arm of rice chromosome 10 between SSR markers RM25302 and RM25343, with genetic distances of 0.8 cM and 2.0 cM, respectively. 【Conclusion】Mutant rl15 (t) was environmentally induced rolled leaf in phenotype. RL15(t) gene is located between SSR markers RM25302 and RM25343. In these distance segment, it hasn’t any similar phenotype genes reported up to now. So, RL15(t) gene would be a putative novel rolled leaf gene.
[26] 张小惠, 秦亚芝, 张迎信, 占小登, 张振华, 沈希宏, 程式华, 曹立勇, 吴先军 (2015). 水稻窄卷叶突变体Nrl3(t)的基因定位. 中国水稻科学 29, 595-600.

[27] 赵芳明, 魏霞, 马玲, 桑贤春, 王楠, 张长伟, 凌英华, 何光华 (2015). 水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测. 科学通报 60, 3133-3143.
DOI:10.1360/n972015-00712URL叶片是水稻主要的光合器官,适 度卷曲有利于保持植株叶片直立而不披垂,增加中、下层叶片透光率,从而改善群体光照条件,是理想株型的重要组成,对水稻高产育种具有重要意义.利用甲基黄 酸乙酯(EMS)诱变籼稻恢复系缙恢10号获得了一个遗传稳定的水稻生育后期卷叶突变体lrl1.lrl1的叶片在前期生长正常,从13叶龄开始,上三叶 沿中脉向内卷曲,且随着生育期推进,卷曲度增加,在成熟期剑叶、倒二叶和倒三叶的卷曲度分别为73.66%,66.91%和45.81%.与野生型缙恢 10号相比,除lrl1的千粒重(21.43 g)显著降低外,其他重要农艺性状均没有显著差异.lrl1的叶片小维管束间的泡状细胞数量减少、形状怪异、排列极不规则,导致小维管束之间的夹角变小, 从而引起了其叶片的卷曲.lrl1的上三叶光合色素含量均显著高于野生型.但其功能叶净光合速率等均与野生型没有显著差异.经遗传分析和分子定位,该叶片 卷曲受一对隐性核基因控制,位于第9染色体分子标记SWU-1和Ind6之间812 kb的区域.通过基因预测,在该区域共有129个候选基因,对其中3个可能与卷叶相关的基因测序,均未发现它们在lrl1与野生型间存在差异.以泡状细胞 变化相关的6个卷叶基因在突变体lrl1中的real-time PCR分析表明,卷叶基因ROC5和RL14的表达明显上调,而ACL1,SRL1以及NAL7被下调,暗示了这些基因可能在同一通路上调控叶片的发育. 该基因是一个新发现的基因,而且遗传行为简单,其相应突变体含有许多育种有利的性状,因而研究结果为该基因的克隆和功能研究及高产育种奠定了良好基础.
[28] 邹良平, 张治国, 起登凤, 孙建波, 路铁刚, 彭明 (2015). 一份水稻叶片反卷突变体的遗传分析及电镜显微观察. 植物学报 50, 191-197.
DOI:10.3724/SP.J.1259.2015.00191URLThe leafs has long been considered an important organ for photosynthesis. Moderate leaf rolling in rice leads to erect leaf canopies and increased photosynthetic efficiency, improving stress response by reducing transpirational water loss and radiant heat absorption, thereby increasing grain yield. Therefore, moderate leaf rolling is an ideal trait for rice breeding. During screening of rice T-DNA insertion lines, a stable mutant showing abaxial rolled-leaf phenotype was obtained. Genetic analyses of heterozygous F1 progeny showed that the mutant phenotype segregated in a 3:1 ratio of wild-type and mutant-like plants, so the leaf-rolling phenotype was caused by a single recessive mutation. Scanning electron microscopy revealed that stomatal phenotypes of mature leaves were changed and stoma number was increased in the mutant compared with wild type. In cross sectons taken from similar positions, the bulliform cell number and area were larger in the mutant than the wild type, which suggests that the outcurved leaf phenotype may be caused by the increase in bulliform cell number and size.
[本文引用: 1]
[29]
Adedze YMN, Wei XJ, Sheng ZH, Jiao GA, Tang SQ, Hu PS (2017). Characterization of a rice dwarf and narrow leaf 2 mutant. Biol Plantarum 61, 85-94.
[30]
Chen QL, Xie QJ, Gao J, Wang WY, Sun B, Liu BH, Zhu HT, Peng HF, Zhao HB, Liu CH, Wang J, Zhang JL, Zhang GQ, Zhang ZM (2015). Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot 66, 6047-6058.
URL
[本文引用: 4]
[31]
Duan MJ, Sun ZZ, Shu LP, Tan YN, Yu D, Sun XW, Liu RF, Li YJ, Gong SY, Yuan DY (2013). Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers.Rice 6, 21.
DOI:10.1186/1939-8433-6-21PMID:24279921URLAbstractBackgroundWith an increasing world population and a gradual decline in the amount of arable land, food security remains a global challenge. Continued increases in rice yield will be required to break through the barriers to grain output. In order to transition from hybrid rice to super-hybrid rice, breeding demands cannot be addressed through traditional heterosis. Therefore, it is necessary to incorporate high yield loci from other rice genetic groups and to scientifically utilize intersubspecific heterosis in breeding lines. In this study, 781 lines from a segregating F population constructed by crossing the ResultsQTL mapping and genetic effect analysis for five yield factors in the population gave the following results: 49 QTLs for the five yield factors were distributed on 11 of 12 chromosomes. The super-hybrid line R1128 carries multiple major genes for good traits, including for plant height, and for heading date, for spikelet number and for ideal plant shape. These genes accounted for 44.3%, 21.9%, 6.2%, 12.9% and 10.6% of the phenotypic variation in the individual traits. Six novel QTLs, qsbn11-1ConclusionsHigh-throughout sequencing technology makes it convenient to study rice genomics and makes the QTL/gene mapping direct, efficient, and more reliable. The genetic regions discovered in this study will be valuable for breeding in rice varieties because of the diverse genetic backgrounds of the rice.
[本文引用: 1]
[32]
Fang LK, Zhao FM, Cong YF, Sang XC, Du Q, Wang DZ, Li YF, Ling YH, Yang ZL, He GH (2012). Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.Plant Biotechnol J 10, 524-532.
DOI:10.1111/j.1467-7652.2012.00679.xPMID:22329407URLAs an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.
[本文引用: 2]
[33]
Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008). NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279, 499-507.
[本文引用: 1]
[34]
Guo LB, Qian Q, Zeng DL, Dong GL, Teng S, Zhu LH (2004). Genetic dissection for leaf correlative traits of rice (Oryza sativa L.) under drought stress. J Genet Genomics 31, 275-280.
DOI:10.1088/1009-0630/6/5/011PMID:15195567URLWater is becoming a restricted factor of agricultural development owing to the global shortage of water resources.Screening and improving drought tolerant rice cultivars would be helpful for increasing and stabilizing yield,economizing water and reducing environmental pollution.In this study,127 rice lines of DH population derived from an indica variety Zhaiyeqing 8 (ZYQ8) and a japonica variety Jingxi 17 (JX17) were used to locate QTLs for leaf rolling,relative water content and rate of electric conductivity under drought stress.The results showed that significant differences between the parents were detected for all measured traits.The tremendous transgressive segregations for these traits were observed in the population.The frequency of all traits in the population was approximately normally distributed with slight skew.A total of six QTLs for the three traits were detected with molecular linkage map of 234 markers,including three QTLs (qLR-1,qLR-5 and qLR-11)for leaf rolling,two QTLs (qRWC-1 and qRWC-6)for relative water content and one QTL (qREC-6) for rate of electric conductivity.Visual measurement for leaf rolling can be used to screen a large number of rice germplasm resources or varieties,which is of importance to screening and utilization of drought tolerant rice varieties.
[本文引用: 1]
[35]
Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y (2009). The ADAXIALIZED LEAF 1 gene functions in leaf and embryonic pattern formation in rice. italic>Dev Biol 334, 345-354.
[本文引用: 2]
[36]
Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q (2010). Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73, 283-292.
[本文引用: 1]
[37]
Huang CJ, Hu GJ, Li FF, Li YQ, Wu JX, Zhou XP (2013). NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol Plantarum 149, 297-309.
DOI:10.1111/ppl.12031PMID:23387304URLMYB transcriptional factors, characterized by the presence of conserved DNA-binding domains (BDs) (MYB domain), are involved in diverse processes including plant growth, development, metabolic and stress responses. In this study, a new R2R3-type MYB gene, NbPHAN (Nicotiana benthamiana PHANTASTICA), was identified in N. benthamiana. The NbPHAN encodes a protein of 362 amino acids and shares high sequence identities with the AS1-RS2-PHANs (ARPs) from other plant species. The NbPHAN protein targets to and forms homodimers in the nucleus. The MYB domain and C-terminal region of NbPHAN determine its subcellular localization and homodimerization, respectively. Using virus-induced gene silencing, we showed that the NbPHAN-silenced leaves exhibited severe downward curling and abnormal growth of blades along the main veins through suppressing the expression of the NTH20 gene. In addition, we found NbPHAN plays an important role in drought tolerance. The NbPHAN-silenced plants exhibited severe wilting and increased rate of water loss than that found in the non-silenced plants when growing under the water deficit condition. Although abscisic acid accumulation was not altered in the NbPHAN-silenced plants as compared with that in the non-silenced plants, several other stress-inducible genes were clearly repressed under the water deficit condition. Our results provide strong evidence that other than controlling leaf development, the ARP genes can also regulate plant tolerance to drought stress.
[本文引用: 1]
[38]
Jing W, Cao CJ, Shen LK, Zhang HS, Jing GQ, Zhang WH (2017). Characterization and fine mapping of a rice leaf-rolling mutant deficient in commissural veins.Crop Sci 57, 2595-2604.
DOI:10.2135/cropsci2017.04.0227URL
[本文引用: 2]
[39]
Khush GS, Kinoshita T, Toenniessen GH (1991). Rice karyotype, marker genes, and linkage groups. Rice Biotechnol 3, 83-108.
URLThe subject is reviewed and information presented under the following headings: (1) rice karyotype, including somatic and pachytene karyotype and Nishimura's chromosome numbering system; (2) marker genes, including gene symbolization, inheritance and linkage relations; (3) linkage groups, including association of linkage groups with respective chromsomes and a unified system of numbering rice c...
[40]
Li C, Zou XH, Zhang CY, Shao QH, Liu J, Liu B, Li HY, Zhao T (2016). OsLBD3-7 overexpression induced Adaxially rolled leaves in rice. PLoS One 11, e0156413.
DOI:10.1371/journal.pone.0156413PMID:4892467URLAppropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novellateral organ boundaries domain(LBD) geneOsLBD3-7, which is involved in the regulation of leaf rolling.OsLBD3-7works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression ofOsLBD3-7leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression ofOsLBD3-7led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated thatOsLBD3-7might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism.
[本文引用: 3]
[41]
Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL (2010). Overexpression ofACL1 (abaxially curled leaf 1) increased Bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant 3, 807-817.
[本文引用: 2]
[42]
Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM (2017). CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J 92, 904-923.
DOI:10.1111/tpj.13728PMID:28960566URLAbstract Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice. However, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1 and loss its function in cld1 through DNA methylation. CLD1/SRL1 encodes a GPI-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that loss-of-function of CLD1/SRL1 affects cell wall formation. Furthermore, loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. Due to the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
[43]
Liang R, Qin R, Zeng DD, Zheng X, Jin XL, Shi CH (2016). Phenotype analysis and gene mapping of narrow and rolling leaf mutant nrl4 in rice(Oryza sativa L.). Sci Agric Sin 49, 3863-3873.
DOI:10.3864/j.issn.0578-1752.2016.20.001URL【Objective】 Rice leaf mutant was used to study molecular mechanisms of leaf traits, and to identify the related novel rolling genes in rice.【Method】 The mutant with narrow and rolling leaves was derived from the indica cultivar Zhenong34 induced by ethyl methylsulphonate(EMS), named nrl4. At heading stage, nrl4 and WT Zhenong 34 were randomly selected 10 strains to measure the main agronomic traits and chlorophyll content of nrl4 and WT were tested at the same time. The bulliform cells were observed and counted as well as the number of large and small veins in transverse section of blade under the Zeiss microscope. The leaf phenotype of the F_1 plants and F_2 population which derived from the crossing of nrl4 with Zhenong 34 were investigated and the segregation ratio of normal and rolling leaves were analyzed by chi-square test in the F_2 population. The F_2 population from crossing of nrl4 with Zhenong 104 was used for genetic analysis and gene fine mapping. Five genes in the located region were analyzed by gene quantitative expression. 【Result】 Morphological analysis showed that all leaves of mutant nrl4 were narrow and rolling. In addition, compared with wild type Zhenong 34, plant height, seed setting rate in main panicle and pigment content of mutant nrl4 were increased, as well as grain length of nrl4, but the width of grain was decreased. Leaf angles of functional leaves were all decreased leading to more erecting plant type. Statistical analysis suggested that the rolling leaf phenotype might be caused by the change of number and size of bulliform cells which especially existed at the adaxial side of blade; moreover, in accordance with reduced leaf blade width, leaves of nrl4 contain a decreased number of large veins and small veins. There were 6.0 small veins between two large veins on one side of main vein averagely in mutant nrl4 leaf while there were 4.5 in wild type Zhenong34. Genetic analysis indicated that the mutant trait was controlled by a single recessive gene, the gene nrl4 was located in a confined region of 53 kb flanked by two In Del makers 3M11103 and 3M1115 on the long arm of chromosome 3, where five annotated genes were predicted. Based on the result of sequencing, there was no mutation occurred in the gene sequence and promoter sequence of these predicted genes, but strong changes in gene expression pattern of LOC_Os03g19770 according to the real time quantitative PCR. These results are very valuable for further study on this gene. 【Conclusion】 The narrow leaves are related to reduced number of vasculars, moreover the rolling blade of mutant nrl4 might resulted from the decreased area and number of bulliform cells. The mutant nrl4 is controlled by a single recessive nuclear gene, which is located on chromosome 3, between 3M11103 and 3M1115 with a physical distance of 53 kb. No nucleotide sequence mutation was found to occur in the gene sequence or the 5′UTR of all annotated genes, but the expression of LOC_Os03g19770 is strongly promoted in mutant nrl4, which is 17.5 times of wild type and it may be the candidate gene.
[44]
Liu XF, Li M, Liu K, Tang D, Sun MF, Li YF, Shen Y, Du GJ, Cheng ZK (2016). Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot 67, 2139-2150.
DOI:10.1093/jxb/erw029PMID:26873975URLSemi-Rolled Leaf2 encodes a novel plant-specific protein that modulates leaf rolling by regulating cell development in the abaxial sides of rice leaves. Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed thatSRL2encodes a novel plant-specific protein of unknown biochemical function.SRL2was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-relatedYABBYgenes were significantly altered in thesrl2mutant. Double mutant analysis suggested thatSRL2andSHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.
[本文引用: 2]
[45]
Luo YZ, Zhao FM, Sang XC, Ling YH, Yang ZL, He GH (2009). Genetic analysis and gene mapping of a novel rolled-leaf mutant rl12(t) in rice. Acta Agron Sin 35, 1967-1972.
DOI:10.1016/S1875-2780(08)60114-5URLLeaf is an important organ for photosynthesis. Moderate leaf rolling could facilitate structure improvement of plant population and enhance light-use efficiency, which is important in breeding for ideotype plants. A rolled leaf mutant temporarily named rl12(t), was obtained from the rice ( Oryza sativa L.) restorer line Jinhui 10 treated with ethyl methyl sulphonate (EMS). In the mutant, the newly developing leaves of the mutant did not roll, the upper 1/3 section of mature leaves was curled, and the older mature leaves were rolled completely. The pigment contents of the mutant increased significantly. The cytoplasmic male sterile (CMS) line Xinong 1A with flat leaves was crossed with the rl12(t) mutant to produce F 1 and F 2 populations. Genetic analysis indicated that the mutant was controlled by a single dominant gene. Gene rl12(t) was finally located on chromosome 10 between SWU-1 and SWU-2 with the genetic distances of 1.5 and 0.2 cM, respectively. Because no genes for rolled leaf trait have been previously located on this chromosome, RL12(t) should be a novel and unique dominant gene for rolled leaf.
[46]
Luo ZK, Yang ZL, Zhong BQ, Li YH, Xie R, Zhao FM, Ling YH, He GH (2007). Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10(t) in rice(Oryza sativa L). Genome 50, 811.
[47]
Park SJ, Moon JC, Yong CP, Kim JH, Kim DS, Jang CS (2014). Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses.J Plant Physiol 171, 1645-1653.
DOI:10.1016/j.jplph.2014.08.002PMID:25173451URLLeucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.
[48]
Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL (2007). Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226, 99-108.
DOI:10.1007/s00425-006-0472-0PMID:17216479URLHigh-yield cultivars are characterized by erect leaf canopies that optimize photosynthesis and thus favor increased biomass. Upward curling of the leaf blade (called rolled leaf) can result in enhanced erect-leaf habit, increase erect duration and promote an overall erect leaf canopy. The rice mutant R05, induced through transferred DNA (T-DNA) insertion, had the rolled-leaf trait. The leaves in the wild type demonstrated natural drooping tendencies, resulting in decreasing leaf erection indices (LEIs) during senescence at the 20th day after flowering. Conversely, LEIs of the leaves in R05 remained high, even 20-day post-flowering. We applied T-DNA tagging and isolated a rolled-leaf gene from rice which, when over-expressed, could induce upward curling of the leaf blade. This gene encodes for a protein of 1,048 amino acids including the PAZ and PIWI conserved domains, belonging to the Argonaute (AGO) family. There are at least 18 members of the AGO family in rice. According to high-sequence conservation, the rolled-leaf gene in rice could be orthologous to the Arabidopsis ZIP/Ago7 gene, so we called it OsAGO7 . These results provide a possible opportunity for implementing OsAGO7 gene in crop improvement.
[49]
Wang DZ, Sang XC, You XQ, Wang Z, Wang QS, Zhao FM, Ling YH, Li YF, He GH (2011). Genetic analysis and gene mapping of a novel and rolled leaf mutant nrl2(t) in rice(Oryza sativa L). italic>Acta Agron Sin 37, 1159-1166.
[50]
Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H (2011). CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23, 3392-3411.
DOI:10.1105/tpc.111.088625PMID:21954461URLPlants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH.
[51]
Xiang JJ, Zhang GH, Qian Q, Xue HW (2012). SEMI- ROLLED LEAF 1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol 159, 1488-1500.
DOI:10.1104/pp.112.199968PMID:22715111URLLeaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H + -ATPase (subunits A, B, C, and D) and H + -pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H + -ATPase subunits and H + -pyrophosphatase, which will help to understand the mechanism regulating leaf rolling.
[本文引用: 2]
[52]
Xie ZW, Sun W, Yin L, Zhao JF, Yuan SJ, Zhang WH, Li XY (2013). Phenotypic and genetic analyses of a novel adaxially-rolled leaf mutant in rice.Acta Agron Sinica 39, 1970-1978.
DOI:10.3724/SP.J.1006.2013.01970URLLeaf is an important organ for photosynthesis.Moderate rolling of leaves can facilitate the improvement of plant's population structure and enhance light-use efficiency,which is very important in ideotype breeding of rice.In the present study,in order to systematically dissect the molecular mechanism of leaf morphogenesis and development,one ethyl methylsulfone(EMS)-induced rice(Oryza sativa L.)mutant with adaxially-rolled leaf,namely s1-145,was characterized.This mutant exhibited higher chlorophyll content,normal plant height and fertility.Genetic analysis indicated that the mutant was controlled by a single recessive gene.The mutated gene of s1-145 was fine mapped within a 90 kb interval between two InDel markers R2-34.70 and R2-34.79 on the long arm of chromosome 2 in rice.These results provide a basis for the final cloning and functional analysis of the leaf-rolling gene,as well as gene resource and plant material for rice ideotype breeding.
[53]
Xu Y, Wang YH, Long QZ, Huang JX, Wang YL, Zhou KN, Zheng M, Sun J, Chen H, Chen SH, Jiang L, Wang CM, Wan JM (2014). Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice.Planta 239, 803-816.
DOI:10.1007/s00425-013-2009-7PMID:24385091URLAbstract Leaf rolling is receiving considerable attention as an important agronomic trait in rice (Oryza sativa L.). However, little has been known on the molecular mechanism of rice leaf rolling, especially the abaxial rolling. We identified a novel abaxially curled and drooping leaf-dominant mutant from a T鈧 transgenic rice line. The abaxially curled leaf phenotypes, co-segregating with the inserted transferred DNA, were caused by overexpression of a zinc finger homeodomain class homeobox transcription factor (OsZHD1). OsZHD1 exhibited a constitutive expression pattern in wild-type plants and accumulated in the developing leaves and panicles. Artificial overexpression of OsZHD1 or its closest homolog OsZHD2 induced the abaxial leaf curling. Histological analysis indicated that both the increased number and the abnormal arrangement of bulliform cells in leaf were responsible for the abaxially curled leaves. We herein reported OsZHD1 with key roles in rice morphogenesis, especially in the modulating of leaf rolling, which provided a novel insight into the molecular mechanism of leaf development in rice.
[本文引用: 2]
[54]
Yan C, Yan S, Zhang ZQ, Liang GH, Lu J F, Gu MH (2006). Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Chin Sci Bull 51, 63-69.
DOI:10.1007/s11434-005-1142-5URLLeaf shape is an important parameter for ideotype breeding in rice, and the rolling of leaf is also beneficial to efficient ripening of grains. This encourages the explorations of new genes that regulate leaf shape. In this study, genetic analysis and gene mapping were carried out for a novel rolling leaf mutant identified from japonica variety Zhonghua 11. The SSR marker analysis showed that the mutant was controlled by a single recessive gene (rl9(t)) lo- cated on chromosome 9. Fine mapping of the Rl9(t) locus was conducted with 30 new STS markers de- veloped around Rl9(t) anchored region based on the sequence diversity between Nipponbare and 93-11. The fine mapping necessitated the contruction of a PAC contig encompassing the Rl9(t) locus, which was delimited to a 42 kb region. This could therefore en- hance the cloning of the target gene in further stud- ies.
[55]
Yang CH, Li DY, Liu X, Ji CJ, Hao LL, Zhao XF, Li XB, Chen CY, Cheng ZK, Zhu LH (2014). OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol 14, 158.
DOI:10.1186/1471-2229-14-158PMID:24906444URLBackground The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. Results In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes an R2R3-MYB transcription factor. OsMYB103L was localized in the nucleus with transactivation activity. Overexpression of OsMYB103L in rice resulted in a rolled leaf phenotype. Further analyses showed that expression levels of several cellulose synthase genes (CESAs) were significantly increased, as was the cellulose content in OsMYB103L overexpressing lines. Knockdown of OsMYB103L by RNA interference led to a decreased level of cellulose content and reduced mechanical strength in leaves. Meanwhile, the expression levels of several CESA genes were decreased in these knockdown lines. Conclusions These findings suggest that OsMYB103L may target CESA genes for regulation of cellulose synthesis and could potentially be engineered for desirable leaf shape and mechanical strength in rice.
[本文引用: 1]
[56]
Yi JC, Liu LN, Cao YP, Li JZ, Mei MT (2013). Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase. J Genet 92, 471-480.
DOI:10.1007/s12041-013-0297-0PMID:24371168URLFlavin monooxygenases (FMO) play a key role in tryptophan (Trp)-dependent indole-acetic acid (IAA) biosynthesis in plants and regulate plant growth and development. In this study, the full-length genomic DNA and cDNA of OsFMO ( t ) , a FMO gene that was originally identified from a rolled-leaf mutant in rice, was isolated and cloned from wild type of the rolled-leaf mutant. OsFMO ( t ) was found to have four exons and three introns, and encode a protein with 422 amino acid residues that contains two basic conserved motifs, with a ‘G×G××G’ characteristic structure. OsFMO (t) showed high amino acid sequence identity with FMO proteins from other plants, in particular with YUCCA from Arabidopsis , FLOOZY from Petunia , and OsYUCCA1 from rice. Our phylogenetic analysis showed that OsFMO (t) and the homologous FMO proteins belong to the same clade in the evolutionary tree. Overexpression of OsFMO ( t ) in transformed rice calli produced IAA-excessive phenotypes that showed browning and lethal effects when exogenous auxins such as naphthylacetic acid (NAA) were added to the medium. These results suggested that the OsFMO (t) protein is involved in IAA biosynthesis in rice and its overexpression could lead to the malformation of calli. Spatio-temporal expression analysis using RT-PCR and histochemical analysis for GUS activity revealed that expression of OsFMO ( t ) was totally absent in the rolled-leaf mutant. However, in the wild type variety, this gene was expressed at different levels temporally and spatially, with the highest expression observed in tissues with fast growth and cell division such as shoot apexes, tender leaves and root tips. Our results demonstrated that IAA biosynthesis regulated by OsFMO ( t ) is likely localized and might play an essential role in shaping local IAA concentrations which, in turn, is critical for regulating normal growth and development in rice.
[本文引用: 1]
[57]
Yu HP, Ruan BP, Wang Z, Ren DY, Zhang Y, Leng YJ, Zeng DL, Hu J, Zhang GH, Zhu L, Gao ZY, Chen G, Guo LB, Chen WF, Qian Q (2017). Fine mapping of a novel defective glume 1 (dg1) mutant, which affects vegetative and spikelet development in rice.Front Plant Sci 8, 486.
DOI:10.3389/fpls.2017.00486PMID:5382164URLIn cereal crops, vegetative and spikelet development play important roles in grain yield and quality, but the genetic mechanisms that control vegetative and spikelet development remain poorly understood in rice. Here, we identified a new rice mutant,defective glume 1(dg1) mutant from cultivar Zhonghua11 after ethyl methanesulfonate treatment. Thedg1mutant displayed the dwarfism with small, rolled leaves, which resulted from smaller cells and more bulliform cells. Thedg1mutant also had an enlarged leaf angle and defects in brassinosteroid signaling. In thedg1mutant, both the rudimentary glume and sterile lemma (glumes) were transformed into lemma-like organ and acquired the lemma identity. Additionally, thedg1mutant produced slender grains. Further analysis revealed thatDG1affects grain size by regulating cell proliferation and expansion. We fine mapped thedg1locus to a 31-kb region that includes eight open reading frames. We examined the DNA sequence and expression of these loci, but we were not able to identify theDG1gene. Therefore, more work will be needed for cloning and functional analysis ofDG1, which would contribute to our understanding of the molecular mechanisms behind whole-plant development in rice.
[58]
Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009). SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell 21, 719-735.
DOI:10.1105/tpc.108.061457URLAs an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sII1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling.
[本文引用: 2]
[59]
Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP, Wu CY, Wan JM, Thiel G (2015). A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice(Oryza sativa L). Plant Biol 17, 437-448.
DOI:10.1111/plb.12255PMID:25213398URLAbstract Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 ( sll2 ). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development.
[60]
Zhou Y, Fang YX, Zhu JY, Li SQ, Gu F, Gu MH, Liang GH (2010). Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice(Oryza sativa L). Chin Sci Bull 55, 1763-1769.
[61]
Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG (2011). Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice.
[本文引用: 3]

一个水稻类感干尖线虫卷叶突变体的遗传分析与基因定位
2015

水稻窄卷叶突变体nrl(t)的遗传分析与基因定位
2014

水稻卷叶突变体rl28的特性与基因定位
2015

水稻叶片形态相关基因RL3(t)的遗传分析和精细定位
1
2014

... 研究表明, 泡状细胞的主要作用是储存水分, 通过借助大液泡内在水分的得失来调控叶片的伸展和卷曲, 从而对叶片的形态以及光能利用产生影响(王文乐, 2016).此外, 泡状细胞的形态与叶片卷曲有关.当叶片蒸腾失水时, 泡状细胞会皱缩, 使叶片内卷以减少蒸腾; 当蒸腾作用较小时, 泡状细胞又会吸水膨胀, 使叶片变平展.泡状细胞的大小和位置也是决定叶片卷曲方向的重要影响因子.通过控制叶片中泡状细胞的数目及面积可控制叶片的卷曲.一般情况下, 泡状细胞失水会使叶片形成1个向近轴面方向的作用力, 从而使叶片发生卷曲.当泡状细胞数量和面积增多时则会使水稻叶片发生反卷, 而泡状细胞数量和面积减少时又会导致叶片发生正卷(李战朋等, 2016).通过对叶片细胞进行观察, 发现叶片中的泡状细胞数量没有发生变化时, 泡状细胞面积增大也会导致叶片反卷; 而当泡状细胞数量增多时, 其面积减少不仅不能促使叶片反卷, 反而出现叶片正卷的表型(郭旻等, 2014). ...

一个水稻卷叶突变体zw209的遗传分析与精细定位
1
2016

... 研究表明, 泡状细胞的主要作用是储存水分, 通过借助大液泡内在水分的得失来调控叶片的伸展和卷曲, 从而对叶片的形态以及光能利用产生影响(王文乐, 2016).此外, 泡状细胞的形态与叶片卷曲有关.当叶片蒸腾失水时, 泡状细胞会皱缩, 使叶片内卷以减少蒸腾; 当蒸腾作用较小时, 泡状细胞又会吸水膨胀, 使叶片变平展.泡状细胞的大小和位置也是决定叶片卷曲方向的重要影响因子.通过控制叶片中泡状细胞的数目及面积可控制叶片的卷曲.一般情况下, 泡状细胞失水会使叶片形成1个向近轴面方向的作用力, 从而使叶片发生卷曲.当泡状细胞数量和面积增多时则会使水稻叶片发生反卷, 而泡状细胞数量和面积减少时又会导致叶片发生正卷(李战朋等, 2016).通过对叶片细胞进行观察, 发现叶片中的泡状细胞数量没有发生变化时, 泡状细胞面积增大也会导致叶片反卷; 而当泡状细胞数量增多时, 其面积减少不仅不能促使叶片反卷, 反而出现叶片正卷的表型(郭旻等, 2014). ...

几个水稻品种抽穗期主效基因与微效基因的定位研究
1
1996

... 水稻作为禾本科植物的模式作物, 基因组较小且已被测序, 极大地方便了对其进行发育分子机理的探究.水稻卷叶形成的主要因素是叶片中泡状细胞的膨胀程度及其渗透压, 生理性逆境(缺水和盐胁迫等)都会使叶片发生卷曲, 但这种条件下的卷叶性状是可逆的且不能遗传, 而由基因控制的卷叶性状一般能够遗传且表型稳定(徐静等, 2013).已有研究发现了许多控制水稻卷叶性状的主效基因, 而后又发现了一些微效基因以及非等位基因, 表明水稻卷叶性状由多种复杂的遗传途径调控(林鸿宣等, 1996).同时, 在水稻中通过各种化学诱变、物理诱变及转座子和T-DNA插入的方法获得了许多叶形突变体, 而能遗传的卷叶性状是我们所关注的.研究表明, 调控卷叶性状的基因有很多, 且部分已被克隆(表1).水稻12条染色体均有卷叶相关调控基因被报道, 其中, REL1OsAG07RL(t)等属于显性性状基因; ADL1Roc5IRL1SRL1SRL2ACL1OsLBD3-7OsMYB103LRL14等属于隐性性状基因. ...

水稻新型卷叶突变体rl12(t)的遗传分析和基因定位
1
2010

... 在水稻正常叶片中, 叶肉细胞在形态和排列方面具有极性(Hibara et al., 2009).而水稻卷叶叶片的叶肉细胞形态分布没有规律, 在近上表皮左边的叶肉细胞接近多边形, 右边的叶肉细胞呈现长方形; 而在靠近下 表皮的叶肉细胞也有呈多边形和长方形排列(罗远章, 2010).此外, 在卷叶维管束鞘细胞的左右两侧还存在薄壁细胞, 而其小脉中细胞的分化和形态与大脉中的分化大体相同.另外, 卷叶中紧邻泡状细胞的叶肉细胞也发生薄壁化, 成为薄壁细胞, 其泡状细胞的面积也明显减小, 最终导致叶片卷曲(Li et al., 2016). ...

水稻不完全隐性卷叶主基因rl(t)的精细定位
2005

水稻卷叶性状的研究进展及在育种中的应用
1
2009

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

水稻卷叶基因rI-11(t)的精细定位. 见: 中国遗传学会
2008

水稻卷叶基因RL13的遗传分析和分子定位
2012

一个水稻窄叶突变体的鉴定和基因定位
2009

一个水稻显性卷叶突变体的遗传分析与基因定位
1
2016

... 水稻(Oryza sativa)叶片是植株进行光合作用的主要场所.叶片卷曲是叶片性状中的一个重要组成部分.研究表明, 卷叶正面的光合能力低于展叶, 其背面的光合能力高于展叶, 而水稻卷叶的衰老程度则小于展叶.叶片适度卷曲可减少叶片披垂, 从而使叶片产生良好的受光姿态, 最终使群体光合速率高于展叶(王美娥, 2012).叶片适度卷曲还能使叶片保持直立形态, 提高水稻光能利用率, 从而提高产量.叶片适度卷曲在一定条件下能增加水稻种植密度, 提供合适的空间, 而且能提高水稻的抗病性.然而, 随着叶片卷曲度的增加, 叶片表面的漏光损失增大, 植株不能充分利用光能(王凡华, 2016).本文主要论述水稻卷叶细胞学及相关分子调控机制的研究进展. ...

水稻叶形及叶脉发育调控基因OsARVL4定位及功能分析
1
2014

... 目前, 在双子叶模式植物拟南芥(Arabidopsis th- aliana)和单子叶模式植物水稻中分离出了许多叶片性状相关突变体.随着超级稻概念的提出, 水稻叶片性状相关研究成为当前的研究热点.目前, 卷叶类型包括3种: 正卷、反卷和扭曲.正卷即叶片朝着近轴端卷曲, 反卷是叶片朝着远轴端卷曲, 而扭曲是无规则的.卷曲程度分为高度卷曲、中度卷曲和轻微卷曲(张俊杰, 2015).当叶片发生卷曲时, 其细胞学形态也发生相应变化, 包括泡状细胞的变化、 厚壁细胞及薄壁细胞的变化, 以及维管束中韧皮部变化和叶肉细胞的变化(王莉, 2014). ...

叶片披垂和卷曲性状对水稻光抑制及衰老进程的影响
1
2012

... 水稻(Oryza sativa)叶片是植株进行光合作用的主要场所.叶片卷曲是叶片性状中的一个重要组成部分.研究表明, 卷叶正面的光合能力低于展叶, 其背面的光合能力高于展叶, 而水稻卷叶的衰老程度则小于展叶.叶片适度卷曲可减少叶片披垂, 从而使叶片产生良好的受光姿态, 最终使群体光合速率高于展叶(王美娥, 2012).叶片适度卷曲还能使叶片保持直立形态, 提高水稻光能利用率, 从而提高产量.叶片适度卷曲在一定条件下能增加水稻种植密度, 提供合适的空间, 而且能提高水稻的抗病性.然而, 随着叶片卷曲度的增加, 叶片表面的漏光损失增大, 植株不能充分利用光能(王凡华, 2016).本文主要论述水稻卷叶细胞学及相关分子调控机制的研究进展. ...

水稻窄卷叶突变体nrl7的鉴定与基因定位
1
2016

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

水稻卷叶突变体ocu5基因图位克隆及功能研究
2
2016

... 研究表明, 泡状细胞的主要作用是储存水分, 通过借助大液泡内在水分的得失来调控叶片的伸展和卷曲, 从而对叶片的形态以及光能利用产生影响(王文乐, 2016).此外, 泡状细胞的形态与叶片卷曲有关.当叶片蒸腾失水时, 泡状细胞会皱缩, 使叶片内卷以减少蒸腾; 当蒸腾作用较小时, 泡状细胞又会吸水膨胀, 使叶片变平展.泡状细胞的大小和位置也是决定叶片卷曲方向的重要影响因子.通过控制叶片中泡状细胞的数目及面积可控制叶片的卷曲.一般情况下, 泡状细胞失水会使叶片形成1个向近轴面方向的作用力, 从而使叶片发生卷曲.当泡状细胞数量和面积增多时则会使水稻叶片发生反卷, 而泡状细胞数量和面积减少时又会导致叶片发生正卷(李战朋等, 2016).通过对叶片细胞进行观察, 发现叶片中的泡状细胞数量没有发生变化时, 泡状细胞面积增大也会导致叶片反卷; 而当泡状细胞数量增多时, 其面积减少不仅不能促使叶片反卷, 反而出现叶片正卷的表型(郭旻等, 2014). ...
... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...

一个新的水稻矮秆突变体sd-sl的遗传与基因定位研究
2007

水稻叶片形态建成分子调控机制研究进展
1
2013

... 水稻作为禾本科植物的模式作物, 基因组较小且已被测序, 极大地方便了对其进行发育分子机理的探究.水稻卷叶形成的主要因素是叶片中泡状细胞的膨胀程度及其渗透压, 生理性逆境(缺水和盐胁迫等)都会使叶片发生卷曲, 但这种条件下的卷叶性状是可逆的且不能遗传, 而由基因控制的卷叶性状一般能够遗传且表型稳定(徐静等, 2013).已有研究发现了许多控制水稻卷叶性状的主效基因, 而后又发现了一些微效基因以及非等位基因, 表明水稻卷叶性状由多种复杂的遗传途径调控(林鸿宣等, 1996).同时, 在水稻中通过各种化学诱变、物理诱变及转座子和T-DNA插入的方法获得了许多叶形突变体, 而能遗传的卷叶性状是我们所关注的.研究表明, 调控卷叶性状的基因有很多, 且部分已被克隆(表1).水稻12条染色体均有卷叶相关调控基因被报道, 其中, REL1OsAG07RL(t)等属于显性性状基因; ADL1Roc5IRL1SRL1SRL2ACL1OsLBD3-7OsMYB103LRL14等属于隐性性状基因. ...

水稻控制花粉管生长基因OsCNGC13的图位克隆及功能分析和水稻卷叶基因OsZHD1的功能研究
1
2016

... 研究表明, 泡状细胞的发育对水稻叶片形态有重要影响(许杨, 2016).目前, 从水稻卷叶中克隆的基因大多数都与泡状细胞的发育有关, 少数与厚壁细胞、韧皮部细胞及维管束细胞相关, 从而使叶片形态发育受影响. ...

水稻卷叶突变体的遗传分析和基因定位研究
1
2012

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

水稻单侧卷叶突变体B157遗传分析及基因初步定位
2008

杂交水稻超高产育种
1997

水稻卷叶突变体sll2的遗传分析及泡状细胞发育调控研究
1
2015

... 目前, 在双子叶模式植物拟南芥(Arabidopsis th- aliana)和单子叶模式植物水稻中分离出了许多叶片性状相关突变体.随着超级稻概念的提出, 水稻叶片性状相关研究成为当前的研究热点.目前, 卷叶类型包括3种: 正卷、反卷和扭曲.正卷即叶片朝着近轴端卷曲, 反卷是叶片朝着远轴端卷曲, 而扭曲是无规则的.卷曲程度分为高度卷曲、中度卷曲和轻微卷曲(张俊杰, 2015).当叶片发生卷曲时, 其细胞学形态也发生相应变化, 包括泡状细胞的变化、 厚壁细胞及薄壁细胞的变化, 以及维管束中韧皮部变化和叶肉细胞的变化(王莉, 2014). ...

水稻卷叶突变体rl15(t)的生理学分析及基因定位
2014

水稻窄卷叶突变体Nrl3(t)的基因定位
2015

水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测
2015

一份水稻叶片反卷突变体的遗传分析及电镜显微观察
1
2015

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...


2017


4
2015

... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... 通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... ).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... 激素相关基因也参与水稻叶片卷曲的调控.NAL7基因编码1个黄素单加氧酶, 其与YUCCA序列同源, 突变会产生无活性的酶.与野生型相比, nal7突变体中的IAA含量改变, 导致水稻叶片呈现内卷的表型(Fujino et al., 2008).同样地, 水稻中的黄素单加氧酶(FMO)也调控水稻内源IAA的生物合成.在卷叶突变体中, OsFMO(t)完全不表达; 而在野生型中, 由OsFMO(t)调控的IAA生物合成是局部的, 并且可能在形成局部IAA浓??度方面发挥重要作用, 而IAA浓度又是调节水稻正常生长以及发育的关键(Yi et al., 2013).REL1基因能够响应油菜素类固醇, 其编码1个在单子叶植物中高度保守的功能未知蛋白, 通过协调BR信号转导来调控叶片的卷曲和弯曲, rel1叶片卷曲表型主要是由于泡状细胞数目和大小增加, 进而发生外卷(Chen et al., 2015).目前, 大多数激素在叶发育中的调控机制仍不十分清楚, 但激素在维持叶片形态发育过程中所发挥的作用不容忽视. ...

1
2013

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

2
2012

... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... CVD1候选区域内的BEL1同源结构域蛋白基因(Os03g0732100)中有2个核苷酸的缺失, 导致移码突变和蛋白质产物的截短, 突变体在静脉叶中的形成存在缺陷, 导致叶片向内卷曲(Jing et al., 2017).在水稻中过表达OsMYB103L可调控叶片卷曲.进一步分析显示, 其过表达株系中的纤维素合成酶基因(CESA)表达水平和纤维素含量显著增加.OsMYB- 103L可能通过CESA基因调控纤维素合成, 有可能应用于设计水稻中所需的叶片形状和机械强度(Yang et al., 2014).此外, 研究表明RL14在叶鞘内的叶肉细胞中转录, 在成熟叶中, RL14主要在围绕脉管系统的叶肉细胞中表达.在rl14突变体中, 与二次细胞壁形成有关的基因表达受到影响, 其叶中的纤维素和木质素含量发生改变, 是其叶片卷曲的直接原因(Fang et al., 2012). ...

1
2008

... 激素相关基因也参与水稻叶片卷曲的调控.NAL7基因编码1个黄素单加氧酶, 其与YUCCA序列同源, 突变会产生无活性的酶.与野生型相比, nal7突变体中的IAA含量改变, 导致水稻叶片呈现内卷的表型(Fujino et al., 2008).同样地, 水稻中的黄素单加氧酶(FMO)也调控水稻内源IAA的生物合成.在卷叶突变体中, OsFMO(t)完全不表达; 而在野生型中, 由OsFMO(t)调控的IAA生物合成是局部的, 并且可能在形成局部IAA浓??度方面发挥重要作用, 而IAA浓度又是调节水稻正常生长以及发育的关键(Yi et al., 2013).REL1基因能够响应油菜素类固醇, 其编码1个在单子叶植物中高度保守的功能未知蛋白, 通过协调BR信号转导来调控叶片的卷曲和弯曲, rel1叶片卷曲表型主要是由于泡状细胞数目和大小增加, 进而发生外卷(Chen et al., 2015).目前, 大多数激素在叶发育中的调控机制仍不十分清楚, 但激素在维持叶片形态发育过程中所发挥的作用不容忽视. ...

1
2004

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

2
2009

... 在水稻正常叶片中, 叶肉细胞在形态和排列方面具有极性(Hibara et al., 2009).而水稻卷叶叶片的叶肉细胞形态分布没有规律, 在近上表皮左边的叶肉细胞接近多边形, 右边的叶肉细胞呈现长方形; 而在靠近下 表皮的叶肉细胞也有呈多边形和长方形排列(罗远章, 2010).此外, 在卷叶维管束鞘细胞的左右两侧还存在薄壁细胞, 而其小脉中细胞的分化和形态与大脉中的分化大体相同.另外, 卷叶中紧邻泡状细胞的叶肉细胞也发生薄壁化, 成为薄壁细胞, 其泡状细胞的面积也明显减小, 最终导致叶片卷曲(Li et al., 2016). ...
... CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017).Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷.研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...

1
2010

... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...

1
2013

... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...

2
2017

... CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017).Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷.研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...
... CVD1候选区域内的BEL1同源结构域蛋白基因(Os03g0732100)中有2个核苷酸的缺失, 导致移码突变和蛋白质产物的截短, 突变体在静脉叶中的形成存在缺陷, 导致叶片向内卷曲(Jing et al., 2017).在水稻中过表达OsMYB103L可调控叶片卷曲.进一步分析显示, 其过表达株系中的纤维素合成酶基因(CESA)表达水平和纤维素含量显著增加.OsMYB- 103L可能通过CESA基因调控纤维素合成, 有可能应用于设计水稻中所需的叶片形状和机械强度(Yang et al., 2014).此外, 研究表明RL14在叶鞘内的叶肉细胞中转录, 在成熟叶中, RL14主要在围绕脉管系统的叶肉细胞中表达.在rl14突变体中, 与二次细胞壁形成有关的基因表达受到影响, 其叶中的纤维素和木质素含量发生改变, 是其叶片卷曲的直接原因(Fang et al., 2012). ...


1991


3
2016

... 在水稻正常叶片中, 叶肉细胞在形态和排列方面具有极性(Hibara et al., 2009).而水稻卷叶叶片的叶肉细胞形态分布没有规律, 在近上表皮左边的叶肉细胞接近多边形, 右边的叶肉细胞呈现长方形; 而在靠近下 表皮的叶肉细胞也有呈多边形和长方形排列(罗远章, 2010).此外, 在卷叶维管束鞘细胞的左右两侧还存在薄壁细胞, 而其小脉中细胞的分化和形态与大脉中的分化大体相同.另外, 卷叶中紧邻泡状细胞的叶肉细胞也发生薄壁化, 成为薄壁细胞, 其泡状细胞的面积也明显减小, 最终导致叶片卷曲(Li et al., 2016). ...
... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... 超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...

2
2010

... CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017).Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷.研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...
... 基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...


2017


2016


2
2016

... CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017).Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷.研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...
... 能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...


2009


2007


2014


2007


2011


2011


2
2012

... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... 编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...


2013


2
2014

... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...
... 良好的株型可从空间结构上具备良好的光合生理特性, 叶片形态的改良一直以来备受关注(Duan et al., 2013; 邹良平等, 2015; 王伟等, 2016).在水稻株型改良中, 卷叶性状的研究被广泛关注, 科学家希望将卷叶性状应用到优良的水稻品种中, 在保证一定叶面积指数的前提下, 通过增加群体的透光率提高群体的光合效率(姚健, 2012).水稻叶片适度卷曲能够使叶片保持直立不披垂; 同时, 叶片与茎秆间的夹角变小, 植株受光面积变大, 阳光反射变小, 水稻群体光合效率变大.此外, 叶片适度卷曲和直立能够提高群体内空气流通速率, 促进水稻植株生长, 并最终实现增产.而叶片光合作用与呼吸作用的增强也能提高根系的生长活力和水稻植株的抗性(Huang et al., 2013; Xu et al., 2014).袁隆平(1997)提出超高产水稻的理想株型模式: 植株上三叶“长、直、凹、窄、厚且略内卷”, 株高适中, 株型适度紧凑, 分蘖力中等.其中, 叶片“直、窄、凹、略卷”正是卷叶突变体所具备的一般特征.目前, 已成功培育的卷叶水稻高产品种包括韩国培育的密阳23、国际水稻所培育的IR8、江苏省农科院选育的两优培九和两优E32.这些水稻品种都符合袁隆平提出的上三叶“长、直、凹、窄、厚”的特点, 并已在南方各地区大面积推广种植(Guo et al., 2004; 沈年伟等, 2009). ...


2006


1
2014

... CVD1候选区域内的BEL1同源结构域蛋白基因(Os03g0732100)中有2个核苷酸的缺失, 导致移码突变和蛋白质产物的截短, 突变体在静脉叶中的形成存在缺陷, 导致叶片向内卷曲(Jing et al., 2017).在水稻中过表达OsMYB103L可调控叶片卷曲.进一步分析显示, 其过表达株系中的纤维素合成酶基因(CESA)表达水平和纤维素含量显著增加.OsMYB- 103L可能通过CESA基因调控纤维素合成, 有可能应用于设计水稻中所需的叶片形状和机械强度(Yang et al., 2014).此外, 研究表明RL14在叶鞘内的叶肉细胞中转录, 在成熟叶中, RL14主要在围绕脉管系统的叶肉细胞中表达.在rl14突变体中, 与二次细胞壁形成有关的基因表达受到影响, 其叶中的纤维素和木质素含量发生改变, 是其叶片卷曲的直接原因(Fang et al., 2012). ...

1
2013

... 激素相关基因也参与水稻叶片卷曲的调控.NAL7基因编码1个黄素单加氧酶, 其与YUCCA序列同源, 突变会产生无活性的酶.与野生型相比, nal7突变体中的IAA含量改变, 导致水稻叶片呈现内卷的表型(Fujino et al., 2008).同样地, 水稻中的黄素单加氧酶(FMO)也调控水稻内源IAA的生物合成.在卷叶突变体中, OsFMO(t)完全不表达; 而在野生型中, 由OsFMO(t)调控的IAA生物合成是局部的, 并且可能在形成局部IAA浓??度方面发挥重要作用, 而IAA浓度又是调节水稻正常生长以及发育的关键(Yi et al., 2013).REL1基因能够响应油菜素类固醇, 其编码1个在单子叶植物中高度保守的功能未知蛋白, 通过协调BR信号转导来调控叶片的卷曲和弯曲, rel1叶片卷曲表型主要是由于泡状细胞数目和大小增加, 进而发生外卷(Chen et al., 2015).目前, 大多数激素在叶发育中的调控机制仍不十分清楚, 但激素在维持叶片形态发育过程中所发挥的作用不容忽视. ...


2017


2
2009

... 厚壁细胞对水稻叶片形态的维持具有重要作用.当小叶脉靠近远轴面的厚壁细胞发生缺失时, 部分泡状细胞会发生异位或不完全异位, 即泡状细胞本应分布在叶片的上表面(近轴面), 却出现在叶片的下表面(远轴面), 或者出现在叶片的上下表面.Zhang等(2009)研究表明, 水稻叶片远轴面的厚壁细胞发生缺失时导致叶片正卷, 而近轴面厚壁细胞缺失会使叶片反卷.水稻卷曲叶片的主脉本应是空腔的地方大多被薄壁细胞填充, 导致薄壁细胞的数目明显增多(Zou et al., 2011).卷叶在叶脉近轴面厚壁细胞的缺失可能是由于近轴面薄壁细胞数目的增加占据了原厚壁细胞的位置, 从而使厚壁细胞分化发育的命运发生改变.因此, 叶片卷曲由薄壁细胞和厚壁细胞的共同作用决定. ...
... CLD1/SRL1突变体表现为叶片细胞壁纤维素和木质素含量显著降低, 研究表明, cld1/srl1功能丧失影响水稻细胞壁的形成以及表皮的完整性, 最终导致叶片卷曲(Jing et al., 2017).Liu等(2016)克隆到1个srl2 (半卷叶)水稻突变体基因, 该基因编码1个未知功能蛋白, 由于在叶片中存在缺陷的厚壁细胞, 因此叶片无足够的机械支撑而内卷.研究结果显示, SRL2SLL1能够通过多种遗传途径控制远轴面厚壁组织的发育(Liu et al., 2016).Li等(2010)在水稻中分离出acl1突变体, 其叶片近轴面中泡状细胞的数目和大小均有增加, 导致叶片近-远轴面不协调发育从而使叶片发生外卷.ACL1基因在水稻的叶片和叶鞘中表达, 过量表达时近-远轴面不协调发育使叶片发生内卷(Li et al., 2010).Hibara等(2009)在水稻中克隆到ADL1基因, 其编码1个钙蛋白酶, 当ADL1基因发生突变后, 近轴面泡状细胞的数目增多, 远轴面产生类似的泡状细胞, 进而改变叶片的极性, 导致叶片外卷.SLL1基因通过调控水稻叶片远轴面厚壁组织细胞的程序化死亡来调控水稻叶片的形状.叶片维管束中叶肉细胞及厚壁细胞发育有关的基因也参与调控卷叶的形成.sll1突变体由于背侧的厚壁细胞发育不良而使叶片弯曲; 增强SLL1表达可刺激且促使背面的韧皮部发育, 并抑制近轴面表皮细胞和厚壁细胞的发育从而使叶片发生近轴面方向卷曲(Zhang et al., 2009). ...


2015


2010


3
2011

... 厚壁细胞对水稻叶片形态的维持具有重要作用.当小叶脉靠近远轴面的厚壁细胞发生缺失时, 部分泡状细胞会发生异位或不完全异位, 即泡状细胞本应分布在叶片的上表面(近轴面), 却出现在叶片的下表面(远轴面), 或者出现在叶片的上下表面.Zhang等(2009)研究表明, 水稻叶片远轴面的厚壁细胞发生缺失时导致叶片正卷, 而近轴面厚壁细胞缺失会使叶片反卷.水稻卷曲叶片的主脉本应是空腔的地方大多被薄壁细胞填充, 导致薄壁细胞的数目明显增多(Zou et al., 2011).卷叶在叶脉近轴面厚壁细胞的缺失可能是由于近轴面薄壁细胞数目的增加占据了原厚壁细胞的位置, 从而使厚壁细胞分化发育的命运发生改变.因此, 叶片卷曲由薄壁细胞和厚壁细胞的共同作用决定. ...
... 在水稻成熟叶脉的维管束中, 韧皮部(由筛管和伴胞等细胞组成)和木质部(由原生木质部导管和次生木质部导管组成)及其外围围绕的束内输导组织鞘细胞和维管束鞘细胞构成束状结构.韧皮部负责将叶片光合同化的产物运输到水稻的其它部位.除此之外, 它们还发挥结构支撑作用.细胞学观察结果表明, 水稻反卷叶中维管束的韧皮部面积明显增大, 而筛管-伴胞复合体的细胞数量增多是造成韧皮部面积增大的直接原因, 并促使韧皮部周围细胞(如其两旁的叶肉细胞和远轴面的厚壁细胞)的分布发生变化.其原因可能是由于薄壁细胞的异常分裂影响了主脉近轴面维管束的正常分化和发育.当韧皮部的细胞面积增大时, 使叶片发生反卷; 反之, 则使叶片发生正卷(Zou et al., 2011). ...
... 研究表明, Ocu5基因主要在顶端分生组织的最外1或2层细胞内表达, 在成熟叶片和茎中不表达; Ocu5突变体与日本晴相比表现为正卷, 泡状细胞数目和面积都有所减少(王文乐, 2016).另外, Li等(2016)发现, OsLBD3-7编码1个典型的LBD家族转录因子, 其过表达植株叶片变窄并正面卷曲, 泡状细胞数目减少21%, 细胞体积比野生型小80%.OsHox32基因超表达导致叶片窄且卷.组织细胞学分析表明, OsHox32超表达植株叶片泡状细胞数目减少, 叶片发生卷曲, 且水分利用率显著增加(Li et al., 2016).Chen等(2015)克隆到1个显性卷叶基因REL1, 编码1种新的未知蛋白, 主要在叶舌、叶鞘及维管等组织中表达.rel1突变体的叶片表型由泡状细胞大小和数量的变异引起.rel1显性突变体和REL1过表达植物对外源油菜素类固醇(BR)的响应敏感性降低, REL1通过协调BR信号转导来调控叶片的形态, 尤其是叶片的卷曲和弯曲, 进而影响泡状细胞的数目和大小(Chen et al., 2015).Xu等(2014)发现, oszhd1突变体叶片泡状细胞数目增加且排列异常, 从而导致叶片卷曲.OsZH- D1在幼苗和叶鞘中表达量较高, 在根和幼穗中表达量较低(Xu et al., 2014).Xiang等(2012)发现了1个参与叶卷调节的叶形基因SRL1, 可通过抑制近轴面泡状细胞的形成控制卷叶形成.SRL1编码1个糖基磷脂酰肌醇锚定蛋白, 该蛋白定位于质膜上, 可通过负调节编码液泡H(+)-ATP酶亚基和H(+)基因的表达来调节叶片卷曲(Xiang et al., 2012).RL14基因编码1个2OG-Fe(II)加氧酶, RL14通过调控次生细胞壁的组分使叶片中的水分运输发生改变, 进一步导致叶片失水, 最终使泡状细胞的形状发生异常(Fang et al., 2012).Zou等(2011)研究表明, Roc5基因与泡状细胞发育有关, 该基因通过调控PFL基因的表达控制泡状细胞的变化.Roc5基因过量表达时, 泡状细胞的数目和大小都有所减少, 从而调控叶片内卷; 而共抑制时, 泡状细胞的数目和大小都增加, 从而使叶片外卷.此外, NRL1基因编码1个纤维素合成酶样蛋白D4 (OsCs1D4), 该基因突变导致泡状细胞明显变小, 水稻叶片变窄并向内卷曲(Hu et al., 2010). ...



相关话题/细胞 基因 遗传 控制 未知