Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica
Yin-Liu WANG1,2, Qian-Qian GENG1,2, Jian-Hui HUANG,,1,2,*, Chang-Hui WANG1, Lei LI1,2, Muqier HASI1,2, Guo-Xiang NIU1,21State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Aims Nitrogen (N) supply and planting density are two important factors influencing plant growth. Legumes are important to ecosystem N input because of their capacity of biological N2 fixation (BNF). Increasing atmospheric N deposition may promote the growth of leguminous plants, but it may also inhibit strongly their BNF capacity. Planting density can also influence the growth and BNF capacity of legumes due to intraspecific competition. However, few studies up to date have focused on the effects of N fertilization and planting density on the growth and BNF capacity of legumes. In this study, we aimed to explore the potentially interactive effects of N fertilization and planting density on the growth and BNF capacity of Lespedeza davurica, a leguminous plant species which is widely distributed throughout the northern China grasslands. Methods A pot experiment was conducted in a greenhouse. The experiment contained four levels of N addition (0, 5, 10, 20 g·m-2·a-1) by NH4NO3fertilizer and three levels of planting densities (1, 3, 6 Ind.·pot-1, i.e. 32, 96, 192 Ind.·m-2). Important findings 1) Our results showed that both N addition and planting density could impact the biomass production ofL. davurica. N addition increased plant leaf carbon (C) and N contents and leaf-level net photosynthetic rate. Besides, N addition also stimulated the plant growth at both pot and individual levels, and the yield reached maximum at N addition of 10 g·m-2·a-1. Increasing planting density decreased leaf C and N contents, leaf-level net photosynthetic rate, and individual growth, but increased total biomass in each pot. 2) Nitrogen addition reduced the capacity of BNF of L. davurica, while increasing planting density could weaken this suppression effect to some extent. The combination of N addition of 10 g·m-2·a-1 and planting density of 3 Ind.·pot-1 or N addition of 10 g·m-2·a-1 and planting density of 6 Ind.·pot-1 could maximize the effects of N application on individual yield and the effects of increasing planting density on the alleviation of BNF suppression. Nitrogen addition suppressed the BNF of L. davurica through reducing plant investment to nodulation and nodule biomass production. The intraspecific competition and resource limitation caused by increasing planting density led to improvement in the investment to nodulation and nodule growth. 3) Structural equation model analyses showed that N addition and planting density combined explained variations in the plant biomass and nodule production either directly or indirectly by 64% and 42%, respectively. The results indicate that it is important to optimize the amount of fertilizer application and appropriate planting density when considering plantation and management of artificial and degraded grasslands. Keywords:N addition;planting density;biomass;nodule biomass;investment to nodulation;biological nitrogen fixation
PDF (1154KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥. 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响. 植物生态学报, 2021, 45(1): 13-22. DOI: 10.17521/cjpe.2020.0185 WANG Yin-Liu, GENG Qian-Qian, HUANG Jian-Hui, WANG Chang-Hui, LI Lei, HASI Muqier, NIU Guo-Xiang. Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica. Chinese Journal of Plant Ecology, 2021, 45(1): 13-22. DOI: 10.17521/cjpe.2020.0185
氮(N)是植物生长和发育所必需的重要养分元素(LeBauer & Treseder, 2008), 同时也是陆地生态系统生产力的限制性元素(Vitousek & Howarth, 1991; Elser et al., 2007)。自工业革命以来, 人类活动导致的大气氮沉降日益增加(Galloway et al., 2004, 2008), 这在缓解生态系统的氮限制的同时也改变了生态系统的结构和功能(Pardo et al., 2011; Midolo et al., 2019)。对豆科植物而言, 由于其生物固氮功能在受到氮限制的生态系统中占有重要地位(Vitousek et al., 2013), 但通过共生固氮获取大气中的氮是一个高耗能的过程(Gutschick, 1981), 大气氮沉降的增加以及草原管理中氮肥的施用提高了土壤中可利用氮的含量(潘庆民等, 2005; Liu et al., 2013), 这为豆科植物提供了一个相对“便宜”的氮源, 豆科植物可能会调整其对氮的利用方式以及对生物固氮的投资来保持其在群落中的竞争能力(Mengeet al., 2009)。目前关于豆科植物对氮响应的研究已经有很多, 但不同物种的生长和生物固氮对氮水平的响应并不一致(Guinet et al., 2018), 例如Regus等(2017)发现氮沉降显著降低了豆科植物Acmispon strigosus的根瘤数量和生物量, 而Drake (2011)的研究表明施氮会显著促进豆科植物生长, 同时对生物固氮没有抑制作用。因此, 结合具体豆科植物生物固氮和生长情况对土壤氮供给水平的响应, 可以评价豆科植物在氮沉降或草原施氮管理背景下群落中重要性的变化。
密度依赖性引起的植株正或负相互作用普遍存在于植物种群中, 选择合适的种植密度是建植和管理人工草地的关键(Japhet et al., 2009; 张炜平和王根轩, 2010)。低密度下单个植株的生长空间较大, 资源充足, 但群体产量受到个体数量限制。相反, 密度增加提高群体产量的同时也会导致群落内资源竞争增加(Weiner et al., 2001), 影响单个植株的生长发育和干物质积累(Chu et al., 2008; 列志旸等, 2016), 并改变生物量分配(赵宏魁等, 2016)。
氮肥添加对植物个体株高无显著影响(FN(3,48) = 1.47,p >0.05), 但对总生物量(FN(3,48) = 11.56,p <0.001)、总地上生物量(FN(3,48) = 11.60,p <0.001)、总地下生物量(FN(3,48) = 8.70,p <0.001)、平均地上生物量(FN(3,48) = 7.73,p <0.001)、平均地下生物量(FN(3,48) = 5.43,p <0.01)以及根冠比(FN(3,48) = 3.32,p <0.05)均存在显著影响(p< 0.05), 除根冠比外其他指标均随施氮量的增加呈现上升的趋势。种植密度处理则对所有的生长指标均有显著作用, 其中总生物量(Fd(2,48) = 69.67, p <0.001)、总地上生物量(Fd(2,48) = 61.95, p <0.001)、总地下生物量(Fd(2,48) = 32.10, p <0.001)以及根冠比(Fd(2,48) = 13.95, p <0.001)均随种植密度增加呈增加趋势, 而株高(Fd(2,48) = 15.90, p <0.001)、平均地上生物量(Fd(2,48) = 168.03, p <0.001)和平均地下生物量(Fd(2,48) = 10.69, p <0.001)则随密度增加呈现降低趋势(表1)。
Table 1 表1 表1不同氮肥和种植密度处理下达乌里胡枝子的生长指标(平均值±标准误) Table 1Growth indexes of Lespedeza davurica under different levels of nitrogen addition and planting density treatments (mean ± SE)
处理 Treatment
水平 Level
株高 Height (cm)
总生物量 Total biomass (g)
总地上生物量 Total aboveground biomass (g)
总地下生物量 Total belowground biomass (g)
平均地上生物量 Average aboveground biomass (g·Ind.-1)
平均地下生物量 Average belowground biomass (g·Ind.-1)
根冠比 Root:shoot ratio
叶片C含量 Leaf C concentration (%)
施氮 N addition (g·m-2·a-1)
0
58.69 ± 2.14 ns
11.79 ± 1.02 b
8.94 ± 0.72 c
2.84 ± 0.32 b
3.61 ± 0.47 b
1.06 ± 0.13 b
0.31 ± 0.02 b
45.26 ± 0.34 b
5
58.49 ± 1.90 ns
15.43 ± 1.02 a
11.24 ± 0.64 bc
4.20 ± 0.39 a
4.93 ± 0.76 a
1.67 ± 0.22 a
0.36 ± 0.02 a
45.99 ± 0.35 a
10
62.56 ± 2.43 ns
15.76 ± 1.04 a
11.99 ± 0.77 a
3.76 ± 0.32 a
5.20 ± 0.80 a
1.60 ± 0.25 a
0.31 ± 0.02 b
45.98 ± 0.32 a
20
63.32 ± 2.61 ns
15.37 ± 1.02 a
11.52 ± 0.7 ab
3.86 ± 0.33 a
4.91 ± 0.67 a
1.51 ± 0.17 a
0.33 ± 0.01 ab
45.95 ± 0.26 a
密度 Planting density (Ind.·pot-1)
1
77.53 ± 4.43 a
10.01 ± 0.62 b
7.80 ± 0.45 b
2.20 ± 0.19 b
7.81 ± 0.45 a
2.20 ± 0.19 a
0.28 ± 0.01 b
46.29 ± 0.09 a
3
61.56 ± 1.60 b
16.54 ± 0.62 a
12.20 ± 0.46 a
4.34 ± 0.19 a
4.07 ± 0.15 b
1.45 ± 0.06 b
0.36 ± 0.01 a
46.69 ± 0.24 a
6
57.53 ± 1.42 b
17.50 ± 0.55 a
12.94 ± 0.38 a
4.56 ± 0.25 a
2.16 ± 0.06 c
0.76 ± 0.04 c
0.35 ± 0.02 a
44.41 ± 0.13 b
N × density
**
***
***
***
***
***
***
ns
同列不同小写字母表示氮或密度处理下差异显著(p< 0.05), ns表示差异不显著(p> 0.05)。*,p< 0.05; **,p< 0.01; ***,p< 0.001。 Different lowercase letters in the same column indicate significant difference among N addition levels or density treatments at p< 0.05 level, while ns indicates no significant difference. *,p< 0.05; **,p< 0.01; ***,p< 0.001.
新窗口打开|下载原图ZIP|生成PPT 图1不同处理下达乌里胡枝子的叶片N含量(A)和净光合速率(B)的变化(平均值±标准误)。不同小写字母表示同一密度下不同施氮量间差异显著(p < 0.05), 不同大写字母表示不同密度下差异显著(p < 0.05)。ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 1Changes in leaf nitrogen (N) concentration (A) and net photosynthetic rate (B) of Lespedeza davurica under different treatments (mean ± SE). Different lowercase letters indicate significant difference among N addition treatments under the same density at p < 0.05 level, while different uppercase letters indicate significant difference among density treatments at p < 0.05 level. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
新窗口打开|下载原图ZIP|生成PPT 图2不同处理下达乌里胡枝子的相对邻株效应指数(平均值±标准误)。不同小写字母表示同一施氮量下不同密度下差异显著(p < 0.05)。ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2Relative neighbor effect index under different treatments (mean ± SE). Different lowercase letters indicate significant difference among density treatments under the same N addition rate at p < 0.05 level. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
新窗口打开|下载原图ZIP|生成PPT 图3不同处理对根瘤生物量响应比(RR)(A)和根瘤投资(B)的影响(平均值±标准误)。图A中,虚线位置代表RR = 1, 如果误差线没有跨越虚线表示处理与对照存在显著差异(p < 0.05)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3Responses of the nodule biomass response ratio (RR)(A) and investment to nodulation (B) under different treatments (mean ± SE). In Fig. A, response ratio values with error bars not overlapping RR = 1 (horizontal dotted line), indicate significant difference between treatment and control (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 4Direct and indirect impacts of N addition rate and planting density on the root nodulation and growth of Lespedeza davurica. Lines indicate a significant effect (p < 0.05). Line thickness indicates relative effect size. Black lines represent positive effects, while gray lines indicate negative effects. R 2 indicates variation that can be explained. Pn, net photosynthetic rate.
BaiYF, WuJG, ClarkCM, NaeemS, PanQM, HuangJH, ZhangLX, HanXG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands , 16,358-372. DOI:10.1111/(ISSN)1365-2486URL [本文引用: 1]
BattermanSA, WurzburgerN, HedinLO (2013). Nitrogen and phosphorus interact to control tropical symbiotic N 2fixation: a test in Inga punctata , 101,1400-1408. DOI:10.1111/1365-2745.12138URL [本文引用: 2]
ChengJ, ChengJM, HuTM (2011). Distribution responses of Lespedeza davurica community on Loess Plateau to climate change , 22,35-40. PMID:21548285 [本文引用: 1] Field survey and position monitoring were conducted from 2000 to 2009 to study the effects of climate change on the distribution and growth of Lespedeza davurica community on Loess Plateau. As affected by air temperature, the appropriate growth region of L. davurica community on the Plateau had an obvious zonal distribution from northwest to southeast. For the distribution of L. davurica community, the suitable air temperature was 7.4 degrees C-10 degrees C, average population density was 13.9 plants x m(-2), and reproductive branch was averagely 11.4 per cluster. As affected by precipitation gradient, the horizontal distribution of L. davurica community changed from a constructive or predominant species in typical grassland region into a companion species in forest steppe region, and then, the community gradually became dominant species. The L. davurica community appeared as an occasional species on the half sunny slope of gullies and valleys and the sand dunes in desert steppe region, and extended gradually from its optimal region with yearly precipitation 300 -500 mm to the region with yearly precipitation 270-600 mm. Also, the L. davurica community extended from its optimal altitude 1100-1700 m to 600-1950 m. Under the background of global climate change, the eco-breadth of L. davurica community expanded gradually. [ 程杰, 程积民, 呼天明 (2011). 气候变化对黄土高原达乌里胡枝子种群分布格局的影响 , 22,35-40.] PMID:21548285 [本文引用: 1]
ChuCJ, MaestreFT, XiaoS, WeinerJ, WangYS, DuanZH, WangG (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations , 11,1189-1197. DOI:10.1111/ele.2008.11.issue-11URL [本文引用: 2]
CraineJM, TilmanD, WedinD, ReichP, TjoelkerM, KnopsJ (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species , 16,563-574. DOI:10.1046/j.1365-2435.2002.00660.xURL [本文引用: 1]
DiaoLW, LiP, LiuWX, XuS, QiaoCL, ZengH, LiuLL (2018). Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland , 42,818-830. DOI:10.17521/cjpe.2018.0056URLPMID:E0240177-68AD-4F8D-B229-FAC839165654 [本文引用: 1]
DuanDP, XuBC, NiuFR, XuWZ (2012). Effects of water and phosphorus on chlorophyll fluorescence characteristics of different position leaves in Lespedeza daurica , 29,422-428. [本文引用: 1]
GuinetM, NicolardotB, RevellinC, DureyV, CarlssonG, VoisinAS (2018). Comparative effect of inorganic N on plant growth and N 2 fixation of ten legume crops: towards a better understanding of the differential response among species , 432,207-227. DOI:10.1007/s11104-018-3788-1URL [本文引用: 1]
GutschickVP (1981). Evolved strategies in nitrogen acquisition by plants , 118,607-637. DOI:10.1086/283858URL [本文引用: 1]
HumbertJY, DwyerJM, AndreyA, ArlettazR (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review , 22,110-120. DOI:10.1111/gcb.12986URL [本文引用: 1]
JaphetW, ZhouDW, ZhangHX, ZhangHX, YuT (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date , 52,303-311. DOI:10.1007/s12374-009-9037-7URL [本文引用: 1]
KapustkaLA, WilsonKG (1990). The influence of soybean planting density on dinitrogen fixation and yield , 129,145-156. DOI:10.1007/BF00032407URL [本文引用: 1]
LeBauerDS, TresederKK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed , 89,371-379. PMID:18409427 [本文引用: 1] Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found that most ecosystems are nitrogen limited with an average 29% growth response to nitrogen (i.e., R = 1.29). The response ratio was significant within temperate forests (R = 1.19), tropical forests (R = 1.60), temperate grasslands (R = 1.53), tropical grasslands (R = 1.26), wetlands (R = 1.16), and tundra (R = 1.35), but not deserts. Eight tropical forest studies had been conducted on very young volcanic soils in Hawaii, and this subgroup was strongly N limited (R = 2.13), which resulted in a negative correlation between forest R and latitude. The degree of N limitation in the remainder of the tropical forest studies (R = 1.20) was comparable to that of temperate forests, and when the young Hawaiian subgroup was excluded, forest R did not vary with latitude. Grassland response increased with latitude, but was independent of temperature and precipitation. These results suggest that the global N and C cycles interact strongly and that geography can mediate ecosystem response to N within certain biome types.
LieZY, XuSK, XueL, HuangWL, LiJ (2016). Effect of density on the growth of evergreen Tephrosia candida shrubs , 36,69-73. [本文引用: 1]
LiuWL, ShiSL, TianFP (2017). Effects of planting density on biomass and photosynthetic characters of alfalfa leaves at different positions , 37,14-19. [本文引用: 1]
MaX, WangLL, LiWJ, SongJP, HeY, LuoM (2013). Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia , 22,95-102. [本文引用: 1]
MalikNS, CalvertHE, BauerWD (1987). Nitrate induced regulation of nodule formation in soybean , 84,266-271. DOI:10.1104/pp.84.2.266URL [本文引用: 1]
MengeDNL, LevinSA, HedinLO (2009). Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences , 174,465-477. DOI:10.1086/605377URL [本文引用: 1]
MidoloG, AlkemadeR, SchipperAM, Benítez-LópezA, PerringMP, de VriesW (2019). Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis , 28,398-413. DOI:10.1111/geb.v28.3URL [本文引用: 1]
PanQM, BaiYF, HanXG, YangJC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia , 29,311-317. PMID:D89C70A8-57C8-4982-9C8F-23AAC2FF24DA [本文引用: 1]
PardoLH, FennME, GoodaleCL, GeiserLH, DriscollCT, AllenEB, BaronJS, BobbinkR, BowmanWD, ClarkCM, EmmettB, GilliamFS, GreaverTL, HallSJ, LilleskovEA, et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States , 21,3049-3082. [本文引用: 1]
RegusJU, WendlandtCE, BantayRM, Gano-CohenKA, GleasonNJ, HollowellAC, O’NeillMR, ShahinKK, SachsJL (2017). Nitrogen deposition decreases the benefits of symbiosis in a native legume , 414,159-170. DOI:10.1007/s11104-016-3114-8URL [本文引用: 2]
TangZS, DengL, AnH, YanWM, ShangguanZP (2017). The effect of nitrogen addition on community structure and productivity in grasslands: a meta-analysis , 99,31-38. DOI:10.1016/j.ecoleng.2016.11.039URL [本文引用: 1]
VitousekP, HowarthR (1991). Nitrogen limitation on land and in the sea: How can it occur? , 13,87-115. [本文引用: 1]
WangY, DuanXY, ZhangSC, DuanXL, YangHL, QianBL (2011). Influence of planting density on grass yield and other biological properties of Medicago sativa , 28,1400-1402. [本文引用: 1]
WeinerJ, StollP, Muller-LandauH, JasentuliyanaA (2001). The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations , 158,438-450. DOI:10.1086/321988PMID:18707338 [本文引用: 1] Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size-asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual-based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size-asymmetric and size-symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size-asymmetric competition, not to variation in local density.
YanYH, YangWY, ZhangXQ, ChenXL, ChenZQ (2011). Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming , 20,233-238. [本文引用: 1]
YangJX, HuangSS, YangML, WangJA (2012). Effect of density and fertilizer amount on yield of different branching types of soybeans , 31,381-384. [本文引用: 1]
YuGR, JiaYL, HeNP, ZhuJX, ChenZ, WangQF, PiaoSL, LiuXJ, HeHL, GuoXB, WenZ, LiP, DingGA, GouldingK (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade , 12,424-429. DOI:10.1038/s41561-019-0352-4URL [本文引用: 1]
ZhangMC, ZhanYC, HeSY, JinXJ, WangMX, RenCY, ZhangYX (2018). Effects of different nitrogen fertilizer and density level on dry matter accumulation and yield of adzuki bean , 34,141-146. [本文引用: 1]
ZhangXH, XuBC, LiFM (2007). Effect of planting density on the productivity and WUE of three legumes in highland of Loess Plateau , 15,593-598. [本文引用: 1]
ZhaoHK, MaZ, ZhangCH, LeiZL, YaoBQ, ZhouHK (2016). The reproductive allocation of Avena sativa under different planting densities and nitrogen addition treatments , 33,249-258. [本文引用: 1]
ZhaoX, DongKH, ZhangY, YangWD, LiangPF (2009). Study on Lamina anatomical structure of Lespedeza daurica (Laxm.) Schindl. from different populations , 17,445-451. [本文引用: 1]
Comparative effect of inorganic N on plant growth and N 2 fixation of ten legume crops: towards a better understanding of the differential response among species 1 2018
... 氮(N)是植物生长和发育所必需的重要养分元素(LeBauer & Treseder, 2008), 同时也是陆地生态系统生产力的限制性元素(Vitousek & Howarth, 1991; Elser et al., 2007).自工业革命以来, 人类活动导致的大气氮沉降日益增加(Galloway et al., 2004, 2008), 这在缓解生态系统的氮限制的同时也改变了生态系统的结构和功能(Pardo et al., 2011; Midolo et al., 2019).对豆科植物而言, 由于其生物固氮功能在受到氮限制的生态系统中占有重要地位(Vitousek et al., 2013), 但通过共生固氮获取大气中的氮是一个高耗能的过程(Gutschick, 1981), 大气氮沉降的增加以及草原管理中氮肥的施用提高了土壤中可利用氮的含量(潘庆民等, 2005; Liu et al., 2013), 这为豆科植物提供了一个相对“便宜”的氮源, 豆科植物可能会调整其对氮的利用方式以及对生物固氮的投资来保持其在群落中的竞争能力(Mengeet al., 2009).目前关于豆科植物对氮响应的研究已经有很多, 但不同物种的生长和生物固氮对氮水平的响应并不一致(Guinet et al., 2018), 例如Regus等(2017)发现氮沉降显著降低了豆科植物Acmispon strigosus的根瘤数量和生物量, 而Drake (2011)的研究表明施氮会显著促进豆科植物生长, 同时对生物固氮没有抑制作用.因此, 结合具体豆科植物生物固氮和生长情况对土壤氮供给水平的响应, 可以评价豆科植物在氮沉降或草原施氮管理背景下群落中重要性的变化. ...
Evolved strategies in nitrogen acquisition by plants 1 1981
... 氮(N)是植物生长和发育所必需的重要养分元素(LeBauer & Treseder, 2008), 同时也是陆地生态系统生产力的限制性元素(Vitousek & Howarth, 1991; Elser et al., 2007).自工业革命以来, 人类活动导致的大气氮沉降日益增加(Galloway et al., 2004, 2008), 这在缓解生态系统的氮限制的同时也改变了生态系统的结构和功能(Pardo et al., 2011; Midolo et al., 2019).对豆科植物而言, 由于其生物固氮功能在受到氮限制的生态系统中占有重要地位(Vitousek et al., 2013), 但通过共生固氮获取大气中的氮是一个高耗能的过程(Gutschick, 1981), 大气氮沉降的增加以及草原管理中氮肥的施用提高了土壤中可利用氮的含量(潘庆民等, 2005; Liu et al., 2013), 这为豆科植物提供了一个相对“便宜”的氮源, 豆科植物可能会调整其对氮的利用方式以及对生物固氮的投资来保持其在群落中的竞争能力(Mengeet al., 2009).目前关于豆科植物对氮响应的研究已经有很多, 但不同物种的生长和生物固氮对氮水平的响应并不一致(Guinet et al., 2018), 例如Regus等(2017)发现氮沉降显著降低了豆科植物Acmispon strigosus的根瘤数量和生物量, 而Drake (2011)的研究表明施氮会显著促进豆科植物生长, 同时对生物固氮没有抑制作用.因此, 结合具体豆科植物生物固氮和生长情况对土壤氮供给水平的响应, 可以评价豆科植物在氮沉降或草原施氮管理背景下群落中重要性的变化. ...
Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review 1 2016